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ABSTRACT
This paper carries out a lightweight review to explore the potentials of data science in 
the last two decades and especially focuses on the four essential components: data 
resources, technologies, data infrastructures, and data education. Considering the 
barriers of data science, the analysis has been mapped into four essential components, 
highlighting priorities and challenges in social and cultural, epistemological, scientific 
and technical, economic, legal, and ethical aspects. As a result, the future development 
of data science tends to shift toward datafication, data technicity, infrastructuralism, 
and data literacy empowerment. The data ecosystem, at the macro level, has also 
been analyzed under the open science umbrella, providing a snapshot for the future 
development of data science.
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1. INTRODUCTION
Data science, namely the science of data and science facilitated by data, has significantly 
changed how we work, study, and live. Over the recent two decades, statistics show a 
growing interest in data science (see Figure 1) that remained relatively steady early in the new 
millennium before a constant increase in the most recent decade. Moreover, the incredible 
power embedded in data science ignites the worldwide digital revolution in which everyone 
enters the unprecedented big data era (Science International 2015).

This paper carries out a lightweight literature review to unveil data science in the last 20 
years. It employs scientometric methods to identify data science essentials and introduces 
examples illustrating multidimensional challenges. It also includes an analysis of future trends 
and proactive actions. Hopefully, this paper will help reflect on data science work and support  
its future development under open science guidance (UNESCO 2021).

2. EXPLORING THE FULL POTENTIAL OF THE BIG DATA ERA
From no data and little data to big data (Borgman 2015), the new era brings the most significant 
advances to data science. According to Google Trends, the most relevant data science topics 
searched fall into different categories, such as data, technology, infrastructure, and education 
(see Table 1). Another word frequency analysis of the data science publications on the Web of 
Science platform shows similar results (see Figure 2). Therefore, we employ the four essential 
components (see Figure 3), namely data resources, technologies, data infrastructures, and 
data education, to depict data science trends.

Figure 1 Interest over time by 
Google Trends: data science 
around the world (23 Feb. 
2023).

CATEGORIES TOP 25 MOST POPULAR TOPICS RELATED TO DATA SCIENCE 
(GOOGLE TRENDS, 23 FEB. 2023)

Data data; big data

Technology Python; analytics; learning; data analysis; machine learning; analysis; artificial intelligence

Infrastructure computer; machine; project; engineering

Education data science; course; university; job; master’s degree; master of science; bachelor’s 
degree; salary

Others science; computer science; statistics; business

Table 1 Relevant data science 
topics searched on Google.

Note: Data are captured from 
Google Trends and manually 
cleaned.

Figure 2 Relevant data science 
topics in Web of Science 
publications.
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As the new underpinning of the digital revolution, data have become hot spots in different 
areas. Many types of research, far away in the luminous galaxies (Combes 2021) or up close in 
the micro-ecosystems (ISC 2021), are driven by data-related research resources. Data-centric 
research drives paradigm shifts to address transparency and openness throughout the data 
life cycle. Data improve the performance of global governance by steadily aggregating social 
capital (Malgonde & Bhattacherjee 2014) and proliferate the digital economy by reducing costs 
and facilitating value appreciation of data-relevant assets.

Nevertheless, data are not alone. The supporting information and communication technologies 
(ICT) provide opportunities to facilitate the full exploitation of data value. From analysis to analytics 
(Cao 2017), technologies transfer data from facts to insights. From data mining to artificial 
intelligence, technical development drives data to understand the past and envisage the future 
(Provost & Fawcett 2013). From centralized data control to cloud solutions, technologies support 
better data management for scalable research. Thus, as catalysts and boosters, technologies 
improve data performance by adding value to data within the whole life cycle and every workflow.

