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Patent research in academic
literature. Landscape and trends
with a focus on patent analytics

Cristian Mejia* and Yuya Kajikawa

Institute for Future Initiatives, The University of Tokyo, Tokyo, Japan

Patent analytics is crucial for understanding innovation dynamics and

technological trends. However, a comprehensive overview of this rapidly

evolving field is lacking. This study presents a data-driven analysis of

patent research, employing citation network analysis to categorize

and examine research clusters. Here, we show that patent research is

characterized by interconnected themes spanning fundamental patent

systems, indicator development, methodological advancements, intellectual

property management practices, and diverse applications. We reveal central

research areas in patent strategies, technological impact, and patent citation

research while identifying emerging focuses on environmental sustainability

and corporate innovation. The integration of advanced analytical techniques,

including AI and machine learning, is observed across various domains.

This study provides insights for researchers and practitioners, highlighting

opportunities for cross-disciplinary collaboration and future research directions.
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1 Introduction

Patents serve as a repository of technical and commercial knowledge, and protect

intellectual property, playing an important role in promoting technological progress,

business development, and innovation. These legal documents grant inventors temporary

exclusive rights over their creations, incentivizing the disclosure of technical information

that might otherwise remain hidden as trade secrets (Carr, 1995). By allowing inventors to

profit from their creativity while simultaneously inspiring further technological advances

through the revelation of prior art, patents directly impact both scientific and economic

development (Hall, 2007; Langinier and Moschini, 2002; Schankerman, 1998).

Despite the rapid increase in academic literature exploring patents or leveraging patent

documents and data, a current and comprehensive overview that captures the landscape of

patent research holistically has yet to emerge. Such a panoramic perspective is invaluable

for several reasons. First, it can reveal emerging topical clusters and current research

trends, guiding scientists and practitioners toward areas of growing relevance. Second,

mapping the landscape of patent research reveals the role and potential applications of

more specialized subfields like patent analytics. This insight allows researchers developing

quantitative patent analysis methods to focus their efforts on domains that stand to benefit

most from such techniques. Finally, an academic landscape may facilitate cross-pollination

across traditionally siloed disciplines by exposing potential applications of patent analytics.

To address this gap, our study aims to provide a landscape of patent research within

academic literature. By surveying scholarly literature, we uncover major research topics,

identify their interrelationships, and track evolving trends over time. We pay particular
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attention to the distinct and complementary studies of patent

analytics, which have grown increasingly important for

understanding innovation and economic progress. Specifically, this

article addresses the following research questions:

1. How is patent information used in academic research?

2. What are the current trends in patent research?

3. What is the role of patent analytics methods within the larger

scope of patent research?

In this article, we refer to “patent research” as any study that

employs and leverages patents or patent data in any form and

for any purpose, while “patent analytics” is used with a narrower

scope to refer to studies with a more systematized approach to the

study of patents or patent data, especially when used to develop

metrics or methodologies (Daim et al., 2006). Patent analytics offers

valuable insights into technology development trends, key industry

players, and competitive landscapes through various approaches

and techniques designed to extract meaningful information from

patent data.

Our study employs a combination of data extraction techniques

and topic analysis methods, including citation network analysis of

scholarly articles. We present an overview of the current landscape,

focusing on research fronts characterized by recency, relevance,

and rapid growth (Rotolo et al., 2015). We expect to contribute by

providing a comprehensive map of the patent research landscape

to guide future studies and collaborations, identify emerging trends

and underexplored areas to inform research priorities and funding

decisions, provide insights into the evolving role of patent analytics

to enhance evidence-based strategic planning and innovation

policies, and develop a framework for integrating diverse patent

research methodologies to foster interdisciplinary approaches in

both academia and practitioners.

The remainder of this article is structured as follows: first, we

explore the relevance of patents and scholarly patent research in

general, while covering previous efforts in mapping the field of

patent analytics. The methods section details our data extraction

and analysis techniques. In the results section, we present our

findings on the current landscape of patent research, with a focus

on emerging trends and key areas of development. We conclude by

discussing future directions for interdisciplinary research and shifts

in methodological approaches within the field of patent research

and analytics.

2 Previous literature

The academic interest in patent data spans several decades,

evolving from early information retrieval systems to sophisticated

analytical approaches. In the 1950s, pioneering work by Mooers

(1952) laid the foundation for patent retrieval systems, initially

focusing on searching metadata fields such as author, title, and

keywords. As technology advanced, the scope expanded to include

full-text analysis of patent documents in the 1960s and 1970s.

The 1970s and 1980s marked a significant shift in patent

research, with scholars beginning to use patent statistics as a

proxy for innovation and technological change. Soete (1979) and

Pavitt (1985) examined the relationship between research and

development (R&D) investment and patent counts at the national

level, finding significant correlations. Other studies explored

patenting patterns across countries and industries to understand

differences in innovative activity (Evenson, 1984; Schiffel and Kitti,

1978; Sláma, 1981). At the firm level, Pakes and Griliches (1980)

conducted one of the first systematic analyses of the relationship

between R&D and patenting, finding a strong cross-sectional

relationship but weaker time-series correlations.

A landmark contribution came from Trajtenberg (1990),

who studied the computed tomography scanner industry. By

combining patent data with market information, Trajtenberg

demonstrated that while raw patent counts correlated poorly with

social value creation, citation-weighted patent counts showed a

strong correlation (around 0.75) with total social welfare created.

This finding has been corroborated by subsequent studies, such

as Harhoff et al. (1999) and Hall et al. (2005), establishing the

importance of patent citations as indicators of economic and

technological significance.

The analysis of patent citation networks emerged as a distinct

field of study in the latter half of the 20th century. Early work by de

Solla Price (1965) highlighted the importance of citation analysis in

understanding scientific and technological development. The 1980s

and 1990s saw the formalization of quantitative approaches, with

Narin (1994) introducing various patent metrics for the study of

Innovation. The release of the NBER Patent Citations Data File in

1990 provided researchers with a comprehensive dataset, spurring

further studies on knowledge spillovers and innovation diffusion

(Hall et al., 2001).

