Assessing Quality Variations in Early Career Researchers’ Data Management Plans

Author : Jukka Rantasaari

This paper aims to better understand early career researchers’ (ECRs’) research data management (RDM) competencies by assessing the contents and quality of data management plans (DMPs) developed during a multi-stakeholder RDM course. We also aim to identify differences between DMPs in relation to several background variables (e.g., discipline, course track).

The Basics of Research Data Management (BRDM) course has been held in two multi-faculty, research-intensive universities in Finland since 2020. In this study, 223 ECRs’ DMPs created in the BRDM of 2020 – 2022 were assessed, using the recommendations and criteria of the Finnish DMP Evaluation Guide + General Finnish DMP Guidance (FDEG).

The median quality of DMPs appeared to be satisfactory. The differences in rating according to FDEG’s three-point performance criteria were statistically insignificant between DMPs developed in separate years, course tracks or disciplines. However, using content analysis, differences were found between disciplines or course tracks regarding DMP’s key characteristics such as sharing, storing, and preserving data.

DMPs that contained a data table (DtDMPs) also differed highly significantly from prose DMPs. DtDMPs better acknowledged the data handling needs of different data types and improved the overall quality of a DMP.

The results illustrated that the ECRs had learned the basic RDM competencies and grasped their significance to the integrity, reliability, and reusability of data. However, more focused, further training to reach the advanced competency is needed, especially in areas of handling and sharing personal data, legal issues, long-term preserving, and funders’ data policies.

Equally important to the cultural change when RDM is an organic part of the research practices is to merge research support services, processes, and infrastructure into the research projects’ processes. Additionally, incentives are needed for sharing and reusing data.

URL : Assessing Quality Variations in Early Career Researchers’ Data Management Plans

DOI : https://doi.org/10.2218/ijdc.v18i1.873

Multi-Stakeholder Research Data Management Training as a Tool to Improve the Quality, Integrity, Reliability and Reproducibility of Research

Author : Jukka Rantasaari

To ensure the quality and integrity of data and the reliability of research, data must be well documented, organised, and described. This calls for research data management (RDM) education for researchers.

In light of 3 ECTS Basics of Research Data Management (BRDM) courses held between 2019 and 2021, we aim to find how a generic level multi-stakeholder training can improve STEM and HSS disciplines’ doctoral students’ and postdoc researchers’ competencies in RDM. The study uses quantitative, descriptive and inferential statistics to analyse respondents’ self-ratings of their competencies, and a qualitative grounded theory-inspired approach to code and analyse course participants’ feedback.

Results: On average, based on the post-course surveys, respondents’ (n = 123) competencies improved one point on a four-level scale, from “little competence” (2) to “somewhat competent” (3). Participants also reported that the training would change their current practices in planning research projects, data management and documentation, acknowledging legal and data privacy viewpoints, and data collecting and organising.

Participants indicated that it would be helpful to see legal and data privacy principles and regulations presented as concrete instructions, cases, and examples. The most requested continuing education topics were metadata and description, discipline specific cultures, and backup, version management, and storage.

Conclusions: Regarding to the widely used criteria for successful training containing 1) active participation during training; 2) demand for RDM training; 3) increased participants’ knowledge and understanding of RDM and confidence in enacting RDM practices; and 4) positive post-training feedback, BRDM meets the criteria.

This study shows that although reaching excellent competence in a RDM basics training is improbable, participants become aware of RDM and its contents and gain the elementary tools and basic skills to begin applying sound RDM practices in their research.

Furthermore, participants are introduced to the academic and research support professionals and vice versa: Stakeholders will get to know the challenges that young researchers and research students encounter when applying RDM. The study reveals valuable information on doctoral students’ and postdoc researchers’ competencies, the impact of education on competencies, and further learning needs in RDM.

URL : Multi-Stakeholder Research Data Management Training as a Tool to Improve the Quality, Integrity, Reliability and Reproducibility of Research

DOI : https://doi.org/10.53377/lq.11726

Doctoral Students’ Educational Needs in Research Data Management: Perceived Importance and Current Competencies

Author : Jukka Rantasaari

Sound research data management (RDM) competencies are elementary tools used by researchers to ensure integrated, reliable, and re-usable data, and to produce high quality research results.

In this study, 35 doctoral students and faculty members were asked to self-rate or rate doctoral students’ current RDM competencies and rate the importance of these competencies.

Structured interviews were conducted, using close-ended and open-ended questions, covering research data lifecycle phases such as collection, storing, organization, documentation, processing, analysis, preservation, and data sharing.

The quantitative analysis of the respondents’ answers indicated a wide gap between doctoral students’ rated/self-rated current competencies and the rated importance of these competencies.

In conclusion, two major educational needs were identified in the qualitative analysis of the interviews: to improve and standardize data management planning, including awareness of the intellectual property and agreements issues affecting data processing and sharing; and to improve and standardize data documenting and describing, not only for the researcher themself but especially for data preservation, sharing, and re-using. Hence the study informs the development of RDM education for doctoral students.

URL : Doctoral Students’ Educational Needs in Research Data Management: Perceived Importance and Current Competencies

DOI : https://doi.org/10.2218/ijdc.v16i1.684