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Abstract

A guiding theory for a continuous and cohesive discussion regarding generative artificial
intelligence (GenAI) in science communication is still unavailable. Here, we propose a
framework for characterizing, evaluating, and comparing AI-based information technologies
in the context of critical engagement with scientific information in online environments.
Hierarchically constructed, the framework observes technological properties, user
experience, content presentation, and the context in which the technology is being used.
Understandable and applicable for non-experts in AI systems, the framework affords a
holistic yet practical assessment of various AI-based information technologies, providing
both a reflection aid and a conceptual baseline for scholarly references.
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1 Rationale

The public introduction of ChatGPT and other generative artificial intelligence (GenAI) since
that time has marked a significant transformation in mediated communication [Hepp et al.,
2023; Schäfer, 2023]. GenAI is “a class of machine learning technology that learns to
generate new data from training data” [Houde et al., 2020, p. 1]. It has the potential to
redefine the production and dissemination of knowledge in society [Hepp et al., 2023;
Jungherr & Schroeder, 2023], including scientific knowledge [Alvarez et al., 2024; Biyela
et al., 2024].

The disruptive nature of GenAI extends to science communication [Schäfer, 2023], as it
constitutes a new kind of science communicator [see Guzman & Lewis, 2020] and a new
content production tool for existing science communicators [Alvarez et al., 2024; Biyela et al.,
2024]. Compared to previous communication-AI technologies, GenAI has greater agency
[Guzman & Lewis, 2020; Hepp et al., 2023]. Thus, it plays an active role in knowledge
formation and information interpretation and can take a greater part in individuals’ epistemic
networks [Feinstein & Baram-Tsabari, 2024]. With individuals using GenAI to access
scientific information [Greussing et al., 2024], research needs to carefully consider the
emerging potentials, uses, and broader implications associated with AI technologies
[Schäfer, 2023] — considering both the technologies currently in use and those that are yet
to come.

As GenAI constitutes a new kind of science communicator, the intersection of AI technology
and critical engagement with scientific information becomes more pressing. We consider
critical engagement with scientific information as an active and thoughtful interaction with
science-related content, often requiring the evaluation of the content’s credibility, accuracy,
and relevance [see Osborne & Pimentel, 2022; Lin, 2014]. Addressing the conjuncture of AI
technology and critical engagement with scientific information is relevant to multiple
research avenues in science communication, including online engagement with scientific
information on social media and science journalism [e.g., Spitale, Biller-Andorno & Germani,
2023; Tatalovic, 2018]. It also responds to both the crisis of misinformation dissemination
[West & Bergstrom, 2021] and the calls for scholarly attention to GenAI’s susceptibility to
“hallucinations” [Kidd & Birhane, 2023], wherein the AI provides grammatically and
contextually valid, confident responses that are, nonetheless, inaccurate or false [Bang et al.,
2023].

The importance of studying critical engagement with scientific information through GenAI
points to two forming gaps. First, a theoretical gap, as we lack an overbridging
conceptualization that will allow science communication researchers to link newly gained
insights regarding GenAI with previous knowledge about more traditional technologies.
Second, a practical gap, as we are missing a simple yet holistic framework that will afford and
guide non-experts in AI systems in making sense of and differentiating between AI
technologies. Work meeting these gaps would assist science communication researchers
needing to identify and select technologies that are best suited for a particular research
project, or for science communication educators who want to present and discuss the
characteristics of a specific GenAI technology with their students.

Indeed, existing theories provide valuable insights. However, they are limited to either more
traditional technologies [e.g., Taddicken & Krämer, 2021; Hendriks et al., 2020], particular
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uses [e.g., Lin, 2023], or more general insights not necessarily relevant to science
communication [e.g., Hancock, Naaman & Levy, 2020; Lo, 2023; Sundar, 2020]. To date, we
are missing a relevant conceptual framework that will support and guide non-experts in AI
systems in how to make sense of and differentiate GenAI technologies.

2 Objective

The paper proposes a conceptual framework that has a two-fold aim: to encourage a more
consistent and concatenate discourse regarding science communication and AI-based
information technologies, and to equip non-experts in AI systems with a practical tool to
understand and distinguish between AI technologies, recent and upcoming ones.