More recently, patent analytics has expanded its applications

across various domains of technology management and innovation

policy. Key areas include competitive intelligence, technology

forecasting, R&D planning, merger and acquisition analysis, and

policy evaluation. The exponential growth in global patent data,

with 2022 alone estimated at 3.46 million patent applications

worldwide (WIPO, 2023), has needed the development of more

sophisticated and automated methods for analysis. Thus, the field

has benefited from the integration of advanced techniques such

as text mining, natural language processing, network analysis,

and machine learning. This plurality of methodologies and scopes

has led to the emergence of various terms describing the field,

like patent bibliometrics (Narin, 1994), patinformatics (Trippe,

2003), and technology mining or tech mining (Porter, 2004),

each with nuanced scopes and target applications, reflecting its

multidisciplinary nature.

The use of patents by academics has been surveyed in the

past, with the work of Basberg (1987) being an early example.

This survey focused on the use of patents to measure technological

change. Scholars at the time were concerned with the use of

patent citations, finding “important” patents, and benchmarking

innovation across regions. A comprehensive survey by Griliches

(1990) reviewed several decades of research on patent statistics as

economic indicators. He examinedmultiple data sources, including

patent counts, renewal data, and stock market valuations. His

survey synthesized evidence from studies using the U.S. Patent

Office data, European patent renewal information, and firm-

level R&D expenditure data highlighting critical measurement

challenges, including the highly skewed distribution of patent
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values and variations in patenting propensity across industries

and time. Griliches’ synthesis helped establish methodological

frameworks for evaluating patent quality and understanding the

limitations of patent statistics as innovation indicators. More recent

efforts have adopted computer-assisted methods to bring a more

systematized understanding of the field by using bibliometrics

(Mejia et al., 2021). Mikova (2016) analyzed Global TechMining

conference proceedings from 2011 to 2015, identifying trends

such as the integration of multiple approaches (e.g., bibliometrics,

NLP, statistical analysis) and the use of novel data sources

(e.g., web data, social media). Aristodemou and Tietze (2018)

reviewed 57 articles on applying AI, machine learning, and

deep learning to intellectual property data, categorizing them

into knowledge management, technology management, economic

value, and information extraction/management. The study found

a growing interest in intellectual property (IP) analytics but

called for more research on use cases and firm-level applications.

Karata et al. (2024) analyzed 1,006 papers on “patent analysis,”

revealing trough a descriptive approach that “technology” was

the most common keyword and that top journals included

“Technological Forecasting and Social Change” and “Information

Processing & Management.” Hu et al. (2024) explored the

foundations and frontiers of technology mining using co-citation

analysis, bibliographic coupling, and content analysis of 277

articles. The study identified text analysis, bibliometrics, patent

analysis, and strategic technology management as foundational

areas, with technology topic analysis, roadmapping, component

analysis, opportunity analysis, and management/decision support

as frontier clusters.

While these previous studies offer valuable insights, they are

limited in providing a comprehensive understanding of patent

research given their narrower econometric or methodological

focus. Our study aims to address these gaps by analyzing a larger

and more recent dataset to capture the latest developments. It takes

a holistic view of patent research, considering all aspects rather than

focusing on specific methods or applications.

3 Materials and methods

The bibliographic data for this study was sourced from theWeb

of Science (WOS) Core Collection. To identify relevant articles,

a topical search was conducted using the query TS = “patent∗”,

where the asterisk serves as a truncation symbol to accommodate

variations of the term (e.g., patents). The search was performed

without time constraints, retrieving articles from all available years

in the database. Data were retrieved on May 31, 2024, yielding

103,738 articles.

While comprehensive, the query also retrieves articles unrelated

to the target topic due to the various meanings of the term “patent”.

In addition to referring to intellectual property documents, “patent”

may be used as an adjective to denote open, unobstructed, or

accessible, particularly in biomedical research. For example, there

is extensive research on patent ductus arteriosus, a congenital heart

defect (Schneider and Moore, 2006). Other deviating meanings

include its use as a synonym for obvious, clear, or apparent. From

a document retrieval standpoint, it may be tempting to generate a

list of banned keywords (e.g., to be used with the NOT operator),

but this would result in neglecting patent analytics papers on those

alternative meanings [for instance, patent analysis of patent ductus

research (Hsieh et al., 2004)]. Therefore, to focus on our target

topic, citation networks were employed as both a data-cleaning

mechanism and a means to extract thematic clusters.

Academic articles are positioned within a research field by

citing previous related research. Articles that do not cite nor are

cited by other articles were excluded from the study, as these

are the papers that used the keyword “patent” without belonging

to the patent research domain. A direct citation network was

constructed, establishing linkages between articles when one cites

the other (de Solla Price, 1965). Direct citation networks are known

to surface research field taxonomies (Klavans and Boyack, 2017)

and help identify research fronts (Shibata et al., 2008), making them

suitable for long-term bibliometric research. However, this network

would also contain papers in other fields of research, such as in

biomedicine, that may cover other meanings of patents. To exclude

these, thematic clusters were extracted, and after human inspection,

unrelated clusters were pruned from the citation network.

Identifying topics from a citation network involves grouping

nodes with denser connections compared to other groups. An

optimal partition is achieved when the link density is higher at

the intra-cluster level than the inter-cluster level, maximizing the

network’s modularity (Newman, 2006). We applied the Louvain

method, a computationally efficient algorithm for partitioning large

networks, to obtain the clusters (Blondel et al., 2008). For large

networks, the first pass of the clustering algorithm may result

in relatively large clusters. To obtain a more granular view, we

applied the resolution limit theorem (Fortunato and Barthélemy,

2007) to further split clusters into subclusters, resulting in a topical

hierarchy that facilitates the analysis, as the topics become smaller

and more coherent. The authors named the clusters based on an

assessment of the titles of the most connected articles, the most

frequent keywords, and relevant metadata such as journal names,

countries, or authors. During this step, the final cleaning was

conducted, and unrelated clusters were removed from the study.

Figure 1 represents a summary of the methodology.

Summary statistics of the publication years and citations

received by the articles within each cluster and subcluster were

calculated. Concretely, we apply metrics related to “size” being

the number of documents; “relevance” the standardized cluster

citations; “emergence” the average publication year; and “fast

growth” the largest delta increase of publication counts within

each subcluster over the past 10 years. These metrics are known

to be useful in defining emerging research (Rotolo et al., 2015).

Subclusters that are outliers in any of those metrics are separated

for detailed descriptions.

Bibliographic data, including the full record and cited

references, were exported as tab-delimited files from the WOS

website. The dataset was processed using the statistical software R

version 3.6.3 (R Core Team, 2019), with the igraph package version

1.2.5 (Csárdi et al., 2024) for network creation and clustering and

the tm package version 0.7.7 for text processing (Feinerer et al.,

2008). The citation network was visualized using the large graph

layout (Adai et al., 2004), selected for its computational efficiency.

