Developing a research data policy framework for all journals and publishers

Authors : Iain Hrynaszkiewicz​, Natasha Simons​, Azhar Hussain​,​ Simon Goudie

More journals and publishers – and funding agencies and institutions – are introducing research data policies. But as the prevalence of policies increases, there is potential to confuse researchers and support staff with numerous or conflicting policy requirements.

We define and describe 14 features of journal research data policies and arrange these into a set of six standard policy types or tiers, which can be adopted by journals and publishers to promote data sharing in a way that encourages good practice and is appropriate for their audience’s perceived needs.

Policy features include coverage of topics such as data citation, data repositories, data availability statements, data standards and formats, and peer review of research data.

These policy features and types have been created by reviewing the policies of multiple scholarly publishers, which collectively publish more than 10,000 journals, and through discussions and consensus building with multiple stakeholders in research data policy via the Data Policy Standardisation and Implementation Interest Group of the Research Data Alliance.

Implementation guidelines for the standard research data policies for journals and publishers are also provided, along with template policy texts which can be implemented by journals in their Information for Authors and publishing workflows.

We conclude with a call for collaboration across the scholarly publishing and wider research community to drive further implementation and adoption of consistent research data policies.

URL : Developing a research data policy framework for all journals and publishers

Alternative location : https://figshare.com/articles/Developing_a_research_data_policy_framework_for_all_journals_and_publishers/8223365/1

Is Open Access to Research Data a Strategic Priority of Czech Universities?

Author : Jakub Novotný

Open access to research data is one of the key themes of current science development concepts and relevant R & D strategies at least in Europe. A systemic change in the modus operandi of science and research should lead to so-called Open Science.

The presented paper questions the extent to which the Open Science concept is reflected in the strategies of Czech universities. The paper first describes basic idea of Open Access to Research Data including principles of „FAIR data” as one of the key assumption of it.

After a brief characterization of the Czech university sector, the results of the empirical analysis of the inclusion of the Open Access to Research Data concept in the current strategic plans of the Czech universities are presented.

The conclusion of the paper is then an evaluation of the results, which reveal an underestimation of the Open Science concept in the current strategic plans of the Czech universities.

URL : Is Open Access to Research Data a Strategic Priority of Czech Universities?

DOI : https://doi.org/10.2478/ijicte-2018-0008

A Generic Research Data Infrastructure for Long Tail Research Data Management

Authors : Atif Latif, Fidan Limani, Klaus Tochtermann

The advent of data intensive science has fueled the generation of digital scientific data. Undoubtedly, digital research data plays a pivotal role in transparency and re-producibility of scientific results as well as in steering the innovation in a research process.

However, the main challenges for science policy and infrastructure projects are to develop practices and solutions for research data management which in compliance with good scientific standards make the research data discoverable, citeble and accessible for society potential reuse.

GeRDI – the Generic Research Data (RD) Infrastructure – is such a research data management initiative which targets long tail content that stems from research communities belonging to different domain and research practices.

It provides a generic and open software which connects research data infrastructures of communities to enable the investigation of multidisciplinary research questions.

URL : A Generic Research Data Infrastructure for Long Tail Research Data Management

DOI : http://doi.org/10.5334/dsj-2019-017

Are Research Datasets FAIR in the Long Run?

Authors : Dennis Wehrle, Klaus Rechert

Currently, initiatives in Germany are developing infrastructure to accept and preserve dissertation data together with the dissertation texts (on state level – bwDATA Diss, on federal level – eDissPlus).

In contrast to specialized data repositories, these services will accept data from all kind of research disciplines. To ensure FAIR data principles (Wilkinson et al., 2016), preservation plans are required, because ensuring accessibility, interoperability and re-usability even for a minimum ten year data redemption period can become a major challenge.

Both for longevity and re-usability, file formats matter. In order to ensure access to data, the data’s encoding, i.e. their technical and structural representation in form of file formats, needs to be understood. Hence, due to a fast technical lifecycle, interoperability, re-use and in some cases even accessibility depends on the data’s format and our future ability to parse or render these.

This leads to several practical questions regarding quality assurance, potential access options and necessary future preservation steps. In this paper, we analyze datasets from public repositories and apply a file format based long-term preservation risk model to support workflows and services for non-domain specific data repositories.

URL : Are Research Datasets FAIR in the Long Run?

DOI : https://doi.org/10.2218/ijdc.v13i1.659

Remediation Data Management Plans : A Tool for Recovering Research Data from Messy, Messy Projects

Author : Clara Llebot

Data Management Plans (DMPs) have been used in the last decade to encourage good data management practices among researchers. DMPs are widely used, preventive tools that encourage good data management practices. DMPs are traditionally used to manage data during the planning stage of the project, often required for grant proposals, and prior to data collection.

In this paper we will use a case study to argue that Data Management Plans can be useful in improving the management of the data of research projects that have moved beyond the planning stage of the research life cycle.

In particular, we focus on the case of active projects where data has already been collected and is still being analyzed.

We discuss the differences and commonalities in structure between preventive Data Management Plans and remedial Data Management Plans, and describe in detail the additional considerations that are needed when writing remedial Data Management Plans: the goals and audience of the document, the data inventory, and an implementation plan.

URL : Remediation Data Management Plans : A Tool for Recovering Research Data from Messy, Messy Projects

DOI : https://doi.org/10.2218/ijdc.v13i1.667

Construction(s) et contradictions des données de recherche en SHS

Auteurs/Authors : Marie-Laure Malingre, Morgane Mignon, Cécile Pierre, Alexandre Serres

La structuration et le partage des données s’imposent depuis cinq ans au monde de la recherche, à travers des injonctions politiques (de Horizon 2020 au Plan national pour la science ouverte).

L’analyse de l’enquête menée en 2017 auprès des chercheurs de l’université Rennes 2 sur leurs pratiques, représentations et attentes en matière de données conduit à interroger le terme lui-même. Variable et complexe, contrairement à ce que suggère le mot « donnée », la notion ne va pas de soi.

L’article s’efforcera de montrer qu’elle fait l’objet d’une triple construction, épistémologique, intellectuelle et politique, dans les discours des chercheurs et des acteurs institutionnels, en tension avec les pratiques constatées sur le terrain.

DOI : https://www.openscience.fr/Construction-s-et-contradictions-des-donnees-de-recherche-en-SHS#