Further, data infrastructures facilitate the deployment of technologies, thus supporting data 
use and reuse. Technical infrastructures provide connectivity for data exchange, capacities for 
data storage, computing for data processing, algorithms and software for data analysis, portals 
and technical support for the accessibility and reusability of data services. Thus, data and 
technologies evolve together with the supporting data infrastructures. Take the Scientific Data 
Program of the Chinese Academy of Sciences (CAS SDP), for example (Figure 4) (Zhang et al. 
2021): initiated in the 1980s and sustained for over 30 years, the CAS SDP has established data 
infrastructures to support disciplinary research. The data infrastructures have been growing 
from early databases to the data grid, data engineering, data cloud, and an open data system of 
systems, as well as leading the exploration of co-building a Global Open Science Cloud (CODATA 
2021; CSTCloud 2021). The evolving construction of the supporting e-infrastructures reflects 
the iteration of data and technologies that has adapted to the dynamic research scenarios of 
different research periods.

Figure 3 Four essential 
components of data science.

Figure 4 Typical data science 
policies and practices from the 
CAS SDP perspective.
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Moreover, data science education includes popular colleague programs, such as the iSchool 
applied data science master program and the data science training for citizens, such as the 
CODATA-RDA summer school and online training on the MOOC, Coursera, and EdX platforms, 
etc. Building data capacities throughout different programs has enabled better use of data, 
technologies, and data infrastructures. In China, for example, the Ministry of Education issued 
the Action Plan for Promoting the Development of Big Data (2015), followed by a steadily 
increasing number of university data science majors and a boom in data-relevant careers 
nationwide. Data science also helps create new types of professionals, such as data scientists 
(Dhar 2013), data engineers, data architects, and others. Therefore, data education sustains 
data science careers and helps cultivate citizens with better literacy to surf the wave of the 
digital revolution.

Above all, these essential data science components work together, contributing to the scientific 
research, societal development, digital economy, and better alignment within and across 
communities, domains, and regions.

3. DATA SCIENCE CHALLENGES AND PRIORITIES
In addition to the remarkable contributions to the digital revolution, data science also raises 
grand challenges in social and cultural, epistemological, scientific and technical, economic, 
legal, and ethical dimensions.

First, several data factors contribute to the challenging barriers, such as the multiple sources, the 
enormous scale, the diversified formats, the intrinsic nature, the uncertain value behind them, 
and the way of communication. Social and cultural contexts complicate data interpretation 
(Shanks & Corbitt 1999), making data abuse a potential threat to data reuse. Furthermore, 
data address rights protection, such as privacy, security, ownership, and intellectual property 
(Taylor 2017; Calzada & Almirall 2020). Thus, necessary closeness and default openness should 
clarify their boundaries to explore the full potentials of open data. Moreover, nourished culture, 
evolving governing rules, and data ethics (Floridi & Taddeo 2016; Gundersen 2017; Vydra et 
al. 2021) should work together to bridge digital gaps, promote research integrity, and support 
future envisions vigorously.

Second, as the essential game-changers for science, promising and robust technologies support 
cutting-edge data exploration by combining certain data into tailored scenarios. For example, 
long-tailed value exploration for massive data, lack of data, and sensitive data coexist in 
scenarios. Thus, any data curation should be set in the lifelong data cycle to save chaos, such as 
real-time massive data integration in Earth Sciences for Sustainable Development Goals (SDGs) 
research (Guo et al. 2021). Moreover, epistemological thinking (Kempeneer 2021) should be 
involved in the technical design, pulling data results out of the black box of technologies. Other 
important concerns also include technology neutrality, algorithm ethics, legislation redesigns, 
and global alignments (George & Walsh 2022) to better serve the public interests, like in the 
case of ChatGPT (van Dis et al. 2023).

