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Metadata Extraction from PDF Scholarly

Documents
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Abstract—The availability of metadata for scientific documents
is pivotal in propelling scientific knowledge forward and for
adhering to the FAIR principles (i.e. Findability, Accessibility,
Interoperability, and Reusability) of research findings. However,
the lack of sufficient metadata in published documents, particu-
larly those from smaller and mid-sized publishers, hinders their
accessibility. This issue is widespread in some disciplines, such
as the German Social Sciences, where publications often employ
diverse templates. To address this challenge, our study evalu-
ates various feature learning and prediction methods, including
natural language processing (NLP), computer vision (CV), and
multimodal approaches, for extracting metadata from documents
with high template variance. We aim to improve the accessibility
of scientific documents and facilitate their wider use. To support
our comparison of these methods, we provide comprehensive
experimental results, analyzing their accuracy and efficiency in
extracting metadata. Additionally, we provide valuable insights
into the strengths and weaknesses of various feature learning and
prediction methods, which can guide future research in this field.

Index Terms—metadata extraction, document processing, neu-
ral networks, natural language processing, computer vision,
multimodal approaches, scientific documents

I. INTRODUCTION

The widespread availability of scientific metadata has
greatly contributed to the success and advancement of the
scientific community by enabling the easy findability and
accessibility of scientific documents. This is achieved by
indexing and linking scientific papers in a large and consistent
graph such as the OpenAIRE graph [1] or the Open Research
Knowledge Graph [2]. As a result, the field of scientometrics
has emerged to study and analyze scholarly literature. While it
has become increasingly common for publishers and authors
to collect and provide comprehensive metadata alongside the
publication of scientific documents, to ensure data’s accuracy,
completeness, and integrity, this practice was not always pop-
ular. Historically, certain disciplines, such as Social Sciences,
have seen a considerable portion of their publications become
less discoverable due to inadequate metadata collection. This
shortfall is particularly evident in works from smaller or mid-
sized publishers, which may have lacked the resources or
incentive to adequately document metadata, especially in the
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case of older publications [3], [4]. Consequently, numerous
initiatives have been established to consolidate efforts towards
enhancing the findability, accessibility, interoperability, and
reusability of scholarly data. Prominent among these are
The European Open Science Cloud (EOSC)1, The German
Research Data Infrastructure (NFDI)2 and European Strategy
Forum on Research Infrastructures (ESFRI)3. The primary
focus of these initiatives is on the pivotal task of making
metadata universally available.

Alternatively, the metadata can be directly extracted from
scientific documents. However, manually extracting metadata
from the vast number of published documents is a labour-
intensive and time-consuming task, making automation es-
sential. To automate the process, several approaches have
been proposed, including classical natural language processing
(NLP)-based approaches [5], [6], which aim to extract meta-
data from PDF documents efficiently and accurately.

With the recent advances in Deep Neural Networks (DNNs)
on textual data, significant results have been achieved on this
task [7]. This is due to the capability of these networks to
capture latent features from the textual documents. However,
the problem is still open and far from being solved because
scientific documents come in different templates and layouts.
This makes it difficult for any model to find common patterns
in the order of the classes. To overcome this problem, some
works [3], [8] propose to tackle the problem using image
processing techniques and taking advantage of the remarkable
advances in computer vision. To this end, these techniques
view the scientific PDF documents as RGB images. Fur-
thermore, to harness the strengths of both text and visual
information, several studies [4], [9] have adopted multimodal
approaches, demonstrating notable effectiveness.

This study explores a variety of feature learning and clas-
sification approaches to extract metadata from scientific PDF
documents, emphasizing the use of methodologies best suited
to the specific challenges of this task. We employ classical
approaches such as Conditional Random Fields, advanced
NLP techniques including BiLSTM with BERT representa-
tions, and innovative multimodal and Textmap methods. While
generative LLMs like GPT-4 or LLAMA excel in natural
language generation, they are not ideal for structured tasks
such as metadata extraction from scientific PDFs. These mod-
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els, designed primarily for text generation from prompts, face
difficulties with fixed formats, which can lead to inaccuracies
from over-generalization and context sensitivity, and require
substantial resources for task-specific tuning. By contrast, our
chosen approaches leverage the strengths of BERT and other
architectures to efficiently handle the unique layout variability
and multimodal content of scientific documents, ensuring
precise and reliable metadata extraction.

In addition to evaluating the technical aspects of these
approaches, we also compare their performance and results on
a large and unique dataset. One challenge in this area is that
many techniques, such as those based on deep neural networks
(DNNs), require an extensive ground truth dataset for training.
However, creating such a dataset can be difficult, as the process
of annotating the data is time-consuming and labor-intensive,
and often requires quality checks. To address this issue, we
created two challenging datasets, namely, SSOAR-MVD and
S-PMRD. For SSOAR-MVD, we synthesized 50.000 samples
using a predefined set of templates and available metadata. S-
PMRD is an authentic subset of the Semantic Scholar Open
Research Corpus. The main contributions of this paper are as
follows:

• We present a variety of approaches for extracting meta-
data from scientific PDF documents.

• We created a large, labelled dataset for metadata extrac-
tion from scientific PDF documents.

• We conducted extensive experiments to compare the
various approaches.

• To facilitate reproducibility and future development, we
have made the implementations of all the approaches
publicly available4.

The remainder of this paper is organized as follows: In Sec-
tion II, we review related works. In Section III, we introduce
all the approaches covered in this paper. Section IV presents
the dataset and experimental results, and finally, in Section VI,
we provide concluding remarks and discuss potential future
directions.

II. RELATED WORK

Metadata extraction, while a specialized subset of informa-
tion extraction (IE), serves a distinct purpose and presents
unique challenges. This section provides an overview of the
most pertinent techniques for metadata extraction, categorizing
them into three distinct groups for a clearer understanding of
their applications and methodologies.

A. Natural Language Processing

Metadata extraction in Natural Language Processing (NLP)
has primarily been approached through two distinct method-
ologies: rule-based and machine learning-based techniques
[10]. Rule-based techniques rely on predefined rules devel-
oped through human expertise to guide metadata extraction
[10]. These methods are generally more straightforward to
implement but may lack the adaptability found in machine
learning-based systems [11], [12]. On the other hand, machine

4Willbereleaseduponpublicaiton.

learning-based approaches, exemplified by platforms like Cite-
SeerX [13], leverage supervised learning algorithms trained
on labelled datasets to autonomously extract metadata from
new documents. These algorithms range from Hidden Markov
Models (HMM) [14], Conditional Random Fields (CRFs) [15],
to Support Vector Machines (SVM) [16]. Although robust and
effective, the drawback of these machine learning methods lies
in the labour-intensive labelling of training data, especially
when dealing with samples of high variability.