The choice of layout has no impact on the research results.
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FIGURE 1

Overview of the methodology. (A) Data acquisition. (B) Citation network. (C) Clustering. (D) Remove unrelated clusters. (E) Cluster analysis.

4 Results

From the original dataset, 53,668 articles used alternative

meanings of the term “patent” that are not part of the core of

patent research. These papers are disconnected from the main

corpus of knowledge as they do not cite or receive citations from

other patent-related literature. The rest of the articles compose

the citation network of patents-related literature, covering 50,070

articles. Figure 2 shows the citation network forming a 2-group

divide of clusters, one being those from biomedicine fields where

patent is used in its medical meaning, and the other group of

clusters studying patents as the IP document. Patent as the IP

document has the largest share with 27,119 (54%) articles. In

Figure 2, this group looks smaller due to its more cohesive nature,

as the citations seem to be shared across the clusters in the group.

In the remaining of this article, we refer as the citation network of

patents research to this group of 27,119 documents and the results

presented hereafter are based on this dataset.

The study of patents in academic literature has been steadily

growing over the past decade, with an average 7% yearly increase in

publications. The earliest records in the dataset of the divide date

back to 1909, when Baekeland (1909) called for revisions to the

United States (US) patent law. Since then, the trend of publications

has been on the rise, with 2,139 publications in 2023 alone. The

US and China have been the largest contributors to patent-related

literature, with China consolidating its position as the country

with the most publications since 2020. In 2023, more than 35% of

publications came from China, while the US followed at 17%. The

United Kingdom (UK) has consistently maintained its position as

the third-largest contributor.

The study of patents spans across various fields, with

Economics, Management, and Law being the most prominent. The

journals that have been at the forefront of publishing patent-related

literature include Research Policy, Reviews on Therapeutic Patents,

Scientometrics, Technological Forecasting and Social Change, and

Sustainability. Supporting figures for these descriptive statistics are

presented in the Supplementary material.

4.1 Clusters

Our analysis of the citation network yielded 15 distinct

clusters, along with an additional grouping of very small

clusters aggregated as “others”. These clusters represent the

primary themes in patent research. Figure 3 presents a visual

representation of these clusters, illustrating their relative size,

emergence, and relevance. The underlying data is presented

as Table 1.

The field exhibits a clear evolution over time, with clusters

spanning, on average, from 2007 to 2019. Larger clusters, such

as “Patent Analytics and Innovation Dynamics” (1), “Patent

Systems and Biomedical Innovations” (2), and “AdvancedMethods

in Patent Analytics and Technology Forecasting” (3), dominate

the field, indicating areas of extensive research. The chart also

highlights emerging trends, with clusters like “Environmental

Innovation and Sustainable Development” (9) and “Patenting

and Traditional Medicine in Modern Healthcare” (12) positioned

toward the right, signifying more recent areas of focus. Matured

research areas, represented by clusters such as “Computational

Methods in Drug Discovery and Patent Analysis” (11), “Emerging

Trends in Drug Development and Therapeutics” (13), and “Patent

Systems and Biomedical Innovations” (2) are found on the left

side of the chart. This also signals that, on average, the prevalent

use of patent data in pharma and biomedical fields precedes that

of innovation studies. The vertical axis reveals varying levels of

citation impact, with clusters 1, 10, and 15 showing the highest

relevance. Notably, “Patent Analytics and Innovation Dynamics”

(1) stands out as a large, recent, and highly cited cluster, suggesting

its dominant and influential role in current research. The lso

captures a shift from general patent system and policy-related

research toward more specialized and application-oriented topics

over time. A granular view of the evolution in the vocabulary

related to each cluster and their most frequent fields of research

based on the Web of Science classification is offered in Figure A3

and Figure 7 in the Appendix, respectively.

4.2 Subclusters

We identified 93 distinct subclusters derived from the main

clusters. These provide a more granular view of the research

landscape within patent research. Figure 4 replicates Figure 3 at the

subcluster level. The underlying data is available in the Table A1.

The naming convention for subclusters follows a two-part code,

where the first number represents the main cluster, and the second

number indicates the subcluster’s position within that main cluster.

For instance, subcluster “1-2” denotes the second largest subcluster
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FIGURE 2

Citation network of patents. The divide between the use of “patent” in biomedicine, and as an IP document is apparent. This article focuses in the

group of clusters in the bottom-left side.

FIGURE 3

Patent research clusters. The size of each cluster represents the number of articles, the x-axis shows the average publication year (emergence), and

the y-axis indicates the standardized average citations received (relevance). Each cluster is represented by a di�erent color and numbered from the

largest size.

withinmain cluster one. Subclusters are ordered by size within each

main cluster.

Larger subclusters, such as “Legal Frameworks and Challenges

in Patent Systems” (2-1), “Factors Influencing Innovation and

Technological Impact” (1-1), “GeographicMobility and Knowledge

Spillovers” (1-2), indicate areas of extensive research activity. The

figure also reveals emerging trends, particularly in environmental

sustainability and corporate innovation, as evidenced by the

concentration of recent subclusters from clusters 8 and 9, all

about sustainability and green innovation on the right side of
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TABLE 1 Patent research clusters summary.

ID Cluster Articles Ave. year Ave. citations

1 Patent analytics and innovation dynamics 3,660 2015.6 33.9

2 Patent systems and biomedical innovations 3,455 2009.6 13.2

3 Advanced methods in patent analytics and technology forecasting 3,183 2017.0 12.6

4 Economic implications of patent policies 2,659 2012.8 17.8

5 University-industry collaboration and knowledge transfer 2,545 2013.5 22.4

6 Strategic patent management and market dynamics 2„532 2015.4 19.3

7 Pharmaceutical patents and market access 2„059 2015.3 14.8

8 Corporate innovation and patent performance 1,284 2017.4 22.8

9 Environmental innovation and sustainable development 1,244 2019.5 16.2

10 Nanoparticle-based drug delivery systems 982 2017.5 36.5

11 Computational methods in drug discovery and patent analysis 773 2007.5 26.5

12 Patenting and traditional medicine in modern healthcare 627 2018.7 13.2

13 Emerging trends in drug development and therapeutics 402 2009.7 28.2

14 Patents and technology standards 382 2016.2 8.7

15 Carbonic anhydrase inhibitors research 345 2014.5 33.6

16 Others 987 2015.0 19.7

FIGURE 4

Patent research subclusters. The size of each subcluster represents the number of articles, the x-axis shows the average publication year

(emergence) from 2004, and the y-axis indicates the standardized average citations received (relevance). Each cluster is represented by a di�erent

color and numbered from the largest size. Labels indicate subcluster codes.

the chart. An interesting case is that of “Traditional Chinese

Medicines for Viral Infections” (12-1), which also appears

as a recent subcluster due to an increase in publications

related to alternative medicine and the IP challenges triggered

due to the coronavirus disease 2019 (COVID-19) pandemic.

