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Abstract 

PubTator 3.0 ( https:// www.ncbi.nlm.nih.gov/ research/ pubtator3/ ) is a biomedical literature resource using state-of-the-art AI techniques to offer 
semantic and relation searches for key concepts like proteins, genetic variants, diseases and chemicals. It currently provides over one billion 
entity and relation annotations across approximately 36 million PubMed abstracts and 6 million full-text articles from the PMC open access 
subset, updated w eekly. P ubT ator 3.0’ s online interf ace and API utiliz e these precomputed entity relations and synon yms to pro vide adv anced 
search capabilities and enable large-scale analy ses, streamlining man y comple x inf ormation needs. We sho w case the retrie v al quality of P ubTator 
3.0 using a series of entity pair queries, demonstrating that PubTator 3.0 retrieves a greater number of articles than either PubMed or Google 
Scholar, with higher precision in the top 20 results. We further show that integrating ChatGPT (GPT-4) with PubTator APIs dramatically impro v es 
the factuality and verifiability of its responses. In summary, PubTator 3.0 offers a comprehensive set of features and tools that allow researchers 
to navigate the ever-expanding wealth of biomedical literature, expediting research and unlocking valuable insights for scientific discovery. 
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ntroduction 

he biomedical literature is a primary resource to address in-
ormation needs across the biological and clinical sciences ( 1 ),
owever the requirements for literature search vary widely.
ctivities such as formulating a research hypothesis require
n exploratory approach, whereas tasks like interpreting the
linical significance of genetic variants are more focused. 

Traditional keyword-based search methods have long
ormed the foundation of biomedical literature search ( 2 ).

hile generally effective for basic search, these methods also
ave significant limitations, such as missing relevant articles
eceived: January 18, 2024. Revised: March 2, 2024. Editorial Decision: March 1
ublished by Oxford University Press on behalf of Nucleic Acids Research 2024.
his work is written by (a) US Government employee(s) and is in the public dom
due to differing terminology or including irrelevant articles be-
cause surface-level term matches cannot adequately represent
the required association between query terms. These limita-
tions cost time and risk information needs remaining unmet. 

Natural language processing (NLP) methods provide sub-
stantial value for creating bioinformatics resources ( 3–5 ), and
may improve literature search by enabling semantic and re-
lation search ( 6 ). In semantic search, users indicate specific
concepts of interest (entities) for which the system has pre-
computed matches regardless of the terminology used. Rela-
tion search increases precision by allowing users to specify the
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ain in the US. 
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type of relationship desired between entities, such as whether
a chemical enhances or reduces expression of a gene. In this re-
gard, we present PubTator 3.0, a novel resource engineered to
support semantic and relation search in the biomedical litera-
ture. Its search capabilities allow users to explore automated
entity annotations for six key biomedical entities: genes, dis-
eases, chemicals, genetic variants, species, and cell lines. Pub-
Tator 3.0 also identifies and makes searchable 12 common
types of relations between entities, enhancing its utility for
both targeted and exploratory searches. Focusing on relations
and entity types of interest across the biomedical sciences al-
lows PubTator 3.0 to retrieve information precisely while pro-
viding broad utility (see detailed comparisons with its prede-
cessor in Supplementary Table S1 ). 

S yst em o v erview 

The PubTator 3.0 online interface, illustrated in Figure 1
and Supplementary Figure S1 , is designed for interactive lit-
erature exploration, supporting semantic, relation, keyword,
and Boolean queries. An auto-complete function provides se-
mantic search suggestions to assist users with query formu-
lation. For example, it automatically suggests replacing ei-
ther ‘COVID-19 

′′ or "S AR S-CoV-2 infection’ with the seman-
tic term ‘@DISEASE_COVID_19 

′′ . Relation queries – new to
PubTator 3.0 – provide increased precision, allowing users
to target articles which discuss specific relationships between
entities. 

PubTator 3.0 offers unified search results, simultaneously
searching approximately 36 million PubMed abstracts and
over 6 million full-text articles from the PMC Open Ac-
cess Subset (PMC-OA), improving access to the substantial
amount of relevant information present in the article full text
( 7 ). Search results are prioritized based on the depth of the re-
lationship between the query terms: articles containing iden-
tifiable relations between semantic terms receive the highest
priority, while articles where semantic or keyword terms co-
occur nearby (e.g. within the same sentence) receive secondary
priority. Search results are also prioritized based on the article
section where the match appears (e.g. matches within the ti-
tle receive higher priority). Users can further refine results by
employing filters, narrowing articles returned to specific pub-
lication types, journals, or article sections. 