Recent advancements in Deep Neural Networks (DNN) have
provided a new dimension to the field of metadata extraction.
DNNs have been shown to considerably outperform traditional
methods in effectiveness and efficiency [10]. [17] pioneered a
Bidirectional LSTM-CRF model, combining Long Short-Term
Memory (LSTM) with a Conditional Random Field (CRF)
layer to encode word sequences and predict labels. Simi-
larly, [18] employed a Bidirectional LSTM integrated with a
Convolutional Neural Network (CNN) to generate character-
level word representations. [19] introduced a DNN-based Seg-
ment Sequence Labeling for metadata extraction, setting new
performance benchmarks. This approach outstripped existing
works such as ParsCit [20], a CRF-based model, and BibPro
[21], a neural network-based model, when evaluated on public
datasets like UMass [22] and Cora [14].

B. Computer Vision

While Computer Vision (CV) approaches are not yet ubiq-
uitously applied in the field of metadata extraction, emerging
research indicates their promising capabilities, especially for
Natural Language Processing (NLP) related tasks. One notable
example is DeepPDF [23], which applies a unique perspective
to PDF document segmentation. Instead of traditional text-
based analysis, DeepPDF treats the document as an image
and employs UNet-Zoo, a specialized architecture originally
designed for biomedical image segmentation. This approach
allows for accurate paragraph identification while ignoring
other elements like headers, captions, figures, and references,
thus substantiating the potential of CV-based techniques for
textual document analysis.

Building upon the groundwork laid by [23], MexPub [24]
introduced an innovative technique for extracting metadata
from German PDF documents. The methodology utilizes a
pixel-by-pixel analysis through the MASK-RCNN architecture
[25], specifically engineered for object detection and clas-
sification. It incorporates the ResNeXt backbone [26] and
Feature Pyramid Networks (FPN) for feature extraction from
raw images. While MexPub has shown promising results, it
encounters limitations in certain areas. For example, the model
struggles with generalizing to scientific literature that diverges
structurally from the training dataset. Additionally, MexPub
faces challenges in precisely detecting smaller patterns or
those placed in unconventional positions. These limitations
suggest that the method’s performance could be further en-
hanced by incorporating text processing elements into a unified
architecture.

Will be released upon publicaiton.
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C. Multimodality

Multimodal deep learning has made significant inroads
across various applications, including but not limited to audio-
visual and image classification, showcasing impressive perfor-
mance. Specifically within the realm of metadata extraction,
there’s growing evidence that multimodal approaches are su-
perior to their unimodal counterparts, as highlighted in studies
by [27], [28], and [4].

Balasubramanian et al. [27] employed a combined audio
and video modality strategy to extract metadata from video
lectures. Their technique harnessed the potential of a Naive
Bayes classifier in tandem with a rule-based refiner. The
essence of this methodology was capitalizing on the interplay
between audio transcripts and the content of slides embedded
within video streams. Astonishingly, this synergy yielded a
marked 114.2% improvement in metrics such as F-score,
precision, and recall when benchmarked against solely audio-
based methodologies.

Liu et al. [28] pioneered a multimodal deep-learning strat-
egy tailored for metadata extraction from scientific documents.
Their model seamlessly ingests both image and textual data,
negating the need for handcrafted classification features. On
the textual front, Recurrent Neural Networks (RNNs) were em-
ployed, while image data was processed using Convolutional
Neural Networks (CNNs). The amalgamated representation
was then processed via a BiLSTM network, culminating in
classification through a CRF classifier. The potency of this
composite approach was evident when juxtaposed against
unimodal strategies.

Further enriching the field,[4] presented an intriguing ap-
proach to address metadata extraction challenges specific to
German scientific papers, which frequently exhibit a vast array
of layouts due to the varied publishing standards of small
to mid-sized publishers. The paper proposed a multimodal
approach that perceives a PDF document simultaneously as
an RGB image and a textual document, using BiLSTM and
MexPub, respectively. The outputs from both sub-models
are subsequently merged and processed by another BiLSTM
model for token classification.

III. APPROACH

This section discusses various feature learning and classi-
fication methods for extracting metadata from scientific PDF
documents. Like many studies in this area, we assume that
metadata may only be present on the first page of a PDF
document and that its availability may vary across documents.
For example, all scientific PDF documents may not include
the Digital Object Identifier (DOI).

Let P be the first page of a scientific PDF document,
consisting of a set of observed words ω = ⟨ω1, ω2, · · · , ωn⟩,
where n = |ω|. Let S be a set of states in a finite state
machine, each corresponding to a label l ∈ L (e.g., Title,
Authors, etc.). The task is to formalize γ(P) = s, where
s = ⟨s1, s2, · · · , sn⟩ is the sequence of states in S that
correspond to the labels assigned to the words in the input
sequence ω. Table I represents the used variables and their
descriptions

Variable Description
γ The metadata extraction model
P The first page of the PDF document
S The outcome of the model, which is a set of strings

associated with their labels
y The metadata label
si The output metadata value of the yth label
K Section
w Classified token
ω Unclassified token

TABLE I
OVERVIEW OF KEY VARIABLES USED IN THIS PAPER ACROSS THE

DIFFERENT FEATURE LEARNING AND CLASSIFICATION METHODS FOR
METADATA EXTRACTION.

Fig. 1. Schematic representation of the two-layer Conditional Random Field
(CRF) model for metadata extraction [29].

In this study, we compare several approaches for extracting
metadata from scientific PDF documents, including founda-
tional techniques like Conditional Random Fields (CRF) [29]
and GROBID [30], which have established the groundwork
for metadata extraction. We also implement and explore
novel neural sequence labeling approaches using BiLSTM and
BiLSTM-CRF architectures (Sections III-B and III-C). This
work introduces three new methodologies that take different
approaches to the problem: a computer vision approach using
Fast R-CNN (Section III-E), a multimodal neural architec-
ture (Section III-F), and our proposed TextMap framework
(Section III-G). All approaches are evaluated following the
aforementioned formalization of the metadata extraction task,
enabling a comprehensive comparison of their effectiveness.

A. Conditional Random Fields (CRF)[29]

The approach proposed by Souza, Viviane, and Heuser [29]
employs a two-layer Conditional Random Field (CRF) model
for extracting metadata from scientific PDF documents. As
illustrated in Figure 1, the extraction process is divided into
two main steps: identifying main sections and extracting
metadata from these sections.

Given the extracted lines from the first page P , the first
layer of the CRF model classifies each line into one of the five
main sections that may contain metadata information: Header,
Title, Author Information, Body, and Footnote. To achieve this,
the model processes font features such as size, style, and
alignment from each line and uses them as input. Once the
main sections have been identified, the second layer of the
CRF model is responsible for extracting metadata from these
sections. Some content is automatically excluded from certain
sections during this process. For instance, content that appears
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Fig. 2. Diagram of the Bi-Directional LSTM network architecture for
metadata extraction

in the Footnote section would not be included in the model’s
output.

