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Abstract
Academic inventors bridge science and technology, and have attracted increasing atten-
tion. However, little is known about whether they have more diverse research interests than 
researchers with a single role, and whether their important position for science–technology 
interactions correlates with their diverse interests. For this purpose, we describe a rule-
based approach for matching and identifying academic inventors, and an author interest 
discovery model with credit allocation schemes is utilized to measure the diversity of each 
researcher’s interests. Finally, extensive empirical results on the DrugBank dataset pro-
vide several valuable insights. Contrary to our intuitive expectation, the research interests 
of academic inventors are the least diverse, while those of authors are the most. In addi-
tion, the important position of the researchers has a certain relation with the diversity of 
research interests. More specifically, the degree of centrality has a significant positive cor-
relation with the diversity of interests, and the constraint presents a significant negative 
correlation. A significant weaker negative correlation can also be observed between the 
diversity of research interests of academic inventors and their closeness centrality. The nor-
malized betweenness centrality seems be independent from interest diversity. These con-
clusions help understand the mechanisms of the important position of academic inventors 
for science–technology interactions, from the perspective of research interests.
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Introduction

Science–technology linkages have received considerable attention over recent decades, due 
to increasing recognition of the fundamental role of knowledge and innovation in fostering 
economic growth, technological performance, and international competitiveness (Arrow, 
1962; Nelson, 1959; Van Looy et  al., 2006). In the literature, scientific publications and 
patents usually act as the respective proxies of scientific research and technical develop-
ment (Dubaric et al., 2011; Xu et al., 2012, 2019, 2021c). To understand the knowledge 
association and interaction mechanism between science and technology, the following 
three perspectives have been exploited: (1) mutual citations between scholarly articles 
and patents (Glänzel & Meyer, 2003; Huang et al., 2015; Narin & Noma, 1985); (2) lexi-
cal- and topic-based linkages between these two resources (Bassecouolard & Zitt, 2004; 
Shibata et al., 2011; Xu et al., 2012, 2019, 2021c); and (3) academic inventors bridging 
science and technology (Guan & Wang, 2010; Li et al., 2020; Meyer, 2006; Noyons et al., 
1994; Zhang et al., 2019).

Historically, Narin and Noma (1985) pioneered the linkages between scientific publi-
cations and patents by analyzing nonpatent references (NPRs) on the front pages of pat-
ent documents. Meyer (2000) also did a lot of work on the basis of NPRs, most of which 
focused on the field of nanotechnology. Apart from citations of patents to scholarly arti-
cles, Glänzel and Meyer (2003) explored the citations of patents in scientific publications, 
and Huang et al. (2015) exploited two-way citations between papers and patents. However, 
only about 30–40% of patent documents contain NPRs (Callaert et al., 2006), and chem-
istry-related research dominates the citations from academic articles to patents (Glänzel & 
Meyer, 2003).

As for lexical- and topic-based linkages, a popular pipeline research framework (Ba & 
Liang, 2021; Shibata et al., 2010; Xu et al., 2012, 2019, 2020) is to extract respective the-
matic structures from scholarly articles and patents, to calculate the similarities between 
them, and then to construct topic linkages. However, the performance of such a framework 
is inadequate (Shibata et al., 2010; Xu et al., 2012), since noncomparable themes with dif-
ferent distributions are generated from scientific publications and patents (Xu et al., 2019). 
This makes it difficult to link the uncovered themes only according to calculated similari-
ties. Although a joint research framework has been developed by Xu et al. (2021c) on the 
basis of topic models for multiple collections of documents, the lexical- and topic-based 
linkages often require advanced text mining and machine learning techniques.

Academic inventors are known to author scientific publications and patent inventions 
simultaneously. In other words, these researchers have two roles: authorship and inventor-
ship. The relationship between their publishing and patenting activities has been investi-
gated in the literature, and both activities are found to be rather complementary than sub-
stitutional (Azoulay et al., 2009; Stephan et al., 2007; Thursby et al., 2007). Recent studies 
have even observed a U-inverted shape pattern (Crespi et al., 2011; Kang et al., 2020), so 
that beyond a certain level of commercial engagement, patenting starts being a substitute 
for publishing. Compared with their noninventing/nonpublishing peers, academic inventors 
tend to outperform in terms of publication/patent counts, citation frequency, and h-index 
(Guan & Wang, 2010; Meyer, 2006; Van Looy et al., 2006).