PubTator 3.0 is supported by an NLP pipeline, depicted in
Figure 2 A. This pipeline, run weekly, first identifies articles
newly added to PubMed and PMC-OA. Articles are then pro-
cessed through three major steps: (i) named entity recognition,
provided by the recently developed deep-learning transformer
model AIONER ( 8 ), (ii) identifier mapping and (iii) relation
extraction, performed by BioREx ( 9 ) of 12 common types of
relations (described in Supplementary Table S2 ). 

In total, PubTator 3.0 contains over 1.6 billion entity anno-
tations (4.6 million unique identifiers) and 33 million relations
(8.8 million unique pairs). It provides enhanced entity recogni-
tion and normalization performance over its previous version,
PubTator 2 ( 10 ), also known as PubTator Central (Figure 2 B
and Supplementary Table S3 ). We show the relation extrac-
tion performance of PubTator 3.0 in Figure 2 C and its com-
parison results to the previous state-of-the-art systems ( 11–13 )
on the BioCreative V Chemical-Disease Relation ( 14 ) corpus,
finding that PubTator 3.0 provided substantially higher ac-
curacy. Moreover, when evaluating a randomized sample of
entity pair queries compared to PubMed and Google Scholar,
PubTator 3.0 consistently returns a greater number of arti- 
cles with higher precision in the top 20 results (Figure 2 D and 

Supplementary Table S4 ). 

Materials and methods 

Data sources and article processing 

PubTator 3.0 downloads new articles weekly from the BioC 

PubMed API ( https:// www.ncbi.nlm.nih.gov/ research/ bionlp/ 
APIs/ BioC-PubMed/ ) and the BioC PMC API ( https://www. 
ncbi.nlm.nih.gov/ research/ bionlp/ APIs/ BioC-PMC/ ) in BioC- 
XML format ( 16 ). Local abbreviations are identified using 
Ab3P ( 17 ). Article text and extracted data are stored inter- 
nally using MongoDB and indexed for search with Solr, ensur- 
ing robust and scalable accessibility unconstrained by external 
dependencies such as the NCBI eUtils API. 

Entity recognition and normalization / linking 

PubTator 3.0 uses AIONER ( 8 ), a recently developed named 

entity recognition (NER) model, to recognize entities of six 

types: genes / proteins, chemicals, diseases, species, genetic 
variants, and cell lines. AIONER utilizes a flexible tagging 
scheme to integrate training data created separately into a 
single resource. These training datasets include NLM-Gene 
( 18 ), NLM-Chem ( 19 ), NCBI-Disease ( 20 ), BC5CDR ( 14 ),
tmVar3 ( 21 ), Species-800 ( 22 ), BioID ( 23 ) and BioRED ( 15 ).
This consolidation creates a larger training set, improving 
the model’s ability to generalize to unseen data. Furthermore,
it enables recognizing multiple entity types simultaneously,
enhancing efficiency and simplifying the challenge of distin- 
guishing boundaries between entities that reference others,
such as the disorder ‘Alpha-1 antitrypsin deficiency’ and the 
protein ‘Alpha-1 antitrypsin’. We previously evaluated the per- 
formance of AIONER on 14 benchmark datasets ( 8 ), includ- 
ing the test sets for the aforementioned training sets. This eval- 
uation demonstrated that AIONER’s performance surpasses 
or matches previous state-of-the-art methods. 