For each identified section k, the model processes a se-
quence of observed words ω = ⟨ω1, ω2, · · · , ωn⟩. Each word
ωi is represented with a feature vector xi, which comprises
m handcrafted features such as length, whether it follows a
year format, presence of special characters, and capitalization,
among others. The model calculates the probability of a
section sequence given a handcrafted feature sequence using
the following equation:

P (s | x) =
exp

(∑n
i=1

∑m
j=1 λjfj(yi−1, yi, x, i)

)
Z(x)

(1)

where fj denotes the feature function for the jth feature,
and λj is the corresponding weight parameter. Z(x) is the
normalization factor, ensuring that the sum of probabilities
over all possible label sequences equals 1:

Z(x) =
∑
y′

exp

 n∑
i=1

m∑
j=1

λjfj(y
′
i−1, y

′
i, x, i)

 (2)

To find the optimal weights λmj=1, a training process is
conducted by maximizing the log-likelihood of the training
data:

L(λ) =
|D|∑
u=1

logP
(
y(u),x(u)

)
−

∑m
j=1 λ

2
j

2σ2
(3)

where (x(u), y(u)) are the pair features and label of the
uth training instance in the training dataset D, and σ2 is a
hyperparameter for L2 regularization that controls the model’s
complexity.

B. Bi-Directional LSTM

For this solution, we employed a Bidirectional Long Short-
Term Memory (BiLSTM) model with three layers. The BiL-
STM has 112 hidden dimensions and is followed by two fully
connected layers. The final layer uses a softmax activation
function to assign each word to a specific class. Given a
sequence of observed words ω = ⟨ω1, ω2, · · · , ωn⟩, the em-
bedding vector of each word ωi is obtained the BERT model:

xi = BERT(ωi), i = 1, 2, · · · , n (4)

Fig. 3. Diagram of the Bi-Directional LSTM network architecture with CRF
classifier for metadata extraction

resulting in a sequence of embedding vectors x =
⟨x1,x2, · · · ,xn⟩.

This sequence of embedding vectors is fed into the three
bidirectional LSTM layers with hidden dimensions = 112. Let
h
(f)
i and h

(b)
i denote the forward and backward hidden states

at position i in the sequence. The hidden states are updated
as follows:

h
(f)
i = LSTM(f)(xi,h

(f)
i−1),

h
(b)
i = LSTM(b)(xi,h

(b)
i+1)

(5)

For each BiLSTM layer t, the outputs of the forward and
backward LSTM units are concatenated to form the hidden
state of the BiLSTM layer:

h
(t)
i =

[
h
(f,t)
i ;h

(b,t)
i

]
(6)

The output of the last BiLSTM layer is passed through two
fully connected layers with weight matrices W1 and W2 and
bias vectors b1 and b2:

oi = ReLU(W2ReLU(W1h
(BiLSTM)
i + b1) + b2) (7)

A softmax activation function is applied to the output of
the last fully connected layer to compute the probability
distribution over the predefined set of labels for each word
in the sequence:

ŷi = SoftMax(oi) =
exp(oi)∑L

l=1 exp(oi, l)
(8)

C. BiLSTM-CRF

As BiLSTM-CRF is used in many NLP tasks and specif-
ically extracting information from textual data [31], [32],
we assume that it would perform similarly on the task of
extracting metadata from PDF documents. Figure 3 illustrates
the developed model that takes as input the embeddings of the
words extracted from P . The embeddings are obtained using
a pre-trained BERT model. The assumption is that most of
the metadata classes are represented in structured phrases that
BERT can capture. For the other classes (e.g. Author name),

The proposed model consists of a 4-layer BiLSTM network
with 115 hidden dimensions followed by a CRF layer for
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Fig. 4. Overview of the GROBID Framework for structured metadata
extraction [30]

sequence labelling. The sequence of observed words goes
through the same steps as mentioned in the Equations 4, 5 and
6. Then, the output of the last BiLSTM layer H =

∑
i h

BiLSTM
i

is passed through a CRF layer to calculate the probability of
a label sequence P (s | H), using Equation 1.

D. Grobid[30]

GROBID is a machine-learning library that is designed to
extract, parse, or restructure raw documents into structured
XML/TEI documents. It employs a cascade of sequence la-
belling models to parse each document, allowing it to adapt to
the different hierarchical structures present in the documents.
By utilizing a cascade approach, GROBID can handle a wide
variety of document layouts and structures.

The main idea behind GROBID’s approach is to break down
the complex task of document parsing into a series of smaller,
more manageable tasks. Each model in the cascade focuses on
a specific aspect of the document structure, such as headers,
titles, author information, or other metadata. The models have
a small number of labels, which makes it easier to manage
and train. When combined, the full cascade provides a detailed
end-result structure.

In GROBID, the models are organized hierarchically to
address the inherent hierarchical structure of the documents.
The original GROBID model produces 55 different ”leaf”
labels, which are the final labels assigned to the text elements
after the document has been processed by the entire cascade
of models. Each ”leaf” label corresponds to a specific element
in the structured XML/TEI output.

Model Training: Train a cascade of sequence labeling
models on the training dataset. Each model in the cascade is
responsible for recognizing and classifying specific elements
of the document structure. The models are organized hierar-
chically, with each model feeding its output to the subsequent
model in the cascade.

Model Inference: Given a new document, apply the trained
cascade of models to parse the document and extract metadata.
The output of each model is fed into the next model in the
cascade, refining the document structure at each step. Finally,
the ”leaf” labels are assigned to the text elements, resulting in
a structured XML/TEI representation of the document.

Metadata Extraction: Once the document has been parsed
and structured, the metadata can be easily extracted from the

XML/TEI representation by querying the relevant elements
and their associated ”leaf” labels.

E. Fast-RCNN

In earlier work [3], we addressed this problem by view-
ing the PDF document as an image and leverage from the
advanced progress in computer vision.

The model is an adaptation of Mask R-CNN, a cutting-
edge object instance segmentation technique proposed by He
et al [33]. It identifies objects within images at the pixel
level by extending Faster RCNN with an additional branch
for predicting object masks and utilizing Region of Interest
(RoI)-Align instead of RoI-Pooling. The binary object mask
highlights the position of each object in its bounding box on
a pixel-by-pixel basis. In this implementation, Mask R-CNN
is combined with a ResNeXt [34] backbone architecture and
a Feature Pyramid Network (FPN), following the approach,
outlined in [35].

As illustrated in Figure 5, the PDF page P is first trans-
formed into a pixel image, which serves as input for the RCNN
model. The model is composed of three main components:
(i) a Feature Pyramid Network (FPN) with ResNeXt as a
backbone network, (ii) a Region Proposal Network (RPN), and
(iii) RoI (Region of Interest) Heads. As detailed in TableII, the
ResNeXt backbone includes a stem block and four stages, each
containing multiple bottleneck blocks.