As a starting point towards developing an efficient and overarching conceptual framework
that others might improve on, we draw inspiration and relevant concepts from theoretical and
empirical literature from various fields. Among the theories and models we consulted are the
heuristic model of online engagement with scientific information [Hendriks et al., 2020] and
criteria for explaining the role of the internet [Lopez & Olvera-Lobo, 2018] from science
communication studies, the fast and frugal model [Osborne & Pimentel, 2022] and the
content-source integration model [Stadtler & Bromme, 2014] from science education studies,
the TIME theory [Sundar, Jia, Waddell & Huang, 2015] and the HAII model [Sundar, 2020]
from human-computer interaction (HCI) studies, as well as the three-tiered framework for
evaluating relevancy and credibility during online inquiry [Forzani, 2020] and the curriculum
design principles [McGrew & Breakstone, 2023] from education studies. We wove the
extracted relevant and diversified concepts into a framework that brings together a wide
range of perspectives. While this process does not cater for developing a coherent theory,
the conceptual framework we have developed could be put to use by researchers and
practitioners in various fields and applied to various GenAI technologies for various
purposes.

Additionally, the framework is designed to encompass a broad spectrum of AI-based
information technologies, extending beyond the scope of GenAI or specific large language
models (LLMs) such as ChatGPT. In other words, the framework aims to be applicable to
characterizing, evaluating, and comparing recent AI technologies, more traditional
information technologies (e.g., Google Search, Wikipedia), and even upcoming ones; it is also
designed to be applicable to textual-base information technologies as well as multimodal
ones (e.g., Gemini,1 Copilot2). The framework has been designed to characterize, evaluate,
and compare technologies (i.e., models, platforms, applications, software, etc.) that enable
individuals to access scientific information online, in contrast to technologies that do not
retrieve or generate scientific information, like word processors or painters devoid of GenAI
components. We define the technologies that can be characterized, evaluated, and
compared using this conceptual framework as computer systems, software, and networks
that facilitate the dissemination of scientific information to the public [‘Information
Technology’, 2024; Nisbet & Scheufele, 2009]. In terms of the conceptual framework, we
define AI as “a machine-based system that can, for a given set of human-defined objectives,
make predictions, recommendations or decisions influencing real or virtual environments”
[OECD, 2019, p. 15].

1. https://gemini.google.com/app.
2. https://www.bing.com/chat?q=Microsoft+Copilot&FORM=hpcodx.
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The conceptual framework described in this paper intends to serve as a reflective guide,
facilitating better understanding and accurate descriptions of AI-based information
technologies in their applications for critical engagement with scientific information online.
In turn, researchers and practitioners who use the framework may informedly select and
better utilize said technologies.

3 The framework

The framework is hierarchically structured, focusing on the technology while accounting for
the particularities of the socio-demographic contexts in which it is being used. Similarly to a
theoretical rubric, it lists selected criteria that contemplate basic technological features,
features that may stimulate emotional and motivational responses, and features that might
impact different tactics for critical evaluation of scientific information. This section first
considers the context in which the technology is being used, then deconstructing the
technology itself.

3.1 The context

Employing an agile approach, the framework first factors in who is using the technology, for
what purpose, and in what specific setting. To illustrate, a technology’s suitability may differ
when it is intended to assist a Zulu-speaking 4th grader in composing a brief essay on
available energy sources, compared to when expected to aid an English-speaking young
adult in deciding whether to adopt a fruitarian lifestyle. Consequently, the framework
recognizes the impact of contextual factors on the evaluation and utilization of AI-based
information technologies [Lopez & Olvera-Lobo, 2018; Sartori & Bocca, 2023; Suchman,
Blomberg, Orr & Trigg, 1999].