Entity mentions found by AIONER are normalized (linked) 
to a unique identifier in an appropriate entity database. Nor- 
malization is performed by a module designed for (or adapted 

to) each entity type, using the latest version. The recently- 
upgraded GNorm2 system ( 24 ) normalizes genes to NCBI 
Gene identifiers and species mentions to NCBI Taxonomy.
tmVar3 ( 21 ), also recently upgraded, normalizes genetic vari- 
ants; it uses dbSNP identifiers for variants listed in dbSNP 

and HGNV format otherwise. Chemicals are normalized by 
the NLM-Chem tagger ( 19 ) to MeSH identifiers ( 25 ). Tag- 
gerOne ( 26 ) normalizes diseases to MeSH and cell lines to 

Cellosaurus ( 27 ) using a new normalization-only mode. This 
mode only applies the normalization model, which converts 
both mentions and lexicon names into high-dimensional TF- 
IDF vectors and learns a mapping, as before. However, it 
now augments the training data by mapping each lexicon 

name to itself, resulting in a large performance improve- 
ment for names present in the lexicon but not in the an- 
notated training data. These enhancements provide a sig- 
nificant overall improvement in entity normalization perfor- 
mance ( Supplementary Table S3 ). 

Relation extraction 

Relations for PubTator 3.0 are extracted by the unified re- 
lation extraction model BioREx ( 9 ), designed to simulta- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae235#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae235#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae235#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae235#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae235#supplementary-data
https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/BioC-PubMed/
https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/BioC-PMC/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae235#supplementary-data
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Figure 1. PubTator 3.0 system overview and search results page: 1. Query auto-complete enhances search accuracy and synonym matching. 2. Natural 
language processing (NLP)-enhanced rele v ance: Search results are prioritized according to the strength of the relationship between the entities queried. 
3. Users can further refine results with facet filters—section, journal and type. 4. Search results include highlighted entity snippets explaining relevance. 
5. Histogram visualizes number of results by publication year. 6. Entity highlighting can be switched on or off according to user preference. 

n  

t
g
g  

t  

S  

e  

e  

m  

o  

o  

c
 

f  

a  

c  

b  

p  

s  

t  

o  

t  

(  

t  

y  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

text. 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkae235/7640526 by guest on 08 April 2024
eously extract 12 types of relations across eight entity
ype pairs: chemical–chemical, chemical–disease, chemical–
ene, chemical–variant, disease–gene, disease–variant, gene–
ene and variant–variant. Detailed definitions of these rela-
ion types and their corresponding entity pairs are presented in
upplementary Table S2 . Deep-learning methods for relation
xtraction, such as BioREx, require ample training data. How-
ver, training data for relation extraction is fragmented into
any datasets, often tailored to specific entity pairs. BioREx
vercomes this limitation with a data-centric approach, rec-
nciling discrepancies between disparate training datasets to
onstruct a comprehensive, unified dataset. 

We evaluated the relations extracted by BioREx using per-
ormance on manually annotated relation extraction datasets
s well as a comparative analysis between BioREx and notable
omparable systems. BioREx established a new performance
enchmark on the BioRED corpus test set ( 15 ), elevating the
erformance from 74.4% ( F -score) to 79.6%, and demon-
trating higher performance than alternative models such as
ransfer learning (TL), multi-task learning (MTL), and state-
f-the-art models trained on isolated datasets ( 9 ). For PubTa-
or 3.0, we replaced its deep learning module, PubMedBERT
 28 ), with LinkBERT ( 29 ), further increasing the performance
o 82.0%. Furthermore, we conducted a comparative anal-
sis between BioREx and SemRep ( 11 ), a widely used rule-
based method for extracting diverse relations, the CD-REST
( 13 ) system, and the previous state-of-the-art system ( 12 ), us-
ing the BioCreative V Chemical Disease Relation corpus test
set ( 14 ). Our evaluation demonstrated that PubTator 3.0 pro-
vided substantially higher F -score than previous methods. 

Programmatic access and data formats 

PubTator 3.0 offers programmatic access through its
API and bulk download. The API ( https://www.ncbi.
nlm.nih.gov/ research/ pubtator3/ ) supports keyword, en-
tity and relation search, and also supports exporting
annotations in XML and JSON-based BioC ( 16 ) for-
mats and tab-delimited free text. The PubTator 3.0 FTP
site ( https:// ftp.ncbi.nlm.nih.gov/ pub/ lu/ PubTator3 ) pro-
vides bulk downloads of annotated articles and extraction
summaries for entities and relations. Programmatic ac-
cess supports more flexible query options; for example,
the information need ‘what chemicals reduce expression
of JAK1?’ can be answered directly via API (e.g. https:
// www.ncbi.nlm.nih.gov/ research/ pubtator3-api/ relations? 
e1=@GENE _ JAK1&type=negative _ correlate&e2=Chemical ) 
or by filtering the bulk relations file. Additionally, the Pub-
Tator 3.0 API supports annotation of user-defined free