The stem block down-samples the input image twice
through a 7 × 7 convolution with a stride of 2, and max-
pooling with a stride of 2, generating a feature map at a 1/4
scale. The subsequent four stages contain bottleneck blocks,
each featuring three convolutional layers with kernel sizes of
1 × 1, 3 × 3, and 1×1. These stages consist of 3, 4, 23, and
3 bottleneck blocks respectively, and produce feature maps
at scales of 1/4, 1/8, 1/16, and 1/32 [34]. A max-pooling
layer with a kernel size of 1 and a stride of 2 is introduced to
the final stage of ResNeXt, yielding a feature map at a 1/64
scale [33].

The second component, the Region Proposal Network
(RPN), suggests candidate object bounding boxes utilizing
the outputs from the FPN’s five stages. Subsequently, a fully
convolutional mask prediction branch is integrated into the
head [33]. The RoI head employs fully-connected layers to
generate refined box locations and classification results from
multiple fixed-size features, which are obtained by cropping
and warping feature maps. The box head then filters out
up to 100 boxes using non-maximum suppression (NMS) to
eliminate redundant detections.

Transfer learning is a widely used technique in deep learning
for computer vision tasks. It involves retraining pre-trained
convolutional networks on smaller, task-specific datasets to
fine-tune the weights and biases, leveraging the knowledge
gained from one classification task to another [36]. In our
study, we employ a source model based on the Detectron2 [37]
implementation of Mask R-CNN ResNeXt-101 32x8d FPN.
This model was initially fine-tuned on 191,832 images from
the PubLayNet dataset [38], which includes annotated images
of articles from PubMed Central™ Open Access (PMCOA)
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ResNeXt-101

Softmax

Bbox
Reg

Feature
Pyramid

ROI Heads

Conv.

Region Proposal Network

Proposals

Softmax

Bbox
RegROI

Align

ROIs

FCN

FCL

Mask

FCN: Fully Convolutional Layer 
FCL: Fully Connected Layer 

Fig. 5. Mask R-CNN architecture employed for metadata extraction from PDF pages.

Layer name scale kernel size stride
stem 1/4 7× 7 2

backbone 1 1/4

1 × 1
3 × 3
1 × 1

× 3 1

backbone 2 1/8

1 × 1
3 × 3
1 × 1

× 4 1

backbone 3 1/16

1 × 1
3 × 3
1 × 1

× 23 1

backbone 4 1/32

1 × 1
3 × 3
1 × 1

× 3 1

max pooling layer 1/64 1× 1 2
TABLE II

OVERVIEW OF THE RESNEXT STRUCTURE IN THE RCNN MODEL,
HIGHLIGHTING THE NUMBER OF BOTTLENECK BLOCKS AND THE SCALES

OF FEATURE MAPS AT EACH STAGE.

featuring five classes: title, text, list, table, and figure. The
model is well-suited for extracting metadata from scientific
papers since it (i) has a backbone trained on the extensive
COCO dataset, (ii) underwent fine-tuning on a large dataset
of scientific document images, and (iii) is designed for a task
closely related to ours.

To adapt this model for extracting metadata patterns from
scientific documents, we first modified the final layer of the
source model to output nine target classes (title, authors,
journal, abstract, date, DOI, address, affiliation, and email
addresses) instead of the original five. Empirical experiments
on a subset of 103 random samples from our training dataset
showed that the best-performing architecture has two frozen
layers and 15k iterations. Based on these findings, we fine-
tuned the model using the full training dataset, setting the
learning rate to 2.5× 10(−3).

F. Vision and Natural Language

In earlier work [4], we addressed this problem using a
multimodal neural network model that employs NLP together
with Computer Vision for metadata extraction.

Figure 6 illustrates the initial step of our process, wherein
the text is extracted from P using CERMINE [39]. Known
for its reliability in handling diverse layouts at the line level,
CERMINE also provides geometric structural information
such as text position and font style.

From each extracted token ω, a set of 16 handcrafted
features, denoted as Fhand, is derived. A word embedding
for the token, denoted as Fembed, is also generated, which
encapsulates the context and meaning of the words. These two
sets of features are then concatenated to form a single feature
vector, such that Ftotal = Concat(Fhand, Fembed).

The consolidated vector Ftotal is used as the input for the
Natural Language Processing (NLP) sub-model, described in
section III-B. Simultaneously, the image of P is supplied
as input to the Computer Vision (CV) model, described in
section III-E.

1) Natural Language-based Model: To model the extracted
text, we utilized a BiDirectional Long-Short-Term Memory
(BiLSTM) due to its proven accuracy in handling textual data,
as detailed in section III-B. This sub-model comprises two
layers of LSTM models, each with 256 hidden dimensions;
the first layer is a forward LSTM, and the second layer is a
backward LSTM. Please refer to section III-B for more details
about BiLSTM

The input to this model is a word representation vector with
a length of 1041. As previously described, this vector is the
concatenation of two vectors. The first vector, consisting of
16 units, encapsulates layout features such as the font size of
the word, font style, the spacing between the word and the
line above or below it, and flags denoting whether the text is
italicized, bolded, or adheres to a specific common format like
date or email, among others. The second vector contains the
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Layout
Features

Context
Features

Fused
Features

Fast-RCNN
(a)

BiLSTM
(b)

Words
Representations

ROIs

Words
Representations

Concatenated
Representations

BiLSTM

Output

Fig. 6. Multimodal extraction approach, where (a) refers to the model described in section III-E and (b) refers to the model described in section III-B

ELMO [40] embedding results, derived from a model trained
on German documents.

Following the two LSTM layers, a fully connected layer
of 512 units is in place, ending with an output layer of 10
neurons, representing the metadata classes. The output layer
employs a softmax activation function to generate probability
scores for the word’s affiliation with each of the classes.

2) Computer Vision-based Model: Building on the proven
efficiency of MexPub [3], detailed in section III-E, we leverage
it as the Computer Vision (CV) sub-model, feeding it with
P . This model yields output in the form of bounding boxes
labelled with metadata classes. Subsequently, we extract the
text enclosed within the bounding boxes as identified by the
CV sub-model and compile the probabilities for all potential
classes within that box prior to their submission to the clas-
sifier. It’s important to note that the CV sub-model may also
generate bounding boxes that are unclassified, meaning they
do not associate with any of the predefined classes.

3) Classifier: In the final stage of our architecture pipeline,
the output of the NLP and CV sub-models is fused using a
SoftMax classifier. Specifically, all words from the document
are extracted and sequentially traversed. Their vector represen-
tations, generated by the sub-models, are then concatenated. A
BiLSTM, notable for its bidirectional operation and capability
to preserve information from both past and future states, is
employed in this context as well. This is especially advanta-
geous for understanding context and discerning patterns within
sentences or paragraphs (e.g., if the adjacent words are titles,
the current word is highly likely to be a title as well). The
model specifically takes in a vector of length 20, resulting from
the concatenation of both sub-model outputs. The model’s
output is a probability distribution of length 10 corresponding
to all classes. As depicted in Figure 2, the classifier comprises
two stacked LSTM layers (forward and backward LSTMs)
each with 256 hidden dimensions. A fully connected layer
follows these two layers, encompassing 512 input nodes and
10 output nodes activated by a SoftMax function.