The upper right quadrant of the chart showcases high-impact

recent research, exemplified by subclusters “Patent Analytics

in Drug Discovery and Network Pharmacology” (11-4) and
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“Patent Analytics in Energy Sectors” (3-4), which have quickly

gained significant attention. Another aspect that characterizes

research fronts is that of fast-growing research, as shown

in Figure 5, depicting the subclusters with the largest decline

and growth.

Subclusters related to research on University-Industry

collaboration (Cluster 5) and Patent Systems and Biomedical

Innovations (Cluster 2) are among the research trends with

the larger decline. Growth is aligned with recency as, again,

subclusters in the areas of sustainability and corporate

innovation show rapid growth. Two subclusters from “Patent

Analytics and Innovation Dynamics” also show fast growth

even though they belong to the established cluster 1: Factors

Influencing Innovation and Technological Impact (1-1),

Patent Analytics in Regional and Technological Innovation

(1-8), meaning that these topics have been and continue to

be relevant for patent research. Subclusters with outstanding

characteristics have been selected for further description in the

following sections.

4.2.1 Biggest subclusters
Factors Influencing Innovation and Technological Impact

(1-1): This cluster explores how knowledge recombination,

organizational learning structures, and search behaviors influence

innovation effectiveness (Hausman et al., 1984; Rosenkopf and

Nerkar, 2001). The research examines the roles of knowledge

relationship intensity, neighboring knowledge concentration,

technology sourcing strategies, and team-based research in

generating high-impact patents (Wuchty et al., 2007).

Geographic Mobility and Knowledge Spillovers (1-2):

The research in this cluster examines how geographic

factors [e.g., geographical proximity (Jaffe et al., 1993),

transportation infrastructure (Cao et al., 2024)], and inventor

mobility influence the localization and dissemination of

knowledge. It explores the role of alliances and labor

networks in facilitating knowledge transfer across geographical

and technological boundaries. Additionally, this cluster

investigates spillover effects between different sectors [such

as defense to civilian (Riebe et al., 2024)] and compares

innovation patterns among different groups of inventors,

including immigrants.

Legal Frameworks and Challenges in Patent Systems (2-1):

This cluster covers the nuances of patent protection, examining

discrepancies between copyright and patent standards, particularly

in areas like design patents. For example, we find research

investigating how patents function as both profit-making tools

and mechanisms for technological foresight, using examples from

specific sectors such as hydrogen energy (Erivantseva et al., 2024). It

also addresses common pitfalls in patent protection and strategies

for effective claim drafting (Merges and Nelson, 1990). The cluster

encompasses discussions on the economic dynamics of patent

scope, the fundamental principles and purposes of the patent

system (Kitch, 1977), and the concept of rational ignorance within

patent offices (Lemley, 2001). Additionally, it explores critiques of

the current patent system, including movements advocating for

open access to innovation.

4.2.2 Highly cited subclusters
Strategic Alliance Governance and Innovation Outcomes (1-

5): This cluster focuses on using patent analytics to understand

innovation dynamics and strategic partnerships. It explores the

application of advanced techniques like machine learning in

patent analysis, the role of strategic alliances in technological

innovation, and the relationship between various innovation

indicators (Hagedoorn and Cloodt, 2003; Hanisch, 2024). The

research in this cluster has evolved from early studies on

patent statistics as innovation proxies to more sophisticated

analyses of knowledge transfers and the impact of acquisitions on

innovation performance.

Innovative Drug Development and Repurposing (7-7): This

cluster traces the evolution of drug repurposing and innovative

therapeutic development, emphasizing both natural products

and existing drugs. The research trajectory reflects a shift

from traditional drug discovery to more efficient, cost-effective

strategies (Paul et al., 2010). Research in this cluster leans toward

computational methods for drug repositioning and renewed

interest in natural products as therapeutic sources (Malla et al.,

2024; Singla et al., 2023). It emphasizes the critical role of patents

in protecting new applications of repurposed drugs and natural

compounds, addressing unmet medical needs, and improving drug

development efficiency.

Patent Analytics in Drug Discovery and Network

Pharmacology (11-4): This cluster tackles research from traditional

database-driven approaches (Gaulton et al., 2017; Wang et al.,

2020) to more sophisticated network pharmacology analyses and

machine-learning applications (Xia et al., 2024; Zheng et al., 2024).

This cluster emphasizes the growing importance of patent analytics

in identifying new drug candidates and leveraging traditional

medicine knowledge in modern pharmaceutical research.

4.2.3 Recent subclusters
Impact of Policies and Corporate Factors on Innovation (8-3):

This cluster examines how national policies, corporate structures,

and cultural factors influence innovation outcomes, using patent

data as a key metric. It explores the effects of initiatives like

“Made in China 2025” (Chen K. J. et al., 2024) and US-China

technology decoupling on firm performance and innovation (Han

et al., 2024). The research investigates how corporate risk culture

impacts innovation, particularly in innovative industries, and

how different organizational forms (such as conglomerates and

venture capital backing) affect R&D productivity. Studies in this

cluster also analyze the dynamics of mergers and acquisitions in

relation to patent portfolios and technological synergies (Bena

and Li, 2014), highlighting how patent data can inform strategic

corporate decisions.

Banking Financing R&D and Innovation (8-8): This research

examines how the development of equity and credit markets, as

well as banking deregulation, affects corporate patenting (Hsu

et al., 2014). Studies in this cluster reveal that the ability to

use patents as collateral [patent pledgeability (Dai et al., 2024)]

positively impacts corporate patenting. The cluster also explores

how financial constraints and debt financing influence innovation
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FIGURE 5

Patent research subclusters with the largest (A) decline and (B) growth over the past 10 years.

outcomes, using patent-based metrics to measure these effects

(Shahzad et al., 2024).

