Les enjeux de l’interopérabilité dans la diffusion et la valorisation des données archéologiques

Auteur/Author : Pauline Vignaud

Discipline historique et scientifique, l’archéologie a vu ses pratiques évoluées depuis l’arrivée du numérique. Dès lors, plusieurs problématiques se sont imposées aux archéologues notamment dans leur manière de diffuser et de valoriser leurs données.

Dans ce contexte-là, des questions autour de l’interopérabilité ont émergé notamment les outils à développer (plateformes, applications, projets) et à mettre en place pour permettre le partage et la mise en valeur des données archéologiques.

Ce mémoire propose d’explorer toutes les thématiques (jeux de données, réutilisation…) où l’interopérabilité intervient dans cet environnement scientifique comme un facteur favorisant – ou problématique dans la diffusion et la valorisation.

URL : Les enjeux de l’interopérabilité dans la diffusion et la valorisation des données archéologiques

Alternative location : https://www.enssib.fr/bibliotheque-numerique/notices/68376-les-enjeux-de-l-interoperabilite-dans-la-diffusion-et-la-valorisation-des-donnees-archeologiques

Facilitating and Improving Environmental Research Data Repository Interoperability

Authors : Corinna Gries, Amber Budden, Christine Laney, Margaret O’Brien, Mark Servilla, Wade Sheldon, Kristin Vanderbilt, David Vieglais

Environmental research data repositories provide much needed services for data preservation and data dissemination to diverse communities with domain specific or programmatic data needs and standards.

Due to independent development these repositories serve their communities well, but were developed with different technologies, data models and using different ontologies. Hence, the effectiveness and efficiency of these services can be vastly improved if repositories work together adhering to a shared community platform that focuses on the implementation of agreed upon standards and best practices for curation and dissemination of data.

Such a community platform drives forward the convergence of technologies and practices that will advance cross-domain interoperability. It will also facilitate contributions from investigators through standardized and streamlined workflows and provide increased visibility for the role of data managers and the curation services provided by data repositories, beyond preservation infrastructure.

Ten specific suggestions for such standardizations are outlined without any suggestions for priority or technical implementation. Although the recommendations are for repositories to implement, they have been chosen specifically with the data provider/data curator and synthesis scientist in mind.

URL : Facilitating and Improving Environmental Research Data Repository Interoperability

DOI : http://doi.org/10.5334/dsj-2018-022

Interoperability and FAIRness through a novel combination of Web technologies

Authors : Mark D. Wilkinson, Ruben Verborgh, Luiz Olavo Bonino da Silva Santos, Tim Clark, Morris A. Swertz, Fleur D.L. Kelpin, Alasdair J.G. Gray, Erik A. Schultes, Erik M. van Mulligen, Paolo Ciccarese, Arnold Kuzniar, Anand Gavai, Mark Thompson, Rajaram Kaliyaperumal, Jerven T. Bolleman, Michel Dumontier

Data in the life sciences are extremely diverse and are stored in a broad spectrum of repositories ranging from those designed for particular data types (such as KEGG for pathway data or UniProt for protein data) to those that are general-purpose (such as FigShare, Zenodo, Dataverse or EUDAT).

These data have widely different levels of sensitivity and security considerations. For example, clinical observations about genetic mutations in patients are highly sensitive, while observations of species diversity are generally not.

The lack of uniformity in data models from one repository to another, and in the richness and availability of metadata descriptions, makes integration and analysis of these data a manual, time-consuming task with no scalability.

Here we explore a set of resource-oriented Web design patterns for data discovery, accessibility, transformation, and integration that can be implemented by any general- or special-purpose repository as a means to assist users in finding and reusing their data holdings.

We show that by using off-the-shelf technologies, interoperability can be achieved atthe level of an individual spreadsheet cell. We note that the behaviours of this architecture compare favourably to the desiderata defined by the FAIR Data Principles, and can therefore represent an exemplar implementation of those principles.

The proposed interoperability design patterns may be used to improve discovery and integration of both new and legacy data, maximizing the utility of all scholarly outputs.

URL : Interoperability and FAIRness through a novel combination of Web technologies

DOI : https://doi.org/10.7717/peerj-cs.110

Building a Disciplinary, World‐Wide Data Infrastructure

Authors: Françoise Genova, Christophe Arviset, Bridget M. Almas, Laura Bartolo, Daan Broeder, Emily Law, Brian McMahon

Sharing scientific data with the objective of making it discoverable, accessible, reusable, and interoperable requires work and presents challenges being faced at the disciplinary level to define in particular how the data should be formatted and described.

This paper represents the Proceedings of a session held at SciDataCon 2016 (Denver, 12–13 September 2016). It explores the way a range of disciplines, namely materials science, crystallography, astronomy, earth sciences, humanities and linguistics, get organized at the international level to address those challenges. T

he disciplinary culture with respect to data sharing, science drivers, organization, lessons learnt and the elements of the data infrastructure which are or could be shared with others are briefly described. Commonalities and differences are assessed.

Common key elements for success are identified: data sharing should be science driven; defining the disciplinary part of the interdisciplinary standards is mandatory but challenging; sharing of applications should accompany data sharing. Incentives such as journal and funding agency requirements are also similar.

For all, social aspects are more challenging than technological ones. Governance is more diverse, often specific to the discipline organization. Being problem‐driven is also a key factor of success for building bridges to enable interdisciplinary research.

Several international data organizations such as CODATA, RDA and WDS can facilitate the establishment of disciplinary interoperability frameworks. As a spin‐off of the session, a RDA Disciplinary Interoperability Interest Group is proposed to bring together representatives across disciplines to better organize and drive the discussion for prioritizing, harmonizing and efficiently articulating disciplinary needs.

URL : Building a Disciplinary, World‐Wide Data Infrastructure

DOI : http://doi.org/10.5334/dsj-2017-016