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae235#supplementary-data
https://www.ncbi.nlm.nih.gov/research/pubtator3/
https://ftp.ncbi.nlm.nih.gov/pub/lu/PubTator3
https://www.ncbi.nlm.nih.gov/research/pubtator3-api/relations?e1=@GENE_JAK1&type=negative_correlate&e2=Chemical
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Figure 2. ( A ) The PubTator 3.0 processing pipeline: AIONER ( 8 ) identifies six types of entities in PubMed abstracts and PMC-OA full-text articles. Entity 
annotations are associated with database identifiers by specialized mappers and BioREx ( 9 ) identifies relations between entities. Extracted data is 
stored in MongoDB and made searchable using Solr. ( B ) Entity recognition performance for each entity type compared with PubTator2 (also known as 
PubTatorCentral) ( 13 ) on the BioRED corpus ( 15 ). ( C ) Relation extraction performance compared with SemRep ( 11 ) and notable previous best systems 
( 1 2 , 1 3 ) on the BioCreative V Chemical-Disease Relation ( 14 ) corpus. ( D ) Comparison of information retrieval for PubTator 3.0, PubMed, and Google 
Scholar for entity pair queries, with respect to total article count and top-20 article precision. 
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Case study I: entity relation queries 

We analyzed the retrieval quality of PubTator 3.0 by prepar-
ing a series of 12 entity pairs to serve as case studies for
comparison between PubTator 3.0, PubMed and Google
Scholar. To provide an equal comparison, we filtered about
30% of the Google Scholar results for articles not present
in PubMed. To ensure that the number of results would
remain low enough to allow filtering Google Scholar re-
sults for articles not in PubMed, we identified entity pairs
first discussed together in the literature in 2022 or later. We
then randomly selected two entity pairs of each of the fol-
lowing types: disease / gene, chemical / disease, chemical / gene,
chemical / chemical, gene / gene and disease / variant. None of
the relation pairs selected appears in the training set. The 
comparison was performed with respect to a snapshot of the 
search results returned by all search engines on 19 May 2023.
We manually evaluated the top 20 results for each system and 

each query; articles were judged to be relevant if they men- 
tioned both entities in the query and supported a relationship 

between them. Two curators independently judged each ar- 
ticle, and discrepancies were discussed until agreement. The 
curators were not blinded to the retrieval method but were 
required to record the text supporting the relationship, if rel- 
evant. This experiment evaluated the relevance of the top 20 

results for each retrieval method, regardless of whether the 
article appeared in PubMed. 
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Our analysis is summarized in Figure 2 D, and
upplementary Table S4 presents a detailed comparison
f the quality of retrieved results between PubTator 3.0,
ubMed and Google Scholar. Our results demonstrate that
ubTator 3.0 retrieves a greater number of articles than the
omparison systems and its precision is higher for the top
0 results. For instance, PubTator 3.0 returned 346 articles
or the query ‘GLPG0634 + ulcerative colitis’, and manual
eview of the top 20 articles showed that all contained
tatements about an association between GLPG0634 and
lcerative colitis. In contrast, PubMed only returned a total
f 18 articles, with only 12 mentioning an association. More-
ver, when searching for ‘COVID19 + PON1’, PubTator 3.0
eturns 212 articles in PubMed, surpassing the 43 articles
btained from Google Scholar, only 29 of which are sourced
rom PubMed. These disparities can be attributed to several
actors: (i) PubTator 3.0’s search includes full texts available
n PMC-OA, resulting in significantly broader coverage of
rticles, (ii) entity normalization improves recall, for example,
y matching ‘paraoxonase 1’ to ‘PON1’, (iii) PubTator 3.0
rioritizes articles containing relations between the query
ntities, (iv) Pubtator 3.0 prioritizes articles where the entities
ppear nearby, rather than distant paragraphs. Across the 12
nformation retrieval case studies, PubTator 3.0 demonstrated
n overall precision of 90.0% for the top 20 articles (216 out
f 240), which is significantly higher than PubMed’s precision
f 81.6% (84 out of 103) and Google Scholar’s precision of
8.5% (98 out of 202). 

