Towards an Ethical Framework for Publishing Twitter Data in Social Research: Taking into Account Users’ Views, Online Context and Algorithmic Estimation

Authors : Matthew L Williams, Pete Burnap, Luke Sloan

New and emerging forms of data, including posts harvested from social media sites such as Twitter, have become part of the sociologist’s data diet. In particular, some researchers see an advantage in the perceived ‘public’ nature of Twitter posts, representing them in publications without seeking informed consent.

While such practice may not be at odds with Twitter’s terms of service, we argue there is a need to interpret these through the lens of social science research methods that imply a more reflexive ethical approach than provided in ‘legal’ accounts of the permissible use of these data in research publications.

To challenge some existing practice in Twitter-based research, this article brings to the fore: (1) views of Twitter users through analysis of online survey data; (2) the effect of context collapse and online disinhibition on the behaviours of users; and (3) the publication of identifiable sensitive classifications derived from algorithms.

URL : Towards an Ethical Framework for Publishing Twitter Data in Social Research: Taking into Account Users’ Views, Online Context and Algorithmic Estimation

DOI : http://dx.doi.org/10.1177%2F0038038517708140

Networked Scholarship and Motivations for Social Media use in Scholarly Communication

Authors : Stefania Manca, Maria Ranieri

Research on scholars’ use of social media suggests that these sites are increasingly being used to enhance scholarly communication by strengthening relationships, facilitating collaboration among peers, publishing and sharing research products, and discussing research topics in open and public formats.

However, very few studies have investigated perceptions and attitudes towards social media use for scholarly communication of large cohorts of scholars at national level.

This study investigates the reasons for using social media sites for scholarly communication among a large sample of Italian university scholars (N=6139) with the aim of analysing what factors mainly affect these attitudes.

The motivations for using social media were analysed in connection with frequency of use and factors like gender, age, years of teaching, academic title, and disciplinary field. The results point out that for the most used tools the influence of the variables examined was higher in shaping scholars’ motivations.

In fact, frequency of use, age, years of teaching, and disciplinary field were found to be relevant factors especially for LinkedIn and ResearchGate-Academia.edu, while gender and academic title seemed to have a limited impact on scholars’ motivations for all social media sites considered in the study.

Considerations for future research are provided along with limitations of the study.

URL : Networked Scholarship and Motivations for Social Media use in Scholarly Communication

DOI : http://dx.doi.org/10.19173/irrodl.v18i2.2859

A systematic identification and analysis of scientists on Twitter

Authors : Qing Ke, Yong-Yeol Ahn, Cassidy R. Sugimoto

Metrics derived from Twitter and other social media—often referred to as altmetrics—are increasingly used to estimate the broader social impacts of scholarship. Such efforts, however, may produce highly misleading results, as the entities that participate in conversations about science on these platforms are largely unknown.

For instance, if altmetric activities are generated mainly by scientists, does it really capture broader social impacts of science? Here we present a systematic approach to identifying and analyzing scientists on Twitter.

Our method can identify scientists across many disciplines, without relying on external bibliographic data, and be easily adapted to identify other stakeholder groups in science.

We investigate the demographics, sharing behaviors, and interconnectivity of the identified scientists.

We find that Twitter has been employed by scholars across the disciplinary spectrum, with an over-representation of social and computer and information scientists; under-representation of mathematical, physical, and life scientists; and a better representation of women compared to scholarly publishing.

Analysis of the sharing of URLs reveals a distinct imprint of scholarly sites, yet only a small fraction of shared URLs are science-related. We find an assortative mixing with respect to disciplines in the networks between scientists, suggesting the maintenance of disciplinary walls in social media.

Our work contributes to the literature both methodologically and conceptually—we provide new methods for disambiguating and identifying particular actors on social media and describing the behaviors of scientists, thus providing foundational information for the construction and use of indicators on the basis of social media metrics.

 URL : A systematic identification and analysis of scientists on Twitter

DOI : https://doi.org/10.1371/journal.pone.0175368

“Facebook for Academics”: The Convergence of Self-Branding and Social Media Logic on Academia.edu

Authors : Brooke Erin Duffy, Jefferson Pooley

Given widespread labor market precarity, contemporary workers—especially those in the media and creative industries—are increasingly called upon to brand themselves. Academics, we contend, are experiencing a parallel pressure to engage in self-promotional practices, particularly as universities become progressively more market-driven.