From a science communication perspective, the characterization of an AI-based information
technology will unfold in distinct ways, contingent upon the specific socio-demographic,
epistemic, behavioral, and cultural contexts of the technology’s use [Canfield
et al., 2020]. Research shows, for instance, that information technologies can elicit different
responses among different age groups [Chattaraman, Kwon, Gilbert & Ross, 2019; Pradhan,
Lazar & Findlater, 2020]. Additionally, cultural and regional differences impact the access
to relevant and appropriate information about science [Dabran-Zivan et al., 2023]. Besides
these macro-level contextual factors, the impact of critical engagement with scientific
information through AI-based information technologies is also shaped by individual and
situational factors. Among these factors are individuals’ levels of different literacies [Sharon
& Baram-Tsabari, 2020; Lamb, Polman, Newman & Smith, 2014], attitudes toward artificial
intelligence, along with prior knowledge about and experiences with AI technology [Bao et al.,
2022]. Notably, prior experiences hold particular significance for shaping expectations toward
AI-based information technologies [Fortunati, Edwards, Manganelli, Edwards & de Luca,
2022], encompassing not only direct encounters with AI systems but also indirect ones, such
as the exposure to public narratives surrounding the technology, fueled by advertisement,
media representations, and pop culture [Natale & Ballatore, 2020; Sartori & Bocca, 2023].

With these contextual factors in mind, the users of the conceptual framework can then
systematically work through the technological considerations, which are described in the
next sections.
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3.2 The technology

To provide a wide and structured perspective to characterizing the technology, the
conceptual framework adheres to the fundamental elements of communication [Lasswell,
1948]: communicator, channel, receiver, and message. Considering that recent AI systems
function as both a communicator and a channel [Guzman & Lewis, 2020], the remaining
framework combines three lenses: technological properties (i.e., communicator and channel),
user experience (i.e., receiver), and content presentation (i.e., message). While all three
lenses focus on technological features, the user experience lens contemplates features that
affect how users perceive the technology and its use, and the content presentation lens
contemplates features that can impact the critical evaluation of the provided information.
Although the distinction between lenses may seem artificially separated, this structured
approach promotes deliberate reflection from different perspectives. In short, these lenses
establish complementary and interrelated points of view, consisting of distinct dimensions
(see Table 1). (For a more detailed account of the concepts, their use, and sources
incorporated into this part of the framework, see Supplementary material.)

Table 1. Lenses, dimensions, and criteria to characterize AI-based information technologies.

Lens Dimension Criteria

(1) Technological
properties

Basic properties Main objective

Knowledge base: source, recency, and prioritization

Capabilities in science and math

Output’s qualities Media richness: multiple cues and language variety

Multitasking

Accuracy, relevance, and clarity

(2) Users
experience

Interactivity Anthropomorphism: appearance, mode of interactivity, and
interactivity style

Guidance: toward skilled use, collaboration, and further exploration

Users’ agency Previous sessions: access, continuity, alteration, and deletion

Personalization: allowing users’ feedback and changing settings

Suitability: for different audiences and their needs

Transparency AI thickness

AI’s boundaries: capabilities and limitations

Explainability

Costs and benefits Engagement complexity

Mitigating information literacy: source selection and information
integration

(3) Content
presentation

Source Identification

Information about the source

Reasoning Evidence: the evidence included, their verifiability, and their nature

Comprehensiveness: detailed argumentation and presenting
alternatives

Consensus The agreement

The disagreement
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3.3 First lens: technological properties

Although science communication researchers may be untrained to fully comprehend the
inner workings of an AI system, they can still look at its fundamental components, objectives,
and capabilities [see Taddicken & Krämer, 2021; Fernandes, Rodrigues & Ferreira, 2020] to
gain a better understanding of the AI’s strengths and limitations. We propose two key
dimensions: basic technological properties and qualities of the output. Their significance is
rooted in theoretical and empirical work that addresses technological characteristics of AI
systems [e.g., Bang et al., 2023; OECD, 2022, 2023; Zuccon & Koopman, 2023] and
information and communication technologies (ICTs) in the context of critical engagement
with scientific information [e.g., Hendriks et al., 2020; Lamb et al., 2014].