ase study II: retrieval-augmented generation 

n the era of large language models (LLMs), PubTator 3.0 can
lso enhance their factual accuracy via retrieval augmented
eneration. Despite their strong language ability, LLMs are
rone to generating incorrect assertions, sometimes known
s hallucinations ( 30 ,31 ). For example, when requested to
ite sources for questions such as ‘which diseases can dox-
rubicin treat’, GPT-4 frequently provides seemingly plausi-
le but nonexistent references. Augmenting GPT-4 with Pub-
ator 3.0 APIs can anchor the model’s response to verifiable
eferences via the extracted relations, significantly reducing
allucinations. 
We assessed the citation accuracy of responses from three

PT -4 variations: PubTator-augmented GPT -4, PubMed-
ugmented GPT-4 and standard GPT-4. We performed a qual-
tative evaluation based on eight questions selected as fol-
ows. We identified entities mentioned in the PubMed query
ogs and randomly selected from entities searched both fre-
uently and rarely. We then identified the common queries for
ach entity that request relational information and adapted
ne into a natural language question. Each question is there-
ore grounded on common information needs of real PubMed
sers. For example, the questions ‘What can be caused by
ocilizumab?’ and ‘What can be treated by doxorubicin?’
re adapted from the user queries ‘tocilizumab side effects’
nd ‘doxorubicin treatment’ respectively. Such questions typ-
cally require extracting information from multiple articles
nd an understanding of biomedical entities and relation-
hip descriptions. Supplementary Table S5 lists the questions
hosen. 

We augmented the GPT-4 large language model (LLM) with
ubTator 3.0 via the function calling mechanism of the Ope-
AI ChatCompletion API. This integration involved prompt-
ing GPT-4 with descriptions of three PubTator APIs: (i) find
entity ID, which retrieves PubTator entity identifiers; (ii) find
related entities, which identifies related entities based on an
input entity and specified relations and (iii) export relevant
search results, which returns PubMed article identifiers con-
taining textual evidence for specific entity relationships. Our
instructions prompted GPT-4 to decompose user questions
into sub-questions addressable by these APIs, execute the
function calls, and synthesize the responses into a coherent fi-
nal answer. Our prompt promoted a summarized response by
instructing GPT-4 to start its message with ‘Summary:’ and re-
quested the response include citations to the articles providing
evidence. The PubMed augmentation experiments provided
GPT-4 with access to PubMed database search via the Na-
tional Center for Biotechnology Information (NCBI) E-utils
APIs ( 32 ). We used Azure OpenAI Services (version 2023-07-
01-preview) and GPT-4 (version 2023-06-13) and set the de-
coding temperature to zero to obtain deterministic outputs.
The full prompts are provided in Supplementary Table S6 . 

PubTator-augmented GPT-4 generally processed the ques-
tions in three steps: (i) finding the standard entity identi-
fiers, (ii) finding its related entity identifiers and (iii) search-
ing PubMed articles. For example, to answer ‘What drugs can
treat breast cancer?’, GPT-4 first found the PubTator entity
identifier for breast cancer (@DISEASE_Breast_Cancer) using
the Find Entity ID API. It then used the Find Related Entities
API to identify entities related to @DISEASE_Breast_Cancer
through a ‘treat’ relation. For demonstration purposes, we
limited the maximum number of output entities to five. Finally,
GPT-4 called the Export Relevant Search Results API for the
PubMed article identifiers containing evidence for these rela-
tionships. The raw responses to each prompt for each method
are provided in Supplementary Table S6 . 

We manually evaluated the accuracy of the citations in
the responses by reviewing each PubMed article and ver-
ifying whether each PubMed article cited supported the
stated relationship (e.g. Tamoxifen treating breast cancer).
Supplementary Table S5 reports the proportion of the cited
articles with valid supporting evidence for each method. GPT-
4 frequently generated fabricated citations, widely known
as the hallucination issue. While PubMed-augmented GPT-4
showed a higher proportion of accurate citations, some ar-
ticles cited did not support the relation claims. This is likely
because PubMed is based on keyword and Boolean search and
does not support queries for specific relationships. Responses
generated by PubTator-augmented GPT-4 demonstrated the
highest level of citation accuracy, underscoring the poten-
tial of PubTator 3.0 as a high-quality knowledge source for
addressing biomedical information needs through retrieval-
augmented generation with LLMs such as GPT-4. In our ex-
periment, using Azure for ChatGPT, the cost was approxi-
mately $1 for two questions with GPT-4-Turbo, or 40 ques-
tions when downgraded to GPT-3.5-Turbo, including the cost
of input / output tokens. 