Regional Dynamics of Green Technology Development (9-

5): This cluster analyzes the role of digital governance and

technological innovation in driving sustainable development,

mainly in China, using patent analytics to assess the effects on

natural resource management, energy efficiency, and urban green

development (Chen K. et al., 2024; Lu and Li, 2024). Studies in

this cluster also investigate the spatial and temporal distribution of

environmental patents in China, assess the effectiveness of patent

subsidy programs, and scrutinize regional disparities in innovation

capabilities and eco-efficiency across Chinese cities. Although the

focus is on China, regional studies from other countries are

also present.

Patent Analytics in Carbon Reduction Technologies (9-3):

This cluster explores the role of technological innovation in

addressing environmental sustainability challenges, examining how

patents influence green innovation and environmental degradation

across various geographic contexts (Albino et al., 2014; Hashmi

and Alam, 2019). For instance, studies analyze the impact of

technological innovation on the ecological footprint of innovative

countries, the effectiveness of China’s green patent fast-track

system (Xu A. T. et al., 2024), and the role of environmental-

related patents in Nordic countries (Alola et al., 2024). The

research also highlights development trends in low-carbon

energy technologies and examines the dynamic interplay between

innovation, environmental regulation, CO2 emissions, population,

and economic growth in countries part of the Organization for

Economic Co-operation and Development (OECD).

Drivers of Corporate Environmental Innovation (9-4): This

cluster investigates the various factors driving green innovation

and environmental sustainability, focusing on the impact of green

finance, external resources, corporate Environmental, Social, and

Governance (ESG) ratings, place-based policies, and institutional

pressures on the development of green patents (Berrone et al., 2013;

Cainelli et al., 2015). It also explores the impact of place-based

policies, such as the revitalization of old revolutionary base areas

in China (Nie et al., 2024), on urban green technology innovation

and how institutional pressures drive environmental innovation in

polluting industries.

4.2.4 Rapidly growing subclusters
Patent Analytics in Regional and Technological Innovation

(1-8): Studies in this cluster investigate drivers of regional

diversification in industrial districts, the impact of technology flows

through patent transactions on regional specialization (Liu et al.,

2024), and the integration of AI into green technologies. The

research also examines how related and unrelated technological

variety influences innovation output at the city or state levels and

how urbanization affects economic development and knowledge

creation (Bettencourt et al., 2007; Castaldi et al., 2015).

Patent Analytics in Energy Sectors (3-4): Focusing on energy-

related technologies, this cluster utilizes patent analytics to track

innovations in hydrogen fuel cells, lithium-based batteries, CO2

capture, and redox flow batteries (Li et al., 2013; Zhou et al.,

2024). It highlights the importance of collaborative networks and

patent analysis in informing policy decisions and technological

development strategies. Studies also examine patents related to

CO2 capture technologies and the commercial development of

all-vanadium redox flow batteries for energy storage (Kear et al.,

2012).
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Corporate Governance and Financial Factors in Firm

Innovation (8-1): This cluster examines various factors affecting

firm-level innovation, including corporate lobbying, institutional

ownership, political alignment of executives, financial analyst

pressure, and CEO overconfidence (Hirshleifer et al., 2012; Jiao

and Lu, 2024). It uses patent metrics to measure innovation

outcomes and explore the complex interplay of these factors.

Studies investigate how corporate lobbying enhances firm

innovation outcomes, the impact of institutional stock ownership

on corporate innovation (Simeth and Wehrheim, 2024), and

the influence of political partisanship among firm executives on

innovation outcomes (Jiao et al., 2024).

Public Financing R&D and Innovation (8-7): The research

in this cluster emphasizes the importance of addressing financial

constraints and tailoring policy approaches to enhance R&D

investments and patenting activities (Czarnitzki et al., 2007).

Studies explore the role of financial technology in promoting

regional innovation and the effectiveness of public R&D subsidies

(Wang et al., 2024). The cluster also includes research on the

funding gap in R&D (Hall, 2002), the effects of government-

sponsored commercial R&D subsidies.

Environmental Regulation and Green Patent Quality (9-2):

This cluster explores the relationship between environmental

policies, pollution levels, and green innovation. It uses patent data

to analyze the impact of carbon intensity policies, air pollution,

and environmental regulations on technological innovation

and regional carbon emission reduction (Brunnermeier and

Cohen, 2003; Jaffe and Palmer, 1997). The cluster also includes

research on the relationship between environmental compliance

expenditures and R&D investment, global trends in environmental

patenting, and the impact of pollution abatement expenditures on

environmental innovation in manufacturing industries (Xu J. H.

et al., 2024; Xu S. C. et al., 2024).

4.3 Knowledge cross-sharing

The citation network revealed clusters and subclusters

representing focal topics of research. Academic articles were used

as nodes in the initial network in Figure 2. An aggregation of the

nodes at the subcluster level reveals the knowledge structure across

the topics. Figure 6 presents a network visualization that captures

the interactions and knowledge flows between different areas of

patent analytics research as represented by the subclusters, being

this a macro-level perspective on how various subclusters relate to

and influence each other.

In this network, the central position of, for instance, subclusters

6-1 (Patent Value and Citations), and 6-2 (Patent Strategies

and Innovation) indicates these are foundational areas in patent

analytics research. Their centrality suggests they serve as active

sources and sinks of insights that are widely applicable across the

field. The network also reveals thematic coherence within the main

research areas, as the subclusters tend to agglomerate near other

subclusters in the same main topic (i.e., same cluster color). We

observe that subclusters AdvancedMethods in Patent Analytics and

Technology Forecasting (Cluster 3) tend to interact more with each

other, suggesting a well-integrated body, yet they share connections

to clusters 1, 6, and 9, indicating their relevance for these other

research areas.

The dense center of the network, dominated by subclusters

from the main clusters 1, 2, 4, and 6, represents the core of

patent research. The sparser periphery, including specialized topics

like specific drug delivery systems or environmental technologies,

represents more focused applications of patent analytics.

Another possible representation of the subcluster’s relationship

is through semantic analysis, for example, by measuring the text-

similarity of the contents in each cluster. Such a perspective has

been added in Figure A4. However, semantic analysis tends to place

the subclusters of the same cluster near each other, and thus, it only

has value as a confirmatory method. It confirms that the subcluster

partitions from the citation network are also semantically coherent.