The basic technological properties dimension characterizes the AI’s main objectives (i.e.,
what it is designed to do well), its knowledge base (i.e., what kind of information it relies on),
and its capabilities in science and math (i.e., how well it can answer science-related
questions and solve mathematical problems). Although not deriving directly from science
communication, it is important to consider the technological structures of the technology in
use, as it determines the structure of communication [Taddicken & Krämer, 2021, p. 4].
In greater detail, these criteria consider what sources the AI draws from, the recency of the
data it relies on, and whether it prioritizes information from more reliable sources, such as
scientific literature and reputable journalistic outlets [see Barzilai et al., 2023; Polman,
Newman, Saul & Farrar, 2014]. These characteristics determine a wide range of the
technology’s capabilities, performance, and applicability [OECD, 2022]. They also inform on
the potential suitability of a technology for a specific task and the degree to which it can
support valuable engagement with scientific information [see Hoffmann, 2019; OECD, 2023;
Zajko, 2021]. For instance, LLMs such as ChatGPT were trained on — and therefore rely on —
millions of web pages, including less scientifically reliable sources [see Schäfer, 2023].
These LLMs are designed to generate responses based on probabilistic predictions [Chan,
2023] and outperform the majority of the human population in science but less so in
mathematics [OECD, 2023]. These characteristics are translated to a set of capabilities and
limitations that differ dramatically from those, for example, of Wolfram | Alpha,3 which is
designed to solve and explain mathematics problems, or of Elicit,4 which searches for, and
extracts text from, academic publications.

The output’s qualities dimension addresses media richness (i.e., what modes of information
it provides and supports), multitasking (i.e., how many and what kind of tasks it can perform),
and the quality of the technology’s outputs (i.e., whether and to what degree the technology is
susceptible to delivering irrelevant or inaccurate information).

Different AI technologies can provide different modes of communication and interaction
[see Dambanemuya & Diakopoulos, 2021; Sundar & Lee, 2022]. According to Media Richness
Theory [Daft, Lengel & Trevino, 1987], specific technological properties can enable clearer
communication [Daft et al., 1987; Ishii, Lyons & Carr, 2019], thereby supporting
understanding in diverse ways. We suggest applying two criteria relevant for AI-based
information technologies and science communication: the ability to transmit multiple cues
and language variety [see also Hendriks et al., 2020; Tang, 2024]. Regarding the first
criterion, AI technologies that allow for voice communication, for instance, add another layer

3. https://www.wolframalpha.com/about.
4. https://www.elicit.org.

Article JCOM 23(06)(2024)A05 5

https://www.wolframalpha.com/about
https://www.elicit.org


of richness, as they can convey tone and emphasis. A richer AI interface, in turn, will not only
support understanding, but may also provide a more engaging interaction and encourage
users’ motivation to use the technology [Liu, Liao & Pratt, 2009]. Regarding the latter, we
suggest asking not only how many and which languages the technology supports, or to what
degree, but also if it can mitigate low levels of foundational literacies [see Sharon &
Baram-Tsabari, 2020] and the digital language divide [Dabran-Zivan et al., 2023].

Multitasking considers the technology’s ability “to carry out a multitude of tasks without
specific fine-tuning” [Bang et al., 2023, p. 4]. This ability has become a significant
characteristic of current technologies, especially in GenAI [Schäfer, 2023]. This prompts us
to consider the number and range of tasks the technology can undertake (whether
simultaneously or not) and how well it performs each task. Such tasks can encompass
generating textual answers (e.g., explaining human cells’ structure), translating textual
descriptions into visual depictions (e.g., visually depicting human cells’ structure), retrieving
information (e.g., searching the web for additional diagrams of human cells), etc.
Technologies that can simply and quickly switch between tasks may function as a “one-stop
shop”, allowing users to complete different tasks without the need for multiple applications
or devices. Thus, they can simplify both the use of technology and the engagement with
scientific information. Adding to the main objective criterion in the previous dimension, the
multitasking dimension illuminates what else the technology is good for and whether the
context criteria align with the technology’s capacity.

Considering the output’s quality — understood, inter alia, as the accuracy and relevance of
the information provided — has long been a central concern in science communication
research [Bucchi & Trench, 2014; Olesk et al., 2021]. Said concern has become even more
significant with individuals’ use of GenAI for science-related content [Greussing et al., 2024]
as, “[w]ith the advent of GenAI, the misinformation dilemma has escalated [Shin, Koerber &
Lim, 2024, p. 2]. Hence, the framework evaluates whether the technology produces accurate,
relevant [see Lamb et al., 2014], and clear outputs in general as well as when faced with
either vague (i.e., “what about . . . ”) or detailed misinformed queries or prompts
[Dambanemuya & Diakopoulos, 2021; Zuccon & Koopman, 2023]. Such inputs are prone to
result in inaccurate or irrelevant information.