Third, sustained governance models with social, cultural, and  economic considerations are 
critical for successful data science, especially for data infrastructures. Infrastructures are 
comprehensive systems that combine data, technologies, hardware, software, and others 
(Mayernik et al. 2017) for service delivery. Potential players in a data infrastructure ecosystem 
may include the infrastructures (service providers), resource suppliers (both for data and 
technologies), users, and funding agencies. Therefore, data infrastructures rely on robust 
business models to balance all possible stakeholders’ interests and ensure data science 
components running systematically and healthily. Considering the ‘Matthew effect’ (Merton 
1968; Merton 1988; Bol, de Vaan & van de Rijt 2018), chances of future opportunities may 
be amplified by accumulative advantages, such as current construction scale, prestige, and 
popularity. Thus, vulnerabilities may lie in the future opportunities to raise funding as newly 
established infrastructures, to share data as sovereign resources suppliers, and to access 
data services as niche-demand users. Technical concerns may include exploring systematical 
design for flexible and extensible services, effective functionality deployment for efficient data 
curation, and environmentally friendly development.
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Fourth, data education (NASEM et al. 2018; Wise 2020) should build capacities for specialists 
and citizens. Data science overlaps with computer science and statistics and focuses on real-
world problem solving. Thus, data professionals’ challenges may include establishing proper 
social identity, connecting with other relevant societal roles, and mapping real problems 
into tailored curricula, such as ‘precision education and individualized learning’ (Luan et al. 
2020). Cultivating citizens may also be popular, such as coding for data cleaning, analysis, and 
visualization, but that is not enough. Data science education, both professional and amateur 
training, should aim bigger, covering the whole life cycle of data in an open-science manner to 
embrace inclusive and responsible data science in the future.

Specifically, no data challenges come alone, and no data science essentials can break the 
silos independently. Instead, data challenges require collaborative support from technologies. 
Moreover, infrastructures will facilitate data sharing and technology implementation. Educating 
data professionals and the social community will empower data fully by “leaving no one 
behind” (UN Sustainable Development Group 2022). Therefore, solutions should consider the 
four data science essentials together, not segregated ones.

4. FUTURE VISIONS AND NEXT STEPS
Challenges also bring opportunities. Considering data as the global public good (CODATA et al. 
2019), data science may assume many future responsibilities, with inevitable trends toward 
datafication, data technicity, infrastructuralism, literacy empowerment, and others. The 
following subsections elaborate on each of these issues.

From data to datafication (Mayer-Schönberger & Cukier 2013; Van Es & Schäfer 2017; Mejias 
& Couldry 2019), quantitated data activities prevail in the big data world. Datafication pulls 
data from traditional statistics to big data analytics with facts, knowledge, and wisdom. Deeply 
rooted in the digital revolution, datafication contributes to the booming digital economy while 
encountering societal and cultural conflicts. To better harness the power of datafication, we 
should embrace open science (UNESCO 2021) more than ever. A series of guidelines should 
be followed, such as the FAIR principles (Wilkinson et al. 2016), the CARE principles (Carroll 
et al. 2020), and the TRUST principles (Lin et al. 2020), as well as others. Open data involves 
sharing for reuse and closing for protection, commercial and noncommercial models, scientific 
and pragmatic explorations, and close connections among the research community, social 
enterprises, and citizens. To open or to close may not be contradictory, but there are inevitably 
frictions and gaps. For the sake of good science, rules should clarify data boundaries, especially 
highlighting ways for grey data reuse (Borgman 2018). Research integrity and data ethics 
are also necessary for responsible open science. For example, Indigenous data sovereignty 
(Carroll, Rodriguez-Lonebear & Martinez 2019), democratic accountability (Gurumurthy, Chami, 
& Bharthur 2016), and other moral aspects of data are to balance the interests of potential 
stakeholders for sustained lifelong data curation.

Furthermore, constitutive technicity (Gallope 2011; Ash 2012; Ducassé & Lee 2014; Wiktionary 
2022) dramatically tightens data and technologies. ‘Technicity’ depicts the prevalence 
of technology deployments in data management. ‘Constitutive’ emphasizes that these 
technologies transit from outsiders to those closely engaged with lifelong data management 
intrinsically. Data technicity fastens the pace of value extraction from data and even exceeds 
human visions in many cases (Silver et al. 2017). The evolving technical design should be 
interoperable across machines and inclusive to humans. Enhanced collaborative research 
models and international alignment are to follow, affirming the transparency, flexibility, 
robustness, and intelligibility in technical development to face the ever-growing data deluge 
locally and globally. And the FAIR use of technologies should follow the open science paradigm, 
such as the cases in tackling natural hazards, health crises, and climate change and achieving 
the UN SDGs.

