Re-use of research data in the social sciences. Use and users of digital data archive

Authors : Elina LateI, Michael Ochsner

The aim of this paper is to investigate the re-use of research data deposited in digital data archive in the social sciences. The study examines the quantity, type, and purpose of data downloads by analyzing enriched user log data collected from Swiss data archive. The findings show that quantitative datasets are downloaded increasingly from the digital archive and that downloads focus heavily on a small share of the datasets.

The most frequently downloaded datasets are survey datasets collected by research organizations offering possibilities for longitudinal studies. Users typically download only one dataset, but a group of heavy downloaders form a remarkable share of all downloads. The main user group downloading data from the archive are students who use the data in their studies. Furthermore, datasets downloaded for research purposes often, but not always, serve to be used in scholarly publications.

Enriched log data from data archives offer an interesting macro level perspective on the use and users of the services and help understanding the increasing role of repositories in the social sciences. The study provides insights into the potential of collecting and using log data for studying and evaluating data archive use.

URL : Re-use of research data in the social sciences. Use and users of digital data archive

DOI : https://doi.org/10.1371/journal.pone.0303190

Research Data Management in the Croatian Academic Community: A Research Study

Author : Radovan Vrana

This paper presents the results of an empirical research study of Croatian scientists’ use and management of research data. This research study was carried out from 28 June 2023 until 31 August 2023 using an online questionnaire consisting of 28 questions. The answers of 584 respondents working in science were filtered out for further analysis. About three-quarters of the respondents used the research data of other scientists successfully. Research data were mostly acquired from colleagues from the same department or institution.

Roughly half of the respondents did not ask other scientists directly for their research data. Research data are important to the respondents mostly for raising the quality of research. Repeating someone else’s research by using their research data is still a problem. Less than one-third of the respondents provided full access to their research data mostly due to their fear of misuse.

The benefits of research data sharing were recognized but few of the respondents received any reward for it. Archiving research data is a significant problem for the respondents as they dominantly use their own computers prone to failure for that activity and do not think about long-term preservation. Finally, the respondents lacked deeper knowledge of research data management.

URL : Research Data Management in the Croatian Academic Community: A Research Study

DOI : https://doi.org/10.3390/publications12020016

From Data Creator to Data Reuser: Distance Matters

Authors : Christine L. Borgman, Paul T. Groth

Sharing research data is complex, labor-intensive, expensive, and requires infrastructure investments by multiple stakeholders. Open science policies focus on data release rather than on data reuse, yet reuse is also difficult, expensive, and may never occur. Investments in data management could be made more wisely by considering who might reuse data, how, why, for what purposes, and when.

Data creators cannot anticipate all possible reuses or reusers; our goal is to identify factors that may aid stakeholders in deciding how to invest in research data, how to identify potential reuses and reusers, and how to improve data exchange processes.

Drawing upon empirical studies of data sharing and reuse, we develop the theoretical construct of distance between data creator and data reuser, identifying six distance dimensions that influence the ability to transfer knowledge effectively: domain, methods, collaboration, curation, purposes, and time and temporality.

These dimensions are primarily social in character, with associated technical aspects that can decrease – or increase – distances between creators and reusers. We identify the order of expected influence on data reuse and ways in which the six dimensions are interdependent.

Our theoretical framing of the distance between data creators and prospective reusers leads to recommendations to four categories of stakeholders on how to make data sharing and reuse more effective: data creators, data reusers, data archivists, and funding agencies.

URL : From Data Creator to Data Reuser: Distance Matters

arXiv : https://arxiv.org/abs/2402.07926

The Future of Data in Research Publishing: From Nice to Have to Need to Have?

Authors : Christine L. Borgman, Amy Brand

Science policy promotes open access to research data for purposes of transparency and reuse of data in the public interest. We expect demands for open data in scholarly publishing to accelerate, at least partly in response to the opacity of artificial intelligence algorithms.

Open data should be findable, accessible, interoperable, and reusable (FAIR), and also trustworthy and verifiable. The current state of open data in scholarly publishing is in transition from ‘nice to have’ to ‘need to have.’

Research data are valuable, interpretable, and verifiable only in context of their origin, and with sufficient infrastructure to facilitate reuse. Making research data useful is expensive; benefits and costs are distributed unevenly.

Open data also poses risks for provenance, intellectual property, misuse, and misappropriation in an era of trolls and hallucinating AI algorithms. Scholars and scholarly publishers must make evidentiary data more widely available to promote public trust in research.

To make research processes more trustworthy, transparent, and verifiable, stakeholders need to make greater investments in data stewardship and knowledge infrastructures.

DOI : https://doi.org/10.1162/99608f92.b73aae77

Establishing an early indicator for data sharing and reuse

Authors : Agata Piękniewska, Laurel L. Haak, Darla Henderson, Katherine McNeill, Anita Bandrowski, Yvette Seger

Funders, publishers, scholarly societies, universities, and other stakeholders need to be able to track the impact of programs and policies designed to advance data sharing and reuse. With the launch of the NIH data management and sharing policy in 2023, establishing a pre-policy baseline of sharing and reuse activity is critical for the biological and biomedical community.

Toward this goal, we tested the utility of mentions of research resources, databases, and repositories (RDRs) as a proxy measurement of data sharing and reuse. We captured and processed text from Methods sections of open access biological and biomedical research articles published in 2020 and 2021 and made available in PubMed Central.

We used natural language processing to identify text strings to measure RDR mentions. In this article, we demonstrate our methodology, provide normalized baseline data sharing and reuse activity in this community, and highlight actions authors and publishers can take to encourage data sharing and reuse practices.

URL : Establishing an early indicator for data sharing and reuse

DOI : https://doi.org/10.1002/leap.1586

Rhetorical Features and Functions of Data References in Academic Articles

Authors : Sara Lafia, Andrea Thomer, Elizabeth Moss, David Bleckley, Libby Hemphill

Data reuse is a common practice in the social sciences. While published data play an essential role in the production of social science research, they are not consistently cited, which makes it difficult to assess their full scholarly impact and give credit to the original data producers.

Furthermore, it can be challenging to understand researchers’ motivations for referencing data. Like references to academic literature, data references perform various rhetorical functions, such as paying homage, signaling disagreement, or drawing comparisons. This paper studies how and why researchers reference social science data in their academic writing.

We develop a typology to model relationships between the entities that anchor data references, along with their features (access, actions, locations, styles, types) and functions (critique, describe, illustrate, interact, legitimize). We illustrate the use of the typology by coding multidisciplinary research articles (n = 30) referencing social science data archived at the Inter-university Consortium for Political and Social Research (ICPSR).

We show how our typology captures researchers’ interactions with data and purposes for referencing data. Our typology provides a systematic way to document and analyze researchers’ narratives about data use, extending our ability to give credit to data that support research.

URL : Rhetorical Features and Functions of Data References in Academic Articles

DOI : https://doi.org/10.5334/dsj-2023-010