Overall, examining AI technologies through the lens of technological properties offers
valuable insights into the technology’s purpose, capabilities and limitations, including the
type of information it can provide, how it can support understanding, and its potential to
misinform.

3.4 Second lens: user experience

Emotion and motivation are key factors in facilitating and encouraging public engagement
with scientific information [Dubovi & Tabak, 2021; Hendriks et al., 2020], as are trust in
scientific information and its sources [Taddicken & Krämer, 2021]. However, theories in
science communication link emotional engagement and trust with human or institutional
actors [e.g., Taddicken & Krämer, 2021; Dubovi & Tabak, 2021; Weingart & Guenther, 2016].
Hence, we turn to theories and models in HCI literature and adopt concepts that characterize
the technology and are relevant for online engagement with scientific information.
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System and interface design affects users’ satisfaction with, perception of, and emotional
response to the overall engagement with the technology and the information it mediates
[Lopez & Olvera-Lobo, 2018; Nielsen, 2024; Sundar, 2020]. Furthermore, the technological
features structure how users interact with scientific information in online environments, even
what role users can take [Taddicken & Krämer, 2021]. The second lens, therefore, addresses
technological features that can affect how users experience the technology and,
consequently, how they engage with information about science. More specifically, they inform
inquiries into how individuals are being afforded to use and perceive both the technology
and the information it provides. The users addressed in this lens are understood as any
individual or group interacting with AI-based information technologies to engage with
scientific information. The selected mixture of theoretical concepts informing this lens lean
into literature on science communication [e.g., Hendriks et al., 2020], science education [e.g.,
Long & Magerko, 2020], human-computer interaction (HCI) [e.g., Sundar, 2020], user
experience (UX) [e.g., Nielsen, 2024], and of AI systems [e.g., Wang, Camacho, Jing & Goel,
2022].

Altogether, the user experience lens combines four dimensions, as detailed below:
interactivity, user agency, transparency, and costs and benefits. These selected dimensions,
while probably incomplete, are designed to agree with both Hendriks and colleagues’ [2020]
definition of online engagement with scientific information as well as Sundar’s [2020] model
for human-AI interaction. The first concentrates on “goal-directed [ . . . ] and effortful activity
in dealing with scientific information in online information environments” [Hendriks et al.,
2020, p. 2]. The latter provides “a deeper understanding of the human experience of
algorithms in general and the psychology of human-AI interaction in particular” [Sundar,
2020, p. 74].

Interactivity emerges as one of the most significant factors in explaining technologies’ uses
and effects [Sundar, 2020], for instance, by affecting users’ learning and remembering of
information [Greussing, Kessler & Boomgaarden, 2020]. This is relevant not only to new
media in general, but also to online engagement with scientific information in particular
[Hendriks et al., 2020]. Interactivity refers to the reciprocal exchange of information between
the participants involved in an interaction [e.g., Liu & Shrum, 2002]. As an experiential
construct, interactivity has three facets [Sohn, 2011] — sensory, semantic, and behavioral —
that contribute to the users’ experience. Thus, a communication situation can be perceived
as interactive not only through behavioral engagement (e.g., clicking on a link or writing a
prompt), but also through the breadth and depth of the sensory experience (e.g., the presence
of nonverbal elements such as pictures) or rhetorical communication (e.g., receiving
personally relevant messages that make one feel recognized by the interaction partner).