G. Text Map Approach

The text map approach presents a novel framework that
jointly optimizes spatial and semantic information for meta-
data extraction. Given the first page P of a PDF document
and its sequence of observed words ω = ⟨ω1, ω2, · · · , ωn⟩, our

goal is to learn a mapping function γ that assigns metadata
labels while preserving both spatial and semantic relationships.

1) Two Phase Processing: The approach processes doc-
uments through two complementary phases as depicted in
Figure 7:

a) Phase 1: Spatial Representation: transforms P into a
grayscale representation G that preserves structural informa-
tion:

G = ϕ(P) ∈ RH×W (9)

where H and W are the height and width of the page, respec-
tively. This transformation preserves the spatial distribution of
text and structural elements across the document.

b) Phase 2: Semantic Mapping: The semantic mapping
differs based on the chosen embedding function ψ. For
Word2Vec, each token ωi is embedded individually:

Ei = ψWord2V ec(ωi) ∈ Rd (10)

For BERT, entire text blocks Bj = ω1, ..., ωkj are embedded
together to capture contextual relationships:

Ej = ψBERT (Bj) ∈ Rk×d (11)

where d is the embedding dimension, and k is the number of
tokens in the block.

2) Spatial-Semantic Integration: The key innovation in our
approach is the integration of spatial and semantic information
through a carefully designed interpolation process:

1. Region Identification: The regions of interest R =
R1, ..., Rk are determined by the locations of text content in
the document. Each region Ri corresponds to a bounding box
containing embedded text:

Ri = {(x, y, w, h) |
text content exists at (x, y) with width w and height h}

(12)

The regions are naturally defined by the presence of text
content that has been extracted and embedded. This ensures
that our regions directly correspond to actual textual content
in the document.
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Input
PDF Page P

Text Content

Layout Info

Phase 1: Spatial Stream

Grayscale Conv.
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φ(P)

Phase 2: Semantic Stream

Word2Vec

Token-wise

BERT

Block-wise
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M = Attention(Fₛ,Fₜ)V
Matched Dimensions

Output

Fast R-CNN
Labels + Boxes

{sᵢ, bᵢ}

Fig. 7. Overview of the TextMap approach

a) Embedding Interpolation: For each region Ri, the
embedding is directly mapped into the spatial coordinates
of that region to create the text map Tm. We perform a
straightforward mapping to ensure that each spatial location
in the text map contains the embedding of the text (token or
block) that appears at that location in the original document.
For Word2Vec, where each token has its own embedding:

Tm(x, y) = Ej where (x, y) ∈ Ri contains token ωj

(13)
For BERT, where entire blocks are embedded together:

Tm(x, y) = Ei where (x, y) ∈ Ri contains block Bi

(14)
3. Feature Fusion: After interpolation, both the grayscale

representation G and the text map Tm have matching spatial
dimensions, as the embeddings have been mapped to their
corresponding regions’ coordinates in the document space.
Specifically:
G ∈ RH×W from the spatial stream Tm ∈ RH×W×d

from the interpolated embeddings, where d is the embedding
dimension

This dimensional alignment allows us to apply convolutional
operations to both streams:

Fspatial = Conv2D(G) ∈ RH′×W ′×C (15)

Fsemantic = Conv2D(Tm) ∈ RH′×W ′×C (16)

where H ′ and W ′ are the reduced spatial dimensions after
convolution, and C is the number of output channels. These
spatially-aligned feature maps are then fused using a multi-
head attention mechanism:

M = Attention(Fspatial, Fsemantic)V (17)

where V is a learnable value matrix. This fusion process
effectively combines the structural information from the spatial
stream with the semantic information from the text embed-
dings, while maintaining spatial correspondence between the
two streams.

3) Segmentation and Classification: The fused features M
are processed through a Fast R-CNN architecture for final
segmentation and classification. For each identified region, we
predict both the class label and bounding box refinements:

{si, bi} = FastRCNN(Rrefined) (18)

where si is the metadata label and bi are the refined coordi-
nates.

4) Joint Optimization Framework: The model is trained
through a joint optimization framework that combines three
objectives:

1. Semantic Objective (Lsemantic):

Lsemantic(θ) = −
n∑

i=1

logP (si|ωi, Ei) (19)

This term ensures accurate metadata label assignment based
on textual content.

2. Spatial Objective (Lspatial):

Lspatial(θ) =

n∑
i=1

∑
j∈N (i)

∥f(Gi)−f(Gj)∥22 ·⊮[si = sj ] (20)

where N (i) represents the spatial neighbors of token i, f is a
feature extraction function, and ⊮ is the indicator function.

3. Cross-modal Objective (Lcross):

Lcross(θ) = −
n∑

i=1

logP (si|Ei, f(Gi)) (21)

The complete optimization objective is:

J (θ) = αLsemantic(θ) + βLspatial(θ) + γLcross(θ) (22)

where α, β, and γ are learnable parameters that balance the
contribution of each term.

5) Training and Inference: During training, we optimize
J (θ) using mini-batch stochastic gradient descent:

θt+1 = θt − η∇θJ (θt) (23)

where η is the learning rate.



9

At inference time, for a new document page P , we: 1.
Generate spatial features G = ϕ(P) 2. Compute embeddings
Ei = ψ(ωi) for each token 3. Identify regions 4. Apply the
trained model to obtain metadata labels:

si = argmax
l∈L

P (l|Ei, f(Gi)) (24)

This formulation ensures that:

• Tokens with similar semantics and spatial proximity are
likely to share labels

• The model can handle variable document layouts
• Both local and global document structure are considered
• The extraction is robust to variations in formatting

IV. EXPERIMENTS

In this section, we compare the performance of the de-
scribed methods in the previous section on two challenging
datasets.

A. Dataset

This section presents a comparative analysis of the different
methodologies aimed at extracting metadata from academic
PDF documents. To this end, we prepared two challenging
datasets, namely SSOAR-MVD and S-PMRD.

1) SSOAR Multidisciplinary Vision Dataset (SSOAR-MVD):
To ensure a fair comparison of all the methods described in
the section, we ensured they were all applied to the same
dataset. As a result, we collected a challenging dataset of
50,000 documents from the SSOAR repositor5. The SSOAR
stores publications from various publishers, including small
and mid-sized ones, covering a range of disciplines known
for their challenging layout formats, such as Social Sciences,
Humanities, Law, and Administration. This guarantees that a
wide variety of templates are included in the dataset. During
the scraping process, each document was downloaded along
with its textual metadata provided by the SSOAR repository.
However, since most computer vision approaches require
labelled images (i.e., bounding boxes), a preprocessing phase
was conducted to ensure this. Each document underwent the
following steps:

• The document is converted into an image.
• Using an open-source tool provided by TensorFlow,

blocks of text were extracted from the document along
with their respective bounding boxes.