With the development of social network theories and methods, several studies have 
mapped researchers to the interconnection of nodes in the network by their coauthoring 
and coinventing behaviors. The node position importance (Balconi et al., 2004; Zamzami 
et al., 2015; Zhang et al., 2019) and key role as gatekeepers (Breschi & Catalini, 2010; Li 
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et al., 2020; Lissoni, 2010) of academic inventors in scientific and technological (S and T) 
networks have also been investigated. However, little is still unknown on the characteristics 
of academic inventors, especially their research interests, and the relation between their 
interests and their position in S&T networks. For this purpose, we have identified the fol-
lowing open questions:

• Do academic inventors have more diverse research interests than those with a single 
role?

• Does the position of academic inventors in S&T networks correlate with their diverse 
research interests?

This article is arranged as follows: after the literature review is briefly introduced, our 
research framework and methodology are put forward. Then, several core modules, such 
as the identification of academic inventors, interest discovery models, and diversity indi-
cators, are described in more detail. Finally, extensive experiments are conducted on the 
DrugBank dataset to obtain several valuable insights about diversity of research interests 
and the relation between interest diversity and position characteristics.

Related work

Before delving into more specifies, the literature pertinent to academic inventors, interest 
discovery models, and concepts and measurements of diversity is discussed.

Academic inventors

The linkages between science and technology are attracting increasing attention. To exploit 
these interactions, one research stream of the science–technology linkages mainly focuses 
on researchers active in both academia and industry, and a number of different terminolo-
gies have been used, such as “inventor–author” (Boyack & Klavans, 2008; Noyons et al., 
1994; Zhang et al., 2019), “author–inventor” (Wang & Guan, 2011), “patenting–publishing 
scientist” (Breschi & Catalini, 2010), and “academic inventor” (Balconi et al., 2004; Forti 
et  al., 2013; Lissoni, 2010). Here, academic inventor is used to collectively refer to this 
type of researchers.

For identifying this kind of researchers, the following strategies have been utilized by 
previous studies: (1) Czarnitzki et al. (2016) observed that the title “Prof. Dr.” was usually 
taken as a name affix in German, so they searched this title in the inventor field; (2) when a 
list of staff in universities and research institutes is available, each individual in this list can 
be linked with the resulting inventors in patent documents (Azoulay et al., 2009; Carayol 
& Carpentier, 2021; Ejermo & Toivanen, 2018; Hvide & Jones, 2018); (3) the authors of 
scientific publications can be directly linked with the inventors in patent documents (Boy-
ack & Klavans, 2008; Breschi & Catalini, 2010; Forti et al., 2013; Lissoni, 2010; Maraut 
& Martínez, 2014; Noyons et  al., 1994; Wang & Guan, 2011; Zhang et  al., 2019). The 
first two strategies mainly focus on the employees with patenting activity in universities 
and institutes. The latter reduces this limitation, which enables it to encompass professors, 
researchers, and engineers with both publishing and patenting activities. Strictly speaking, 
this study follows the definition in the latter, but our academic inventors (see Dataset) all 
happen to affiliate with at least one academic institution.
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Whichever strategy is adopted for academic inventors, the names of authors and inven-
tors first need to be disambiguated. Many different solutions have been put forth in the 
literature for author name ambiguity (Caron & van Eck, 2014; Han et al., 2017; Kim, 2018; 
Torvik & Smalheiser, 2009; Xu et  al., 2021b). Most of them follow a two-step process: 
feature extraction and clustering/classifying. Similarly, inventor name disambiguation is 
an important issue for patent data. Correspondingly, many approaches have been proposed 
to disambiguate inventor names (Li et al., 2014; Pezzoni et al., 2014; Raffo & Lhuillery, 
2009; Yang et al., 2017). Different from disambiguating author names, most of these are 
three-step processes: parsing, matching, and filtering, such as the Massacrator© algorithm 
(Lissoni et al., 2006; Pezzoni et al., 2014).

