Identifiers for the 21st century: How to design, provision, and reuse persistent identifiers to maximize utility and impact of life science data

Authors : Julie A. McMurry, Nick Juty, Niklas Blomberg, Tony Burdett, Tom Conlin, Nathalie Conte, Mélanie Courtot, John Deck, Michel Dumontier, Donal K. Fellows, Alejandra Gonzalez-Beltran, Philipp Gormanns, Jeffrey Grethe, Janna Hastings, Jean-Karim Hériché, Henning Hermjakob, Jon C. Ison, Rafael C. Jimenez, Simon Jupp, John Kunze, Camille Laibe, Nicolas Le Novère, James Malone, Maria Jesus Martin, Johanna R. McEntyre, Chris Morris, Juha Muilu, Wolfgang Müller, Philippe Rocca-Serra, Susanna-Assunta Sansone, Murat Sariyar, Jacky L. Snoep, Stian Soiland-Reyes, Natalie J. Stanford, Neil Swainston, Nicole Washington, Alan R. Williams, Sarala M. Wimalaratne, Lilly M. Winfree, Katherine Wolstencroft, Carole Goble, Christopher J. Mungall, Melissa A. Haendel, Helen Parkinson

In many disciplines, data are highly decentralized across thousands of online databases (repositories, registries, and knowledgebases). Wringing value from such databases depends on the discipline of data science and on the humble bricks and mortar that make integration possible; identifiers are a core component of this integration infrastructure.

Drawing on our experience and on work by other groups, we outline 10 lessons we have learned about the identifier qualities and best practices that facilitate large-scale data integration. Specifically, we propose actions that identifier practitioners (database providers) should take in the design, provision and reuse of identifiers.

We also outline the important considerations for those referencing identifiers in various circumstances, including by authors and data generators. While the importance and relevance of each lesson will vary by context, there is a need for increased awareness about how to avoid and manage common identifier problems, especially those related to persistence and web-accessibility/resolvability.

We focus strongly on web-based identifiers in the life sciences; however, the principles are broadly relevant to other disciplines.

URL : Identifiers for the 21st century: How to design, provision, and reuse persistent identifiers to maximize utility and impact of life science data

DOI : https://doi.org/10.1371/journal.pbio.2001414

Reproducible and reusable research: Are journal data sharing policies meeting the mark?

Author : Nicole A Vasilevsky, Jessica Minnier, Melissa A Haendel, Robin E Champieux

Background

There is wide agreement in the biomedical research community that research data sharing is a primary ingredient for ensuring that science is more transparent and reproducible.

Publishers could play an important role in facilitating and enforcing data sharing; however, many journals have not yet implemented data sharing policies and the requirements vary widely across journals. This study set out to analyze the pervasiveness and quality of data sharing policies in the biomedical literature.

Methods

The online author’s instructions and editorial policies for 318 biomedical journals were manually reviewed to analyze the journal’s data sharing requirements and characteristics.

The data sharing policies were ranked using a rubric to determine if data sharing was required, recommended, required only for omics data, or not addressed at all. The data sharing method and licensing recommendations were examined, as well any mention of reproducibility or similar concepts.

The data was analyzed for patterns relating to publishing volume, Journal Impact Factor, and the publishing model (open access or subscription) of each journal.

Results

11.9% of journals analyzed explicitly stated that data sharing was required as a condition of publication. 9.1% of journals required data sharing, but did not state that it would affect publication decisions. 23.3% of journals had a statement encouraging authors to share their data but did not require it.

There was no mention of data sharing in 31.8% of journals. Impact factors were significantly higher for journals with the strongest data sharing policies compared to all other data sharing mark categories. Open access journals were not more likely to require data sharing than subscription journals.

Discussion

Our study confirmed earlier investigations which observed that only a minority of biomedical journals require data sharing, and a significant association between higher Impact Factors and journals with a data sharing requirement.

Moreover, while 65.7% of the journals in our study that required data sharing addressed the concept of reproducibility, as with earlier investigations, we found that most data sharing policies did not provide specific guidance on the practices that ensure data is maximally available and reusable.

URL : Reproducible and reusable research: Are journal data sharing policies meeting the mark?

DOI : https://peerj.com/articles/3208/