• The similarity between each text block and metadata class
was measured (using the collected textual metadata from
the SSOAR).

• If a certain block had a near-perfect similarity with
a specific class, the corresponding bounding box was
assigned to that class. Otherwise, it was assigned a class
”other”.

5https://www.gesis.org/en/ssoar/home

2) S2ORC PDF Metadata Refinement Dataset (S-PMRD):
To evaluate the efficacy of these methods on an authentic
corpus, we meticulously curated a subset from the Semantic
Scholar Open Research Corpus (S2ORC) [41]. While S2ORC
offers a vast repository of millions of scholarly articles, our
preliminary analyses revealed significant discrepancies be-
tween the raw textual data provided by S2ORC and the content
within the corresponding PDF documents. Notably, certain text
segments available in the S2ORC dataset were absent from the
PDFs, and this does not explain the extraction methodologies
employed by S2ORC. These inconsistencies pose substantial
challenges for conducting detailed academic analyses that
necessitate precise text alignment, such as citation context
analysis, text-based data mining, and metadata extraction.

To address these challenges, we developed a specialized
sub-corpus of S2ORC, specifically aimed at extracting meta-
data directly from PDF documents, thereby bypassing the
potential inaccuracies inherent in pre-extracted text. The pro-
cessing pipeline for each document included in this sub-corpus
is as follows:

• Using the Digital Object Identifier (DOI) from S2ORC,
additional metadata, including links to the actual PDF
documents, is retrieved from CrossRef [42] using their
API.

• PDFs are downloaded when available, acknowledging
that some links may be inactive or access-restricted.

• Text is extracted from the first page of each PDF. This
extracted text undergoes a normalization process to elim-
inate irregularities such as inconsistent spacing and line
breaks, thereby ensuring uniformity across the dataset.

• We employ both exact and fuzzy matching techniques
to extract critical metadata elements, including author
names, titles, abstracts, and affiliations. This dual-method
approach accommodates minor discrepancies due to text
recognition errors or formatting variations.

• Each document is converted into an image representation.
• For each identified metadata element, bounding boxes are

determined based on their locations within the text.
Ultimately, each instance in this dataset comprises:
• The original PDF file.
• The normalized text extracted from the PDF.
• An image of the first page of the PDF.
• Metadata attributes annotated with both their positions

in the extracted text and their coordinates on the corre-
sponding image.

V. SETTINGS

In this study, we employ a token-level evaluation to validate
each model’s effectiveness, where each predicted token is
compared against the ground truth annotations in our dataset.
This evaluation is conducted using standard metrics such as
Precision, Recall, and F1-Score.

A. Results

In the first analysis, we evaluate the performance of the
presented methods on the datasets SSOAR-MVD and S-
PMRD, as depicted in Tables Tables III and IV, illustrating

https://www.gesis.org/en/ssoar/home
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the outcomes in terms of Precision, Recall, and F1-Score to
provide a multi-dimensional comparison. Notably, the pro-
posed TextMap-Word2Vec method achieves the highest F1-
score of 0.913, suggesting that capturing both the semantics
of the PDF content and its layout is particularly effective for
this task. This is evident by the performance of the Fast-
RCNN and Vision-Langauge methods which also leverage the
layout and the appearance of the PDF document. In contrast,
traditional models like CRF exhibit lower performance met-
rics, which may indicate difficulties in adapting to the multi-
faceted nature of PDF content, where layout and semantic
context play crucial roles. An important observation is that
the embedding approach in TextMap plays a significant role
in the performance of the model.

To give a better overview of the performance of each
method, we present below the result of each method for each
attribute. Table V presents the detailed results of CRF on
SSOAR-MVD. As demonstrated, CRF excels in attributes with
structured and predictable formats such as Dates (F1-score:
0.731) and DOIs (F1-score: 0.749), where the patterned nature
of the data plays to the strengths of the CRF’s sequence
modelling capabilities. However, CRF struggles with more
complex and less structured text such as Titles (F1-score:
0.433) and Abstracts (F1-score: 0.392), where the variability
in content and formatting challenges its ability to accurately
predict boundaries and content. The moderate success in ex-
tracting Authors (F1-score: 0.482) and higher performance in
Affiliation data (F1-score: 0.672) suggest that CRF can handle
semi-structured text effectively when patterns are somewhat
predictable.

Table VI presents the detailed results of Bi-LSTM on
SSOAR-MVD. The BiLSTM method exhibits strong perfor-
mance across several metadata categories such as ‘Title’,
‘Author’, etc. This reflects its robust capability to capture
both the context and sequence of text within scholarly PDF
documents. Specifically, the method maintains strong perfor-
mance in handling Abstracts and Dates, with F1-scores slightly
above 0.910. This indicates BiLSTM’s adeptness at managing
narrative content and specific formatted text. However, the
slightly lower performance in extracting Affiliation data, with
an F1-score of 0.833, suggests some challenges in dealing with
categories of short strings.

Table VII presents the detailed results of LSTM-CRF on
SSOAR-MVD. The LSTM-CRF method demonstrates moder-
ate efficacy in extracting different metadata categories, notably
outperforming traditional CRF models that rely on hand-
crafted features. This enhancement suggests that the LSTM
architecture provides a more robust feature representation for
CRF to utilize effectively. However, despite its competencies
across various categories, LSTM-CRF does not surpass the
BiLSTM method, which exhibits superior handling of long-
term sequential and contextual data dependencies.

Table VIII presents the detailed results of Grobid on
SSOAR-MVD. Despite its simple design, GROBID exhibits
robust performance across different categories. It particularly
excels in extracting Authors and Abstracts, achieving im-
pressive F1 scores of 0.958 and 0.935 respectively. These
high scores can be attributed to GROBID’s effective appli-

cation of its cascading sequence labelling models, which are
adept at handling well-structured and clearly delineated data.
However, GROBID encounters some variability in categories
involving more complex or less standardized information,
such as Address and Affiliation. This variability stems from
these categories’ inherent challenges, including inconsistent
formatting and multifaceted data structures that can complicate
the parsing process. While the cascading approach of GRO-
BID generally enhances its capability to manage hierarchical
document structures efficiently, it occasionally struggles with
elements that lack a clear or uniform presentation.

