Why You Need Soft and Non-Technical Skills for Successful Data Librarianship

Author : Margaret Henderson

There are many courses available to teach research data management to librarians and researchers. While these courses can help with technical skills, like programming or statistics, and practical knowledge of data life cycles or data sharing policies, there are “soft skills” and non-technical skills that are needed to successfully start and run data services.

While there are many important characteristics of a good data librarian, reference skills, relationship building, collaboration, listening, and facilitation are some of the most important. Giving consideration to these skills will help any data librarian with their multifaceted job.

URL : Skills for Data Librarianship

DOI : https://doi.org/10.7191/jeslib.2020.1183

Pratiques de gestion des données de la recherche : une nécessaire acculturation des chercheurs aux enjeux de la science ouverte ? Résultats d’une enquête exploratoire dans le bassin montpelliérain (juin 2018)

Auteur/Authors : Philippe Amiel, Francesca Frontini, Pierre-Yves Lacour, Agnès Robin

L’article présente les résultats d’une enquête exploratoire, menée en juin 2018 par le programme de recherche CommonData, dans le bassin montpelliérain à propos des pratiques de gestion des données de la recherche scientifique par les chercheurs.

Les principaux objectifs étaient de voir si cette gestion est ou non le fruit d’une organisation pensée et raisonnée, de vérifier la capacité ou l’incapacité dans laquelle se trouvent les chercheurs pour qualifier juridiquement les données explorées, collectées ou produites – qualification rendue nécessaire par la mise en œuvre de la politique actuelle d’ouverture de la science – et enfin, d’observer la réalité du sentiment de propriété développé par les chercheurs à l’égard des données qu’ils produisent, posant la question plus générale de la dimension personnelle et/ou institutionnelle du travail de recherche et de ses conséquences sur l’attribution de la propriété.

URL : https://journals.openedition.org/cdst/2061

Research Data Management Services and Strategic Planning in Libraries Today: A Longitudinal Study

Authors : Elise Gowen, John J. Meier

INTRODUCTION

Research data services have been adopted by many academic libraries. This study tracked the changes in research data management services and staffing among Association of American Universities (AAU) libraries over the past 5 years and compared them to the libraries’ goals for research data management (RDM) in their strategic plan.

METHODS

This quantitative study examined libraries at the 60 U.S. AAU institutions. In order to examine longitudinal changes, portions of Briney et.al. (2015a) were used as a basis for measuring data librarian staffing and services.

These trends were compared to the contemporary strategic priorities of libraries interviewed by Meier (2016), as well as against strategic plans of 2014 and 2019 available online.

RESULTS & DISCUSSION

While there have been modest increases in libraries in the sample population offering data services, most of those gains have been among the libraries that did not consider RDM a priority in 2014. Interestingly, some of the libraries that mentioned RDM as a priority in 2014 have lost data librarian positions.

Over half of the libraries in this study now provide or support a data repository. Many library strategic plans that mentioned RDM as an explicit goal 5 years ago now no longer mention it.

CONCLUSION

Data librarian positions, data services, and data repositories have now become common features of large research university libraries. However, research data services are no longer as prominent in many library strategic plans at institutions where such services are more established, and libraries instead seem to be moving on to the work of rethinking the nature of the services or expanding them.

URL : Research Data Management Services and Strategic Planning in Libraries Today: A Longitudinal Study

DOI : https://doi.org/10.7710/2162-3309.2336

Penser local. Développer une politique de données sur un campus SHS

Auteur/Author : Joachim Schöpfel

Dans le cadre du Plan national pour la science ouverte, la structuration et le partage des données de recherche font désormais partie des priorités de la politique scientifique de la France.

Chaque établissement et chaque organisme scientifique doit se doter d’une politique de la science ouverte et mettre en place un ensemble de services et dispositifs pour la gestion des données de la recherche.

A partir d’enquêtes sur le terrain, l’article propose une feuille de route pour la mise en œuvre d’une telle politique sur un campus universitaire en sciences humaines et sociales.

Dix principes indiquent des pistes pour la gouvernance et le pilotage de cette politique, pour déterminer les priorités de développement et d’investissements, et pour faire le lien avec les infrastructures de recherche, dont notamment Huma-Num.