Discussion 

Previous versions of PubTator have fulfilled over one billion
API requests since 2015, supporting a wide range of research
applications. Numerous studies have harnessed PubTator an-
notations for disease-specific gene research, including efforts
to prioritize candidate genes ( 33 ), determine gene–phenotype
associations ( 34 ), and identify the genetic underpinnings of

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae235#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae235#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae235#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae235#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae235#supplementary-data
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disease comorbidities ( 35 ). Several projects have used PubTa-
tor to create gene and genetic variant resources ( 36 ,37 ) or to
enrich disease knowledge graphs ( 38 ,39 ). Moreover, PubTator
has supported biocuration efforts ( 40 ,41 ) and the creation of
NLP benchmarks ( 42 ). With enhanced accuracy, PubTator 3.0
will better support these use cases. 

Introducing relation annotations to PubTator 3.0 opens
novel avenues for expanded use scenarios. With relations pre-
computed from the literature, complex research questions can
often be answered directly. Drug repurposing, for example,
can be formulated as identifying chemicals which target spe-
cific genes. Conversely, determining the genetic targets of a
chemical can be achieved by querying the same chemical / gene
relations. Clinicians evaluating genetic variants, e.g. for rare
diseases or personalized medicine, may explore the relation-
ships between specific genetic variants and disease. Biologists,
on the other hand, may utilize interactions between multiple
genes to assemble complex molecular pathways. 

There are several notable limitations for PubTator 3.0. Al-
though it is capable of extracting relations from full-text ar-
ticles, this feature is currently restricted to abstracts due to
computational constraints. However, the system has been de-
signed to support full-text relation extraction in a future en-
hancement. The current system only extracts 12 relation types,
though these represent common uses. Finally, entity anno-
tation and relation extraction are automated; though these
systems exhibit high performance, their accuracy remains
imperfect. 

Conclusion 

PubTator 3.0 offers a comprehensive set of features and tools
that allow researchers to navigate the ever-expanding wealth
of biomedical literature, expediting research and unlocking
valuable insights for scientific discovery. The PubTator 3.0 in-
terface, API, and bulk file downloads are available at https:
// www.ncbi.nlm.nih.gov/ research/ pubtator3/ . 

Data availability 

Data is available through the online interface at https://
www.ncbi.nlm.nih.gov/ research/ pubtator3/ , through the API
at https:// www.ncbi.nlm.nih.gov/ research/ pubtator3/ api or
bulk FTP download at https:// ftp.ncbi.nlm.nih.gov/ pub/ lu/
PubTator3/. 

The source code for each component of PubTator 3.0
is openly accessible. The AIONER named entity recognizer
is available at https:// github.com/ ncbi/ AIONER . GNorm2,
for gene name normalization, is available at https://github.
com/ ncbi/ GNorm2 . The tmVar3 variant name normalizer
is available at https:// github.com/ ncbi/ tmVar3 . The NLM-
Chem Tagger, for chemical name normalization, is available
at https:// ftp.ncbi.nlm.nih.gov/ pub/ lu/ NLMChem . The Tag-
gerOne system, for disease and cell line normalization, is avail-
able at https:// www.ncbi.nlm.nih.gov/ research/ bionlp/ Tools/
taggerone . The BioREx relation extraction system is available
at https:// github.com/ ncbi/ BioREx . The code for customizing
ChatGPT with the PubTator 3.0 API is available at https:
// github.com/ ncbi-nlp/ pubtator-gpt . The details of the appli-
cations, performance, evaluation data, and citations for each
tool are shown in Supplementary Table S7 . All source code is
also available at https:// doi.org/ 10.5281/ zenodo.10839630 . 
Supplementary data 

Supplementary Data are available at NAR Online. 
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