Table IX presents the detailed results of Fast-RCNN on
SSOAR-MVD. The model demonstrates high precision and
recall across most categories, with solid performance in the
Title, Abstract, and Journal categories, suggesting robustness
in recognizing well-defined metadata fields. The Email and
Authors categories also show commendable accuracy. How-
ever, the model indicates slightly weaker performance in the
Address and Date categories, with F1-scores of 0.837 and
0.832, respectively. This could be due to variability in the
formatting and presentation of these metadata elements across
documents, which poses challenges in consistent extraction.
The small variance between Macro Average and Micro Aver-
age metrics indicates a balanced performance across different
categories, without significant bias toward any particular type
of metadata.

Tables X, XI, XII present the performance metrics across
three different configurations of the TextMap model, using
BERT, Word2Vec, and Char2Vec embeddings. we can ob-
serve varied performances that highlight the strengths and
weaknesses of each embedding strategy with the TextMap
approach. TextMap using BERT Embeddings configuration
(Table X) demonstrates strong performance across several
categories, particularly in Authors, Abstract, and Journal, with
F1-scores > 0.92. This suggests that BERT’s deep contextual
embeddings are particularly effective at extracting structured
text like titles and authors’ details, typically well-defined in
the document. The lower performance in the Affiliation and
Address categories, with relatively lower F1 scores, could
indicate challenges in capturing less consistently formatted
information.

TextMap using Word2Vec Embeddings configuration (Ta-
ble XI) generally performs well, particularly in the Authors
and Abstract categories. This suggests good generalization in
capturing both the semantic and structural patterns in data,
though slightly less effectively than BERT in terms of overall
averages. However, as shown in Table XIII, it has a lower
computational cost in both training and inference. Conse-
quently, this configuration provides a good balance between
performance and computational efficiency, especially suitable
for environments where computational resources or training
data are limited.

TextMap using Char2Vec Embeddings configuration (Ta-
ble XII) demonstrates a notable decline in performance across
most categories compared to the BERT and Word2Vec models.
It performs best in the DOI category with an F1-score > 0.9
but struggles particularly with Abstract and Journal metadata,
with F1-scores < 0.8. In conclusion, Char2Vec, while useful
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TABLE III
OVERALL PERFORMANCE COMPARISON OF DIFFERENT METHODS ON SSOAR-MVD

Method Precision Macro Precision Micro Recall Macro Recall Micro F1-score
CRF 0.609 0.544 0.524 0.471 0.57
BiLSTM 0.901 0.89 0.898 0.861 0.9
LSTM-CRF 0.778 0.713 0.745 0.697 0.761
GROBID 0.854 0.671 0.794 0.551 0.821
Fast-RCNN 0.9 0.915 0.896 0.904 0.898
Vision-Language 0.935 0.94 0.902 0.904 0.92
TextMap-Bert 0.908 0.887 0.902 0.897 0.905
TextMap-Word2Vec 0.917 0.92 0.91 0.904 0.913
TextMap-Char2Vec 0.845 0.8 0.849 0.797 0.847

TABLE IV
OVERALL PERFORMANCE COMPARISON OF DIFFERENT METHODS ON S-PMRD

Method Precision Macro Precision Micro Recall Macro Recall Micro F1-score
CRF 0.573 0.521 0.501 0.45 0.511
BiLSTM 0.883 0.872 0.898 0.863 0.889
LSTM-CRF 0.740 0.707 0.736 0.692 0.724
GROBID 0.822 0.651 0.787 0.542 0.791
Fast-RCNN 0.874 0.906 0.886 0.912 0.893
Vision-Language 0.91 0.923 0.904 0.911 0.903
TextMap-Bert 0.882 0.860 0.916 0.887 0.894
TextMap-Word2Vec 0.892 0.902 0.91 0.902 0.901
TextMap-Char2Vec 0.815 0.786 0.841 0.792 0.821

TABLE V
PERFORMANCE METRICS FOR CRF METHOD ON SSOAR-MVD

Category Precision Macro Recall Macro F1-score
Title 0.568 0.35 0.433
Abstract 0.457 0.344 0.392
Authors 0.57 0.418 0.482
Email 0.612 0.607 0.609
Address 0.522 0.481 0.5
Date 0.754 0.71 0.731
Journal 0.547 0.577 0.561
Affiliation 0.663 0.682 0.672
DOI 0.795 0.709 0.749
Macro Average 0.609 0.524 0.57
Micro Average 0.544 0.471 N/A

TABLE VI
PERFORMANCE METRICS FOR BILSTM METHOD ON SSOAR-MVD

Category Precision Macro Recall Macro F1-score
Title 0.931 0.91 0.920
Abstract 0.908 0.914 0.911
Authors 0.944 0.93 0.937
Email 0.881 0.86 0.870
Address 0.9 0.882 0.891
Date 0.916 0.905 0.910
Journal 0.865 0.891 0.878
Affiliation 0.814 0.853 0.833
DOI 0.952 0.94 0.946
Macro Average 0.901 0.898 0.9
Micro Average 0.89 0.861 N/A

in certain niche applications (like OCR and typo-sensitive
extractions), may not be suitable for tasks requiring deep
semantic understanding such as understanding the semantics
of a scholarly text.

In addition to comparing the models’ performance in terms
of precision, recall, and F1 score, we compare their computa-
tional complexity using the SSOAR-MVD dataset.

This comparison reveals a range of trade-offs between com-

TABLE VII
PERFORMANCE METRICS FOR LSTM-CRF METHOD ON SSOAR-MVD

Category Precision Macro Recall Macro F1-score
Title 0.741 0.699 0.719
Abstract 0.688 0.7 0.693
Authors 0.84 0.815 0.827
Email 0.801 0.782 0.791
Address 0.725 0.76 0.742
Date 0.89 0.822 0.854
Journal 0.739 0.727 0.732
Affiliation 0.774 0.68 0.723
DOI 0.81 0.724 0.764
Macro Average 0.778 0.745 0.761
Micro Average 0.713 0.697 N/A

TABLE VIII
PERFORMANCE METRICS FOR GROBID METHOD ON SSOAR-MVD

Category Precision Macro Recall Macro F1-score
Title 0.764 0.667 0.951
Abstract 0.84 0.79 0.935
Authors 0.934 0.855 0.958
Email 0.91 0.812 0.893
Address 0.722 0.78 0.872
Date 0.855 0.877 0.873
Journal 0.887 0.75 0.927
Affiliation 0.859 0.813 0.818
DOI 0.911 0.8 0.916
Macro Average 0.854 0.794 0.821
Micro Average 0.671 0.551 N/A

putational efficiency and performance accuracy. CRF offers
the quickest inference time and requires the least training
time, making them ideal for environments where speed is
prioritized over cutting-edge accuracy. BiLSTM models, while
requiring more extensive training, provide rapid inference
capabilities, suitable for real-time applications once the model
is deployed. LSTM-CRF models combine the deep learning
prowess of LSTMs with the structured output of CRFs did
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TABLE IX
PERFORMANCE METRICS FOR FAST-RCNN METHOD ON SSOAR-MVD

Category Precision Macro Recall Macro F1-score
Title 0.966 0.95 0.958
Abstract 0.915 0.922 0.918
Authors 0.91 0.938 0.924
Email 0.933 0.917 0.925
Address 0.875 0.802 0.837
Date 0.825 0.84 0.832
Journal 0.94 0.925 0.932
Affiliation 0.839 0.876 0.857
DOI 0.901 0.893 0.897
Macro Average 0.9 0.896 0.898
Micro Average 0.915 0.904 N/A

TABLE X
PERFORMANCE METRICS FOR TEXTMAP USING BERT EMBEDDINGS.