5 Discussion

Through a citation network analysis of over 27,000 academic

articles, 15 main clusters and 93 subclusters were identified,

revealing the landscape of patent research. The results show a

steady increase in the use of patent documents in academic

research. We note that the interest in academia is shared by

two distinct but highly integrated groups, one that focuses

on management and innovation studies and the other that is

more applied to pharma and biomedical research. For instance,

clusters such as “Patent Analytics and Innovation Dynamics”

and “Advanced Methods in Patent Analytics and Technology

Forecasting” dominate the first, while “Patent Systems and

Biomedical Innovations” dominates the second. Emerging trends

in environmental sustainability and biomedical innovations were

identified, as evidenced by the recent and rapidly growing

subclusters in these areas. The analysis also revealed the widespread

integration of advanced analytical techniques, including AI and

machine learning, across various domains of patent research. These

findings provide a foundation for addressing the study’s core

research questions: how patent documents are used in academic

research, current trends in patent research, and the role of patent

analytics methods within the broader scope of patent research. The

following discussion examines these questions in detail, drawing

insights from the identified clusters and their interrelationships.

How is patent information used in academic research?

We found that patent bibliographic data and information

are used extensively and diversely in academic research, serving

as rich sources of information for understanding technological

innovation, knowledge flows, and economic impacts. The cluster

analysis revealed several key applications of patent data in research:

Indicators of innovation: Patents are widely used as proxies

for measuring innovative activity across different technological

fields and geographic regions. This being the most mature use of

patents in Innovation Management, as evidenced by the seminal

work of Soete (1979) and later consolidated by Narin (1994)

highlighting the similarities between patent bibliometrics and

scientific literature bibliometrics, particularly in assessing national

and inventor productivity.

Knowledge spillover analysis: The network visualization of

subclusters (Figure 6) highlighted the importance of patent

citations in tracing knowledge flows as inferred from the central
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FIGURE 6

Network visualization of patent analytics research subclusters. Nodes represent individual subclusters, with node color indicating the main cluster to

which each subcluster belongs. Node size reflects the size based on the number of documents. Edges represent aggregate citations

between subclusters.

place of subclusters 1-2 and 6-1, both on patent citation

flows. These build upon the seminal work of Jaffe et al.

(1993), who used patent citations to demonstrate the geographic

localization of knowledge spillovers. Our findings suggest that

this approach remains relevant, with studies on geographical

proximity and spillover still being conducted and what has

changed is the sophistication of the methods or the access to

new datasets.

Technological forecasting: Several subclusters focus on using

patent data to identify emerging technologies and predict future

trends. Some of these, like most of the subclusters in cluster

3, prime the development of methods from patent data, while

other subclusters focus on the application of such methods to

bring forward-looking views on the fields (e.g., research on patent

analytics for energy, green energy, and nano technologies) This

streams aligns with the tech mining approaches (Porter and

Newman, 2009), now being extended by the incorporation of more

advanced data analytics techniques.

Innovation quality assessment: This covers research

using patents as a benchmark to assess firms or innovation

portfolios. Although there is a prominent background in

patent counts and citations, some research emphasizes

the multidimensional nature of patent quality, challenging

simplistic metrics, thus aligning more with the concept of

patent quality (Higham et al., 2021). Our analysis supports this

view, showing diverse approaches to evaluating patent impact

across different technological domains (e.g., as in subclusters

1-1, 8-4).

Frontiers in ResearchMetrics andAnalytics 10 frontiersin.org

https://doi.org/10.3389/frma.2024.1484685
https://www.frontiersin.org/journals/research-metrics-and-analytics
https://www.frontiersin.org


Mejia and Kajikawa 10.3389/frma.2024.1484685

Policy and economic analysis: Patents are used to assess the

effectiveness of R&D funding strategies. We observed subclusters

focused on how different funding sources (public vs. private)

influence patenting outcomes across various sectors (Shelton and

Leydesdorff, 2012) and also research areas focused on the interplay

between industry, academia, and government trough different

initiatives of polices (Ivanova et al., 2017).

Corporate strategy and competitive intelligence: Patent analysis

is extensively used to understand competitive landscapes and

inform strategic decision-making. Most of the clusters related to

innovation management are geared toward this use case.

Interdisciplinary research:We observe the integration of patent

analysis with diverse fields such as environmental sustainability,

biomedical innovations, and digital technologies, showcasing the

versatility of patent data in being a supporting data source for

multiple disciplines.

What are the current trends in patent research?

Current trends in patent research reflect a shift toward

more sophisticated, context-aware approaches in patent analysis.

This evolution addresses Meyer’s (2000) call for recognizing

the unique characteristics of patent citations compared to

scientific citations. The emergence of tech mining and AI-

driven analytics in patent research, as highlighted in recent

and growing subclusters, suggests a shift toward more data-

intensive and nuanced approaches to extracting value from

patent documents.

A prominent trend is the integration of environmental

sustainability and green innovation with patent analytics.

Subclusters focusing on “Patent Analytics in Carbon Reduction

Technologies” (9-3) and “Drivers of Corporate Environmental

Innovation” (9-4) have shown recent emergence and significant

growth. This trend reflects the broader societal focus on sustainable

development and demonstrates how patent analysis is being

applied to track and foster eco-friendly innovations.

The rise of micro-level scientometrics, focusing on detailed

interactions within organizations and among individuals,

represents another current trend. This approach, highlighted

in Zhang et al. (2017) work on scientometrics for tech mining,

is evident in growing subclusters that examine the impact of

corporate structures, funding sources, and individual inventor

characteristics on innovation outcomes.

Another notable trend is the application of advanced data

analytics and artificial intelligence in patent research. Subcluster

3-4, “Patent Analytics in Energy Sectors,” exemplifies this trend,

showcasing the use of sophisticated analytical techniques to

understand technological evolution in energy-related fields. While

this subcluster is more on the applied side, it is embedded within

cluster 3 of advanced methods, suggesting a need in the field of

energy innovation to leverage the most up-to-date methodologies

for innovation analysis. The integration of patent analytics into

unrelated but specific research has been long foreseen as part of the

discussions on tech mining (Porter and Newman, 2009).

Lastly, we observe a growing trend in analyzing the intersection

of patent data with other data sources, such as scientific

publications, market data, and policy information. This holistic

approach to innovation analysis, evident in subclusters like 1-

5 “Strategic Alliance Governance and Innovation Outcomes,”

represents an evolution from earlier, more siloed approaches to

integrated patent analysis. Advances in natural language processing

facilitate the integration of diverse data sources.