Interactivity cues embedded in technology contribute to the feeling of natural, face-to-face
communication, thus molding the mode and tone of science communication [Fähnrich, 2021;
see also Lopez & Olvera-Lobo, 2018], especially when the technology exhibits human-like
characteristics [Chong, Yu, Keeling & de Ruyter, 2021; Gambino, Fox & Ratan, 2020; Sundar,
2020]. Anthropomorphism refers to attributing human traits or qualities to non-human
entities, indicating their potential for social interaction [Gambino et al., 2020; see also Wang
et al., 2022]. It is elicited in various ways, such as by the AI’s appearance (e.g., visual or
auditory cues, having a name or gender), mode of interactivity (e.g., conversational abilities),
or interactivity style (i.e., is it task-oriented, more formal, and more purposeful, or is it
social-oriented, more casual, and social-emotional affective?). Anthropomorphism plays a
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key role in shaping how users perceive AI technologies. For example, trust can be fostered
by task-oriented, purposeful communication [Keeling, McGoldrick & Beatty, 2010], which also
encourages superior cognitive outcomes and self-efficacy, particularly among users with low
digital literacy [Chattaraman et al., 2019]. In addition, anthropomorphism has been found to
evoke perceived social presence, credibility, and competence, and to influence users’
“behavioral intention, compliance with advice, and satisfaction” [Chong et al., 2021, p. 5].
Although these aspects centered on technology, their impact for engagement with scientific
information is meaningful [see Taddicken & Krämer, 2021; Dubovi & Tabak, 2021; Weingart &
Guenther, 2016]. While beneficial, anthropomorphism also presents a risk: the perceived
trustworthiness or competence could conceal the actual technical limitations of the
technology (see lens 1).

Interactivity further concerns guidance, which is closely related to what UX principles term
learnability: the user’s ability to use a new interface or technology they have not seen before
[Nielsen, 1993, 2024]. Adapting this concept to critical engagement with scientific
information in online environments, an AI-based information technology can, and perhaps
should, mitigate unskilled use, encourage collaboration and social interaction around
science, and inspire further engagement with scientific information [see Hendriks et al.,
2020; Long & Magerko, 2020]. For instance, while advanced search options in Google
Search are available only through the settings menu at the bottom of the page, Microsoft’s
Copilot provides some instructions and examples on how it could be used.

User agency is a second “hallmark of successful user experience with personalized services”
[Sundar, 2020, p. 82], influencing online engagement with scientific information [Hendriks
et al., 2020]. Rooted in the fundamental human need for autonomy, user agency provides
individuals with a sense of ownership and authority in their interactions with technology
[Kang & Lou, 2022]. This fundamental need, however, is redefined in automatic AI-based
information environments [Hepp et al., 2023]. It is about users’ experience of control over
their actions and, through these actions, control over the behavior and outputs of the
technology [Coyle, Moore, Kristensson, Fletcher & Blackwell, 2012].

While users’ agency involves multiple factors, we suggest focusing on three criteria
concerning previous sessions, personalization, and suitability. These criteria provide
multifaceted yet simple insights into users’ ability to mold or redesign their engagement with
scientific information before and after its occurrence. Thus, users’ ability to refine or delete
their previous interactions will give them greater control and confidence [Nielsen, 2024],
which can then cultivate opportunities to learn new information [Kang & Sundar, 2016]. Also
augmenting users’ control is the ability to personalize the system [Sundar, 2020; see also
Hendriks et al., 2020] by feedbacking the technology and adjusting its settings (e.g.,
selecting conversation style in Microsoft’s Copilot). Accommodating individual preferences
should be carefully considered as it might create conflict with privacy implications [see
Brewer, Pierce, Upadhyay & Park, 2022]. That being said, users’ agency is also critically
dependent on the system’s suitability to its audiences and their needs [see Long & Magerko,
2020]. To enhance users’ agency and foster critical engagement with scientific information,
the technology should ensure compatibility with diverse audiences, including people with
special needs or children.

Transparency is the third dimension of user experience. Indeed, assessing transparency is
not always easy, as its manifestations are not always apparent due to design, commercial,

Article JCOM 23(06)(2024)A05 8



and other considerations. Nevertheless, assessing transparency is part of the framework as it
can shape the quality of human-AI interaction [Sundar, 2020, p. 80] and, in turn, users’
engagement with scientific information [Shin et al., 2024]. We address the concept of
transparency from a user experience perspective rather than from an ethical or legal one,
contemplating how and what users can learn about the AI they use and its operation. The
transparency dimension first distinguishes between thin and thick AIs. While thin AIs are
systems whose involvement is not apparent (for example, autocomplete suggestions,
personalization algorithms), the presence of thick AIs “is more apparent on the interface”
[Sundar & Lee, 2022, p. 382]. The transparency dimension also considers whether the
technology clearly communicates the system’s capabilities and limitations [see Nielsen,
2024; Sundar & Lee, 2022]. This is of particular importance for science communication, as
misinformation generated by AI might seem very compelling to users [Spitale et al., 2023].
Finally, the transparency triangle considers the AI’s explainability, i.e., human understandable
descriptions of the AI’s rational and decision process [Doran, Schulz & Besold, 2017; Long &
Magerko, 2020; OECD, 2022]. Explainability allows users to “appropriately calibrate trust and
reliance [in the technology], to detect potential errors in machine reasoning, and to further
help audit the technology” [Miller, Hoffman, Amir & Holzinger, 2022, p. 1]. These criteria,
while partial, illuminate how users can learn not only about the presence of an AI system, but
also about its capabilities and limitations, and the practical aspects of how it operates.