Category Precision Macro Recall Macro F1-score
Title 0.954 0.949 0.951
Abstract 0.921 0.95 0.935
Authors 0.967 0.949 0.958
Email 0.91 0.877 0.893
Address 0.889 0.856 0.872
Date 0.855 0.891 0.873
Journal 0.924 0.93 0.927
Affiliation 0.822 0.815 0.818
DOI 0.931 0.902 0.916
Macro Average 0.908 0.902 0.905
Micro Average 0.887 0.897 N/A

TABLE XI
PERFORMANCE METRICS FOR TEXTMAP USING WORD2VEC

EMBEDDINGS

Category Precision Macro Recall Macro F1-score
Title 0.962 0.922 0.941
Abstract 0.933 0.952 0.942
Authors 0.978 0.949 0.963
Email 0.93 0.899 0.914
Address 0.904 0.86 0.881
Date 0.852 0.907 0.878
Journal 0.924 0.94 0.931
Affiliation 0.834 0.849 0.841
DOI 0.933 0.915 0.923
Macro Avrerage 0.917 0.91 0.913
Micro Average 0.92 0.904 N/A

TABLE XII
PERFORMANCE METRICS FOR TEXTMAP USING CHAR2VEC EMBEDDINGS

Category Precision Macro Recall Macro F1-score
Title 0.851 0.874 0.862
Abstract 0.77 0.8 0.785
Authors 0.849 0.815 0.832
Email 0.902 0.89 0.896
Address 0.86 0.881 0.870
Date 0.875 0.842 0.858
Journal 0.782 0.809 0.795
Affiliation 0.804 0.83 0.817
DOI 0.917 0.905 0.911
Macro Average 0.845 0.849 0.847
Micro Average 0.8 0.797 N/A

not achieve higher accuracy compared to Bi-LSTM models
and has longer training times and moderately slow inference
speeds. GROBID, tailored specifically for document process-
ing tasks, demands the most extended training period and

TABLE XIII
AVERAGE TRAINING AND INFERENCE TIMES FOR DIFFERENT MACHINE

LEARNING MODELS USED IN METADATA EXTRACTION. THE TABLE LISTS
THE ESTIMATED AVERAGE TRAINING AND INFERENCE TIMES FOR EACH

MODEL AND STANDARD DEVIATIONS FOR THESE ESTIMATES.

Model Training time Inference time
CRF 36± 7.2 hours 0.5± 0.01 seconds

BiLSTM 84± 7.1 hours 0.1 seconds
LSTM-CRF 126± 3.7 hours 0.2 seconds

GROBID 156± 7.2 hours 1.2± 0.6 seconds
Fast-RCNN 60± 6.8 hours 1.3± 0.4 seconds

Vision-Language 192± 14.5 hours 3.5± 1.11 seconds
TextMap-Bert 172± 13.3 hours 1.3± 0.58

TextMap-Word2Vec 92± 6.2 0.4 seconds
TextMap-Char2Vec 90± 7.0 0.4 seconds

exhibits slower inference times, reflecting its comprehensive
analytical depth. Fast R-CNN, effective in precise localization
of content within documents, also shows a moderate training
duration with slower inference, suited to applications where
precision is more critical than speed. Vision-language models,
though offering superior performance where an understanding
of both visual cues and textual information is necessary,
involve the longest training durations and the slowest inference
rates, which could be a significant drawback in time-sensitive
scenarios.

Lastly, TextMap models using BERT, Word2Vec, and
Char2Vec embeddings demonstrate a spectrum of efficiencies,
with BERT providing high accuracy but slower inference
and longer training times, whereas Word2Vec offers a more
balanced approach, making it preferable for scenarios that
demand both efficiency and effectiveness.

B. Limitations

While the models examined in this study demonstrate con-
siderable potential for metadata extraction from scholarly PDF
documents, several limitations must be acknowledged to fully
appreciate their applicability and scope of use.

• Dependency on Training Data: All models, particularly
deep learning-based ones like BiLSTM, LSTM-CRF, and
TextMap with BERT embeddings, exhibit a high depen-
dency on the quantity and quality of the training data.
Their performance is contingent upon the availability of
large, annotated datasets. This reliance can limit their
practical deployment in scenarios where such datasets are
not readily available or are too domain-specific.

• Adaptability to Rapid Changes: The field of digital
publishing is evolving, with new standards and formats
emerging. The adaptability of these models to such rapid
changes has not been thoroughly tested, raising concerns
about their long-term viability without continuous up-
dates and retraining.
Error Propagation: In multi-stage models like GROBID
or Fast-RCNN, errors in early processing stages can
propagate, leading to compounded errors in metadata
extraction outcomes. This cascade effect can significantly
affect the overall quality of the extracted metadata.
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VI. CONCLUSION

This study has conducted a comprehensive comparison of
various machine learning models to evaluate their effectiveness
in extracting metadata from two challenging datasets. The
analysis revealed significant variations in performance and
computational demands across the models, underscoring the
importance of selecting an appropriate model and architecture
tailored to specific use case requirements.

The CRF and BiLSTM models demonstrated rapid inference
capabilities coupled with robust performance, making them
ideal candidates for real-time applications. In contrast, the
LSTM-CRF hybrid model, despite combining the strengths of
LSTMs and the structured output capabilities of CRFs, did not
achieve results on par with its component technologies.

Models that integrate vision and language modalities, while
resource-intensive, deliver depth and precision in analysis that
simpler models cannot achieve. This sophistication makes
them particularly valuable in scenarios where the accuracy of
extracted metadata critically impacts the outcomes of subse-
quent processes.

The TextMap models, which leverage various embeddings
such as BERT, Word2Vec, and Char2Vec, offer a spectrum
of choices balancing training and inference times with per-
formance. Among these, BERT embeddings stand out for
their exceptional accuracy, albeit at a higher computational
cost, illustrating the fundamental trade-offs between resource
investment and extraction efficacy.

Ultimately, the selection of a metadata extraction model
should be driven not only by dataset characteristics but also
by the practical constraints of the use case—available com-
putational resources, required inference speed, and the trade-
offs between precision and performance that stakeholders
are prepared to accept. Future research should consider the
potential of hybrid models and the development of more
efficient training algorithms to further optimize the application
of machine learning in metadata extraction tasks, enhancing
both their efficiency and accessibility.
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