Data infrastructuralism tends to merge data and technology into streaming and scalable 
services. ‘Infrastructuralism’ (Breu & Leo 2022; Brehm 2022), adopted here as a neutral concept, 
refers to the centrality and materiality of data infrastructures. Future data infrastructures 
will be incredibly important in integrating multiple-sourced data and complex technologies 
for user-friendly services. Furthermore, infrastructuralism highlights the predominant roles 
of data infrastructures in coordinating data science essentials. Guided by open science, data 
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infrastructuralism will overturn the traditional business models, and provide a reciprocal 
environment for research and innovation with everyone involved. To better serve as the engines 
of global research, future facilities should fit into the growing need for enhanced and open 
data infrastructures, assembling cutting-edge technologies and optimized data resources. 
Furthermore, these infrastructures should follow interest-balanced and cost-effective models to 
leverage the responsibilities and rights of all potential stakeholders. Future data infrastructures 
should also pinpoint collaboration, openness, interconnection, and inclusiveness to reshape 
trustworthy and reliable worldwide science and technology.

In addition, data education extends literacy empowerment to proliferate data science and 
cultivate the whole society. Skills training (such as knowledge of programming, algorithms, 
and systems) is useful to capture the exponentially increasing value of data. At the same time, 
data literacy (Wolff et al. 2016; Gummer & Mandinach 2015) may also consider epidemiology, 
policies, participants, impacts, and sustainability to serve particular training objectives. 
Possible courses should be diversified, covering data culture, rights, and ethics for decent data 
reuse; data epidemiology, critical thinking, and data skills for efficient data reuse; and data 
accountability, metrics, and data audits for reliable data reuse. Different training pieces should 
educate data professionals and citizens, thus establishing shared values on data science. Data  
education will also endure interactive processes to help everyone get ready for the changing 
world.

Meanwhile, besides the four essentials, future data science also calls for a full data picture 
at the macro level. Accordingly, the data ecosystem should be established based on mutual 
trust. Under the umbrella of open science, future data science will work efficiently and 
systematically as an ecosystem, with data, technology, education, and others integrated 
through infrastructures. Thus, key actions may include establishing and maintaining an open 
science environment for the data ecosystem, involving potential stakeholders under sound 
management strategies (i.e., interest-balanced models) and sustained models (i.e., fair and 
efficient reward systems), opening dialogues between communities, and collaborating on open 
science and data initiatives. In addition, future data ecosystems should encourage the data-
sharing culture and enhance the global alignment between physical and virtual facilities to 
support the data flow of enormous research scopes across domains and regions. Surely, based 
on a harmonized data ecosystem, data science and the essentials will help us prepare deeply 
and widely for the adventurous data journey forward.

5. CONCLUSIONS
The recent two decades of data science have been long and exciting, full of difficulties and 
boundless potential. Looking back into the human history of thousands of years, two decades 
of data science is extremely short. However, it is of great significance. The transit to the fourth 
paradigm of scientific research, the global wave of the digital economy accompanied by the 
rapid rise of many developing economies, the dramatic development of the global village, 
and the polarization of digital integration and the digital divide are just a few examples. 
Nevertheless, the great charm of data science lies in the science and permeates the social lives 
of everyone every day. The power to master the double-edged data sword will advance data 
science explosively.

As this paper elaborates, data, technology, infrastructure, and education contribute jointly to the 
four-wheeled wagon of data science. The four essentials will together effectively consolidate 
and enhance the construction and development of future data science. Meanwhile, the call 
for open science provides rich soil for the healthy development of the whole data ecosystem. 
Therefore, looking into the future, we will embrace a better world driven by open data resources, 
responsible technologies, open infrastructures, and inclusive data education.

DATA ACCESSIBILITY STATEMENT
Data are captured from the Web of Science with selected articles entitled ‘data science.’ There 
are no strict constraints on publication times to trace the theme evenly. As a result, 4,131 
pieces of records are returned, including 88 records earlier than 2000. Among them, 3,490 
non-null-value publication abstracts are taken as valid textual results for word frequency 
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analysis and word cloud visualization by Python. Data are available at www.webofscience.com 
[Last accessed 24 February 2023].Refined data and python code are available at: https://doi.
org/10.57760/sciencedb.07847.
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