The concept of costs and benefits considers the ability of the technology “to advance the
interest of the user at minimal cost” [Sundar, 2020, p. 80], thus corresponding with the
effortfulness that characterizes critical engagement with scientific information online
[Hendriks et al., 2020; Lopez & Olvera-Lobo, 2018]. In this context, Sundar [2020, p. 83]
explains that “user actions on the interface, such as searching, choosing settings and making
decisions, are costs against which the benefits of AI media, such as tailored content and
convenience, would be assessed”. We suggest, therefore, to evaluate the extent to which the
technology eases information searching, speeds its processing, and expands its scope. One
simple criterion for such evaluation is the number of “steps” (e.g., prompting, querying,
opening additional tabs, reading different web pages, etc.) required of users to complete a
task [see OECD, 2021; Perez et al., 2015]. For example, while searching for science
information using Google’s Gemini only requires phrasing a prompt, doing the same using
Google Search requires phrasing a query, evaluating the relevance and quality of possible
sources, selecting some, reading them, and integrating the information [see Hendriks et al.,
2020]. Beyond this simplistic numeric criterion, from an information literacy perspective, the
costs and benefits dimension also considers the complexity of the task, evaluating the skill
set and skill level required to complete it.

In conclusion, this lens aims to bring into focus whether and how technological features
contribute to users’ engagement with scientific information [see Evans & Gibbons, 2007;
Hendriks et al., 2020]. According to Nielsen [2024], a technology can allow users control and
freedom by catering to both inexperienced and experienced users, providing continuous
interaction that leverages users’ language and communication, while affording multiple easy
ways to correct or undo their mistakes. Such a technology will foster users’ positive
experience and, in turn, a more efficient and satisfying engagement with scientific
information [see Hendriks et al., 2020; Schäfer, 2023].
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3.5 Third lens: content presentation

Research shows that scientific disinformation produced by GenAI can be more convincing
than that produced by humans [Spitale et al., 2023]. Hence, practicing critical engagement
with scientific information online is crucial and involves, inter alia, evaluating the credibility
of the information source, the reasoning components and structure, and the overall argument
in light of the scientific consensus [McGrew & Breakstone, 2023; Osborne & Pimentel, 2022;
see also Halpern, 2014]. This third lens addresses whether, how, and to what extent the
presentation of the content (rather than the capabilities of users) supports these practices of
critical engagement with scientific information in online environments. These aspects also
echo theories in science communication that describe tactics for minimizing uncertainty in
public engagement with scientific information [Lammers, Ferrari, Wenmackers, Pattyn & Van
de Walle, 2024]. Drawing from literature on science education [e.g., Stadtler & Bromme,
2014], critical thinking [e.g., Halpern, 2014], and digital literacy [e.g., McGrew & Breakstone,
2023], this part of the framework informs inquiries into whether the technology equips its
users with opportunities to critically evaluate the reliability, validity, and accuracy of the
information retrieved. Corresponding with Osborne and Pimental’s [2022] “fast and frugal”
heuristic model, the content presentation lens addresses three fundamental dimensions
— sources, reasoning, and consensus — with the following details.