Il s’agit d’une démarche bottom-up, qui met l’accent sur les pratiques et besoins des chercheurs et qui place les chercheurs au cœur d’une politique institutionnelle dans le domaine des données de recherche.

URL : https://www.openscience.fr/Penser-local

The role of a data librarian in academic and research libraries

Authors : Isaac K. Ohaji, Brenda Chawner, Pak Yoong

Introduction

This paper presents a data librarian role blueprint (the blueprint) in order to facilitate an understanding of the academic and research librarian’s role in research data management and e-research.

Method

The study employed a qualitative ase research approach to investigate the dimensions of the role of a data librarian in New Zealand research organizations, using semi-structured interviews as the main data collection instrument.

Analysis

A data analysis spiral was used to analyse the interview data, with the addition of a job analysis framework to organize the role performance components of a data librarian.

Results

The influencing factors, performance components and training needs for a data librarian role form the basis of the blueprint.

Conclusions

The findings which are reflected in the blueprint provide a conceptual understanding of the data librarian role which may be used to inform and enhance practice, or to develop relevant education and training programmes.

URL : http://informationr.net/ir/24-4/paper844.html

Risk Assessment for Scientific Data

Authors : Matthew S. Mayernik, Kelsey Breseman, Robert R. Downs, Ruth Duerr, Alexis Garretson, Chung-Yi (Sophie) Hou

Ongoing stewardship is required to keep data collections and archives in existence. Scientific data collections may face a range of risk factors that could hinder, constrain, or limit current or future data use.

Identifying such risk factors to data use is a key step in preventing or minimizing data loss. This paper presents an analysis of data risk factors that scientific data collections may face, and a data risk assessment matrix to support data risk assessments to help ameliorate those risks.

The goals of this work are to inform and enable effective data risk assessment by: a) individuals and organizations who manage data collections, and b) individuals and organizations who want to help to reduce the risks associated with data preservation and stewardship.

The data risk assessment framework presented in this paper provides a platform from which risk assessments can begin, and a reference point for discussions of data stewardship resource allocations and priorities.

URL : Risk Assessment for Scientific Data

DOI : http://doi.org/10.5334/dsj-2020-010

The Heritage Data Reuse Charter: from principles to research workflows

Authors : Erzsébet Tóth-Czifra, Laurent Romary

There is a growing need to establish domain-or discipline-specific approaches to research data sharing workflows. A defining feature of data and data workflows in the arts and humanities domain is their dependence on cultural heritage sources hosted and curated in museums, libraries, galleries and archives.

A major difficulty when scholars interact with heritage data is that the nature of the cooperation between researchers and Cultural Heritage Institutions (henceforth CHIs) is often constrained by structural and legal challenges but even more by uncertainties as to the expectations of both parties.

The Heritage Data Reuse Charter aims to address these by designing a common environment that will enable all the relevant actors to work together to connect and improve access to heritage data and make transactions related to the scholarly use of cultural heritage data more visible and transparent.

As a first step, a wide range of stakeholders on the Cultural Heritage and research sector agreed upon a set of generic principles, summarized in the Mission Statement of the Charter, that can serve as a baseline governing the interactions between CHIs, researchers and data centres.

This was followed by a long and thorough validation process related to these principles through surveys 1 and workshops 2. As a second step, we now put forward a questionnaire template tool that helps researchers and CHIs to translate the 6 core principles into specific research project settings.

It contains questions about access to data, provenance information, preferred citation standards, hosting responsibilities etc. on the basis of which the parties can arrive at mutual reuse agreements that could serve as a starting point for a FAIR-by-construction data management, right from the project planning/application phase.

The questionnaire template and the resulting mutual agreements can be flexibly applied to projects of different scale and in platform-independent ways. Institutions can embed them into their own exchange protocols while researchers can add them to their Data Management Plans.

As such, they can show evidence for responsible and fair conduct of cultural heritage data, and fair (but also FAIR) research data management practices that are based on partnership with the holding institution.

URL : https://halshs.archives-ouvertes.fr/halshs-02475692