Academia.edu, a paper-sharing social network that has been informally dubbed “Facebook for academics,” has grown rapidly by adopting many of the conventions of popular social media sites.

This article argues that the astonishing uptake of Academia.edu both reflects and amplifies the self-branding imperatives that many academics experience. Drawing on Academia.edu’s corporate history, design decisions, and marketing communications, we analyze two overlapping facets of Academia.edu: (1) the site’s business model and (2) its social affordances.

We contend that the company, like mainstream social networks, harnesses the content and immaterial labor of users under the guise of “sharing.” In addition, the site’s fixation on analytics reinforces a culture of incessant self-monitoring—one already encouraged by university policies to measure quantifiable impact.

We conclude by identifying the stakes for academic life, when entrepreneurial and self-promotional demands brush up against the university’s knowledge-making ideals.

URL : “Facebook for Academics”: The Convergence of Self-Branding and Social Media Logic on Academia.edu

DOI : https://hcommons.org/deposits/item/hc:11561

Interroger le texte scientifique

Auteur/Author : Guillaume Cabanac

Les documents textuels sont des vecteurs d’information familiers et incontournables de notre société de l’information. Avec l’essor des plateformes numériques et des médias sociaux, le texte se décline désormais en pages web, billets de blogs, commentaires, tweets et tags, entre autres. Auparavant consommateurs passifs, les lecteurs se muent à leur tour en producteurs de contenus.

En résultent des échanges interpersonnels qui tissent des réseaux sociaux numériques s’étendant bien au-delà de nos cercles relationnels. Dans ce contexte, nature et format des textes, intentions de leurs auteurs (informer, rediffuser, critiquer, compléter, corriger, etc.), contexte spatio-temporel ainsi que véracité et fraîcheur variables des informations sont autant de subtilités à intégrer dans les modèles de recherche d’information.

La première partie de ce mémoire présente une synthèse de résultats en recherche d’information visant à modéliser ces facteurs pour améliorer la pertinence des recherches sur des corpus textuels, notamment issus de médias sociaux.

Le programme de recherche que je développe vise également à « interroger le texte » pour révéler des informations au sujet de son contenu, de ses auteurs et de ses lecteurs. Le texte scientifique a été choisi comme cible pour la richesse de son contenu et de ses méta- données. Ainsi, la deuxième partie du mémoire synthétise des résultats en scientométrie, terme désignant l’étude quantitative des sciences et de l’innovation.

Il s’est agi de questionner des textes scientifiques et les réseaux sous-jacents (lexique, références, auteurs, institutions, etc.) pour faire émerger des connaissances à forte valeur ajoutée et apporter un éclairage sur la création et la diffusion des savoirs scientifiques.

Les deux volets articulés dans ce mémoire concourent à définir un programme de recherche interdisciplinaire à la croisée de l’informatique, la scientométrie et la sociologie des sciences.

Son ambition consiste à interroger le texte scientifique pour en améliorer l’accès (via la recherche d’information) tout en contribuant à éliciter les ressorts de la genèse et de l’évolution des mondes sociaux et des savoirs en sciences (via la scientométrie).

URL : Interroger le texte scientifique

Alternative location : https://tel.archives-ouvertes.fr/tel-01413878/

Science and Facebook: the same popularity law!

Authors : Zoltán Néda, Levente Varga, Tamás S. Biró

The distribution of scientific citations for publications selected with different rules (author, topic, institution, country, journal, etc.) collapse on a single curve if one plots the citations relative to their mean value.

We find that the distribution of shares for the Facebook posts re-scale in the same manner to the very same curve with scientific citations. This finding suggests that citations are subjected to the same growth mechanism with Facebook popularity measures, being influenced by a statistically similar social environment and selection mechanism.

In a simple master-equation approach the exponential growth of the number of publications and a preferential selection mechanism leads to a Tsallis-Pareto distribution offering an excellent description for the observed statistics.

Based on our model and on the data derived from PubMed we predict that according to the present trend the average citations per scientific publications exponentially relaxes to about 4.

URL : https://arxiv.org/abs/1701.05347