Evaluating source credibility is an efficient indicator of information reliability [McGrew &
Breakstone, 2023; Osborne & Pimentel, 2022; see also Lopez & Olvera-Lobo, 2018] when
content knowledge of the discussed issue is insufficient [Forzani, 2020]. This often involves
assessing the expertise or benevolence of the source [Stadtler & Bromme, 2014] or
investigating what other reliable sources say about them [McGrew & Breakstone, 2023;
Osborne & Pimentel, 2022]. These assessments, however, are irrelevant for GenAI
technologies that function as the source. Hence, addressing source evaluation becomes
crucial for scholars and educators, as it impacts the potential uses of such tools. Following
these lines, the source dimension focuses on two criteria: (1) whether the content
presentation tends to identify relevant information sources (e.g., “according to the World
Health Organization”), which will allow users to evaluate if the information can be trusted
[Bromme, Kienhues & Porsch, 2010]; and (2) whether the output provides a direct link to a
specific source (e.g., hyperlinks, URLs, articles’ titles, etc.), thus enabling users to corroborate
the information [Barzilai, Thomm & Shlomi-Elooz, 2020] and assess both information
reliability and accuracy.

Reasoning evaluation is the second dimension under the content presentation lens. In the
words of Tseng and colleagues [2021, p. 1156], evaluating scientific claims “involve[s] the
assessment of scientific arguments for validity of reasoning and the quality of evidence that
is used”. Furthermore, reasoning evaluation can become a decisive practice in the case of
recent GenAI technologies that often neglect identifying the source or rather do so
incorrectly. Hence, although evaluating the scientific claims themselves might be more
complicated for non-experts [Osborne & Pimentel, 2022], evaluating the argumentation may
become a valuable avenue to establish information credibility [Barzilai et al., 2020; Forzani,
2020], especially when information about the source is scarce or invalid [Dabran-Zivan &
Baram-Tsabari, n.d.]. To allow users to evaluate the scientific claims and reappraise the
plausibility of alternative explanations [Tseng et al., 2021; see also Halpern, 2014; McGrew &
Breakstone, 2023], the reasoning dimension prompts users to consider the inclusion of
evidence, scientific or otherwise, and whether the argument addresses alternative claims
[Halpern, 2014].
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Scientific consensus is the third dimension, functioning as “the public benchmark of
reliability” [Osborne & Pimentel, 2022, p. 247], and as an influential factor in science
communication [Chinn, Lane & Hart, 2018; van Stekelenburg, Schaap, Veling, van ’t Riet &
Buijzen, 2022]. The consensus embodies what a decisive majority of experts agree on. As
such, it portrays “the product of extensive empirical work that has been examined critically
from many perspectives”, constituting “our best bet of what to trust” [Osborne & Pimentel,
2022, p. 247]. This dimension asks whether the technology supports easy understanding of
the scientific consensus — for instance, by often addressing it directly — and whether the
technology allows users to learn about the specifics of scientific disagreements.

To summarize, the framework suggests observing first the context, on macro and micro
levels, followed by the technology, offering guiding criteria to characterize the basic
technological properties, the user experience, and the content presentation.

4 To conclude

As GenAI technologies “themselves [are] becoming communicative participants” [Hepp
et al., 2023, p. 42], they continue to shape and transform the way information is
disseminated and consumed. Thus, understanding the underlying mechanisms and
implications of these systems becomes crucial. In this paper, we proposed a conceptual
framework that enables science communication researchers and educators to effectively
characterize, evaluate, and compare AI-based information technologies in the context of
critical engagement of scientific information.

Practically, this framework allows researchers and educators to understand and reflect on the
strengths, weaknesses, and workings of AI technologies in science communication. From a
theoretical standpoint, the framework equips researchers to keep pace with the rapid
developments in the AI terrain and fosters cumulative research rather than isolated
investigations.

Because of the recency of the technology and the lack of empirically tested theories
regarding critical engagement with scientific information through AI-based information
technologies, naturally, this framework is incomplete, and more work is needed to determine
its usefulness. Furthermore, as a multidisciplinary endeavour, drawing on theoretical
perspectives from many disciplines, the framework might not provide a coherent theory.
Hence, first and foremost, this effort hopes to stir scholarly discussion toward further
development and finetuning of the framework, leading to a more refined and encompassing
tool for future research and practice.

This framework represents an initial step. It is a reflection aid designed to support
researchers and educators with a limited understanding of AI systems in selecting relevant
technologies or presenting them as most suitable to a particular context. By highlighting
important dimensions of critical engagement with scientific information through AI, the
framework may lead to developing relevant strategies for critical engagement with
AI-generated content, and for identifying gaps in existing empirical research, including both
known unknowns and actual blind spots.
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