Authors : Beatriz Antonieta Moya, Sarah Elaine Eaton, Helen Pethrick, K. Alix Hayden, Robert Brennan, Jason Wiens, Brenda McDermott
Artificial Intelligence (AI) developments challenge higher education institutions’ teaching, learning, assessment, and research practices. To contribute timely and evidence-based recommendations for upholding academic integrity, we conducted a rapid scoping review focusing on what is known about academic integrity and AI in higher education. We followed the Updated Reviewer Manual for Scoping Reviews from the Joanna Briggs Institute (JBI) and the Preferred Reporting Items for Systematic reviews Meta-Analysis for Scoping Reviews (PRISMA-ScR) reporting standards.
Five databases were searched, and the eligibility criteria included higher education stakeholders of any age and gender engaged with AI in the context of academic integrity from 2007 through November 2022 and available in English. The search retrieved 2223 records, of which 14 publications with mixed methods, qualitative, quantitative, randomized controlled trials, and text and opinion studies met the inclusion criteria. The results showed bounded and unbounded ethical implications of AI.
Perspectives included: AI for cheating; AI as legitimate support; an equity, diversity, and inclusion lens into AI; and emerging recommendations to tackle AI implications in higher education. The evidence from the sources provides guidance that can inform educational stakeholders in decision-making processes for AI integration, in the analysis of misconduct cases involving AI, and in the exploration of AI as legitimate assistance. Likewise, this rapid scoping review signals key questions for future research, which we explore in our discussion.
URL : Academic Integrity and Artificial Intelligence in Higher Education (HE) Contexts: A Rapid Scoping Review
DOI : https://doi.org/10.55016/ojs/cpai.v7i3.78123