Role of patent analytics methods within the larger scope of

patent research?

The role of patent analytics methods within the larger scope

of patent research has evolved to become increasingly central and

sophisticated. Patent analytics methods serve as critical tools for

identifying and quantifying technological emergence (Carley et al.,

2018). Growing subclusters focused on advancedmethods in patent

analytics indicate a shift toward more data-driven and objective

approaches to understanding innovation trajectories.

These methods facilitate the integration of diverse data sources,

allowing for a more comprehensive understanding of innovation

ecosystems. There is a trend in patent analytics methods now

routinely combining patent data with scientific publications

(Mejia and Kajikawa, 2020), market information, and even social

media (Orduna-Malea and Font-Julian, 2022) data to provide

richer insights.

Patent analytics methods play a crucial role in enhancing

the strategic value of patent research for both policymakers and

industry practitioners. The growth of subclusters focused on

competitive intelligence and strategic decision-making underscores

how these methods are bridging the gap between academic research

and practical applications.

5.1 Patent analytics: a framework

The citation network analysis revealed the “organic” structure

and evolution of topics based on authors’ research preferences

and citation patterns. This method allowed us to process a

large volume of papers and identify focal topics in the research

landscape. However, to enhance the practical utility of these

insights, we conducted a deeper analysis of the subcluster contents

and meanings. Building upon this systematic, computer-assisted

analysis of citation networks in patent research, we propose a

conceptual framework that synthesizes and organizes the field into

five core components. Table 1 shows the proposed framework,

which consists of five core components and the corresponding

subclusters in our analysis. The core components are:

(1) Fundamentals of patents systems

(2) Patents as indicators

(3) Methodological development of patent analytics

(4) IP management practice

(5) Patent analytics applications

Patent research has come a long way since the early review

attempts of the field (e.g., Basberg, 1987). Now, basis analytics like

patent counts and citations, regional innovation benchmarking,

and patent relevance assessment are just a small (yet important)

part of the big picture the field has become. By organizing

the subclusters into these components, we aim to provide a

clearer picture of how different and cutting-edge research streams

contribute to the overall understanding and practice of patent

analytics. As can be seen in Table 2, the framework is organized

around fundamental aspects of patent analytics research and

practice. This approach allows us to highlight how different streams
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TABLE 2 List of subclusters in the core components of patent research

and analytics.

Id Core components and subclusters

(1) Fundamentals of patents systems:

Research on the legal, economic, and policy aspects of patent systems. It includes

studies on patent laws, regulations, ethics, histories, and policies, as well as their

impacts on innovation and economic growth. The research objective of this

foundational core is to provide the context for understanding how patent systems

function and evolve and also to provide evidence for the design and legitimation of

patent systems.

2-1 Legal frameworks and challenges in patent systems

2-2 Patenting genetic data and human biological materials

2-3 Neurotechnology and cell therapy patent regulation

2-5 IP challenges in biomedical patents

2-6 Socio-cultural discussions of patents and patent systems

2-10 Patent policies and pharmaceutical innovation for vulnerable groups

2-12 Patent analytics in corporate power and policy dynamics

4-1 Impact of patent policies on innovation and technology spillover

4-2 Global patent protection analysis and determinants

4-3 Determinants of innovation and patent activity across different

economies

4-5 Patent policy and economic growth

4-6 Regional patent competition and technology diffusion

4-7 Historical and sectoral analysis of patents and innovation

7-1 Biosimilars development and regulation

7-2 Pharmaceutical patents and market exclusivity

7-3 Patent policies and access to medicines in developing countries

7-4 Pharmaceutical price dynamics and market entry

9-1 Environmental policy impact on green patents

14-2 Impact of technology standards on patenting and innovation

(2) Patents as indicators:

This component focuses on the use of patent data as indicators of innovation,

technological progress, and economic performance. It includes research on patent

citations, knowledge spillovers, and the relationship between patents and various

economic and social factors. It also includes quantitative and monetary valuation

of patents and analysis of economic and social outcomes. The main research

objective of this core is to understand innovation processes, including technological,

business, and economic development, rather than patent and patent systems.

1-1 Factors influencing innovation and technological impact

1-2 Geographic mobility and knowledge spillovers

1-3 Demographic-driven regional innovation

1-4 Structural analysis of innovation networks

1-6 Patent analytics in multinational corporations

1-7 R&D investment impact on firm innovation efficiency

1-8 Patent analytics in regional and technological innovation

5-1 Interplay between scientific research and technological innovation in

patent analytics

5-2 Efficiency and dynamics of university-industry collaboration and

technology transfer

5-3 University patenting and commercialization

5-5 Impact of university research on patent landscapes

(Continued)

TABLE 2 (Continued)

Id Core components and subclusters

5-6 Gender disparities in patenting

6-1 Patent value and citations

6-3 Role of patents in innovation and economic performance

7-9 Quality, safety, and market dynamics of generic and off-patent

pharmaceuticals

8-10 External influences on innovation and patenting activities

14-3 Role of patents and technological innovation in economic growth and

trade performance

(3) Methodological development of patent analytics:

Development and refinement of methods and tools for analyzing patent data. The

research objective of this core is to provide methodology for searching patents,

illustrating patent landscape, describing patent trends, analyzing technological

development, and identifying technological and business opportunities. The

methods include text mining, machine learning, and other advanced analytical

techniques applied to patents and databases.

3-1 Patent analytics for technological trends and innovation assessment

3-2 Text Mining and machine learning in patent analytics

3-3 Data-driven approaches in patent analytics

3-5 Patent citation networks and development pathway analysis

3-6 NLP-based patent mining for innovation gaps

3-7 Patent analytics and technology convergence

3-8 Patent-driven product design and knowledge transfer

11-1 Drug design and patent analytics

11-2 Chemical patent information retrieval

11-3 Patent search strategies

11-4 Patent analytics in drug discovery and network pharmacology

(4) IP management practice:

This component focuses on practical aspects of managing intellectual property,

particularly patents, within organizations. It includes research on R&D strategies,

patent strategies, portfolio management, licensing, financing, and the integration of

patent analytics into business decision-making processes. Case studies in the

medical and healthcare sectors are active in this core, which reflects the strong

impacts of patenting in the sectors. The research objective of this core is to derive

practical implications based on existing academic expertise and to provide feedback

to academic expertise based on practical cases.

1-5 Strategic alliance governance and innovation outcomes

2-4 Intellectual property strategies in healthcare innovation

5-8 Impact of knowledge disclosure and intellectual property strategies on

firm innovation and performance

6-2 Patent strategies and innovation

6-4 Strategic patent commercialization and licensing dynamics

6-5 Venture capital and patent-based innovation financing

6-6 Empirical analysis and trends in patent licensing and innovation

6-7 Impact of intellectual property analytics on innovation and economic

performance

8-1 Corporate governance and financial factors in firm innovation

8-2 The role of R&D and patents in economic performance and

technology acquisition

8-3 Impact of policies and corporate factors on innovation

(Continued)
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TABLE 2 (Continued)

Id Core components and subclusters

8-4 Innovation efficiency and benchmarking

8-5 Organizational and environmental factors in corporate innovation

8-6 Impact of patent analytics and R&D on firm innovation and financial

performance

8-7 Public financing R&D and innovation

8-8 Banking financing R&D and innovation

8-9 Patent analytics in innovation and economic policy

14-1 Evolving dynamics of SEP licensing and litigation

(5) Patent analytics applications:

Application of patent analytics in specific fields or industries. The research objective

of this core is to apply existing analytical methods in each technological topic and to

gain insights for driving technological development and innovation in various

sectors, from pharmaceuticals to green technologies.

2-7 Patent analytics in natural and genetic resources

2-8 Patent analytics in agricultural biotechnology

2-9 CRISPR and precision agriculture patents

2-11 Patent analytics in life sciences innovation

3-4 Patent analytics in energy sectors

3-9 Sector-specific applications of patent analytics in innovation

3-10 Patent analysis in environmental and health sciences

4-4 Pharmaceutical patents and global healthcare access

5-4 Patent analytics in nanotechnology

5-7 Industry-specific innovation networks

7-5 Patent challenges and opportunities in biosimilars

7-6 Drug pricing policy analysis

7-7 Innovative drug development and repurposing

7-8 Patents and access to diabetes medications

9-2 Environmental regulation and green patent quality

9-3 Patent analytics in carbon reduction technologies

9-4 Drivers of corporate environmental innovation

9-5 Regional dynamics of green technology development

9-6 Green Innovation systems and economic transformation

9-7 Impact of patenting activities on employment and innovation

dynamics

10-1 Pharmaceutical formulations and solubility enhancement

10-2 Patent analytics in biomedical innovations and drug delivery systems

10-3 Innovative drug delivery systems and patent analytics

10-4 Nanoparticle drug delivery systems

10-5 Nanocarrier-based drug delivery systems

12-1 Traditional Chinese medicines for viral infections

15-1 Development and applications of carbonic anhydrase inhibitors

15-2 Patent landscape of carbonic anhydrase inhibitors

of research contribute to explaining various aspects of the patent

analytics process and its applications. The framework can provide a

practical and actionable structure for researchers and practitioners

in the field of patent analytics. It will also work as a guidance

for authors, reviewers, and editors in Patent Analytics section of

the journal.

5.2 Future research directions

Despite the comprehensive nature of this study, there are

limitations that present opportunities for future research. In

the area of patent systems fundamentals, future research could

explore the evolving nature of patent systems in the digital age,

such as the potential integration of blockchain technology for

improved transparency and efficiency. Studies on the impact of

harmonization efforts in global patent systems, particularly in

emerging economies, are needed. Research on the effectiveness

of patent policies in promoting innovation in specific sectors,

such as green technologies or artificial intelligence, could provide

valuable insights.

Regarding patents as indicators, developing more sophisticated

indicators that combine patent data with other data sources

could provide a more holistic view of innovation dynamics.

Future research could explore the use of patents as indicators

of technological convergence and the potential for using patent

indicators to predict emerging technologies or market trends,

leveraging machine learning techniques.

In methodological development, advancements in natural

language processing and machine learning offer exciting

possibilities for patent analytics. Future research could

focus on developing more accurate, efficient, and effective

text mining techniques for patent documents, improving

visualization techniques for large-scale patent data, and developing

methodologies for real-time patent analytics.

Cross-cutting themes for future research include exploring how

AI can enhance various aspects of patent research, examining how

patent systems and analytics can promote sustainable innovation,

studying how patent analytics can inform global innovation

strategies, researching ethical implications and responsible use of

patent analytics tools, developing tools and methodologies that

make patent analytics more accessible to smaller organizations and

individual inventors, exploring how patent data can be effectively

combined with other data sources for more comprehensive

innovation analysis, and conducting more sector-specific studies in

rapidly evolving fields.

6 Conclusion

This study provided an overview of the current state and

future directions of patent analysis in academic research. We

identified 93 research streams from academic literature that

use the patent document in any form; these topics were
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evaluated in terms of size, recency, citation impact, and growth,

revealing relevant trends. These include an increased focus

on AI methods and the application of patent analytics for

sustainability and evaluation of corporate performance. We

further organized the topics to reach a five-core component

framework encompassing fundamentals of patent systems, patents

as indicators, methodological developments, IP management

practices, and applications. By proposing an integrated framework

and identifying key trends and challenges, we contribute to

both the theoretical understanding and practical application of

patent analytics.

As patent data becomes increasingly accessible and analytical

techniques more sophisticated, the field of patent analysis is poised

to play an even more crucial role in informing innovation policy,

guiding corporate strategy, and advancing our understanding of

technological progress.

The evolution of patent analysis from simple citation counts

to complex, AI-driven analyses reflects the growing recognition of

patents as rich sources of technological and economic information.

However, this evolution also brings new challenges in terms of data

interpretation and methodological rigor. Future research should

focus on addressing these challenges while continuing to explore

novel applications of patent analytics across various domains

of science and technology and also in various sectors, such as

academia, business, and policy, to empower innovation.
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Appendix

The most frequent Web of Science categories show

correspondence to the clusters’ topical focus with dominance

of Management, Law, and Economics for the largest clusters

as shown in Figure 7. Pharma and Chemistry fields have also

strong presence due to prevalence of journals on patent reviews in

these fields. Cluster 3′s distinctive focus on patent analytics and

forecasting is led by publications in Information Science. The most

frequent categories per subcluster are shown in the Table A2.

FIGURE 7

Most frequent 5 Web of Science categories by number of articles per cluster.
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