After disambiguating the authors and inventors, an automatic method can be used to 
match and identify the academic inventors by text content similarity (Cassiman et  al., 
2007) or string matching (Boyack & Klavans, 2008). Another common way is to compare 
the list of disambiguated authors and inventors in a semi-automatic way (Breschi & Cata-
lini, 2010; Li et  al., 2020; Lissoni, 2010; Wang & Guan, 2011). More specifically, after 
given and family names of each author and inventor are normalized, desktop  research is 
conducted, including manually checking and leveraging extra information from other data-
bases, the internet, or questionnaires. Although this kind of conservative approach is time 
consuming, the reliability of linkage results is convincing.

Once the identification of the academic inventors has been made, many studies have 
exploited whether there is a balance between patenting and publishing activities. Several 
empirical investigations found increased patenting activities may undermine the perfor-
mance of basic research (Agrawal & Henderson, 2002; Blumenthal et al., 1997; Fabrizio 
& Di Minin, 2008). Another stream of empirical investigations showed that the patenting 
activities were positively related to the number and quality of publications (Azoulay et al., 
2007; Grimm & Jaenicke, 2015; Van Looy et  al., 2006). Recent studies suggested that 
there was a curvilinear (inverted-U) correlation between patenting and publishing activities 
(Crespi et al., 2011; Lee, 2019; Kang et al., 2020). In more detail, an increase in patenting 
activity initially promotes the number and quality of publications up to a peak, and after 
this peak, it lowers the number and quality of publications.

Some studies have also focused on the special role of academic inventors, who bridge 
science and technology, and the network structure and position characteristics have been 
widely measured. In the coauthorship and coinventorship network, academic inventors 
have more central and better connected positions (Balconi et al., 2004; Forti et al., 2013; 
Zamzami & Schiffauerova, 2015). It is highly likely that these significant network charac-
teristics should be attributed to their role as the gatekeepers between science and technol-
ogy (Breschi & Catalini, 2010; Lissoni, 2010). Zhang et  al. (2019) and Li et  al. (2020) 
found that academic inventors promote the knowledge transfer between science and tech-
nology. In addition, academic inventors also play an important role in entrepreneurial firm 
development (Murray, 2004), breakthrough scientific research (Winnink & Tijssen, 2014), 
and technological innovation processes (Quatraro & Scandura, 2019).

Interest discovery models

Every researcher has their own research interests, which can be readily obtained from the 
curriculum vitae (CV) of the focal researcher. However, since these may not be regularly 
updated and many CVs are not available from the internet, several data-driven topic mod-
els for discovering interests from their research outputs are proposed in the literature.



Scientometrics 

1 3

One popular model is the Author–Topic (AT) model (Rosen-Zvi et  al., 2010), which 
integrates author information into the standard Latent Dirichlet Allocation (LDA) model 
(Blei et  al., 2003). Several variants have since been proposed, such as the Author–Per-
sona–Topic (APT) model (Mimno & McCallum, 2007), the Author–Interest–Topic (AIT) 
model (Kawamae, 2010), and the Author–Topic over Time (AToT) model (Shi et al., 2013; 
Xu et  al., 2014a, b), and so on. In these models, each research output is modeled as if 
it is generated by a two-stage stochastic process. A researcher’s interests are represented 
by a multinomial distribution over topics, and each topic is represented as a multinomial 
distribution over words. The probability distribution over topics in a multi-author paper 
or multi-inventor patent is a mixture of the distributions associated with their authors or 
inventors.

All these models are actually members of generative probabilistic topic models for 
uncovering main themes from a collection of documents (Blei, 2012). Hence, each model 
can be viewed as a generative process. For example, in the AT model (Rosen-Zvi et al., 
2010), to generate each word in a document, a researcher index is uniformly drawn from its 
author/inventor list. Then, a topic index is drawn from their multinomial distribution over 
topics (viz. research interests). Finally, a word token is drawn from the multinomial distri-
bution of that topic.

From the generative process above, it is not difficult to see that these models share the 
following same assumption: the author/inventor list of a document is uniformly distributed. 
Currently, the knowledge for addressing these issues is more diverse and specialized (Lea-
hey, 2016), and increasing cooperation in science and technology is a general trend (Adams 
et al., 2005; Wuchty et al., 2007). It is obviously inappropriate to implicitly assume that 
each coauthor/coinventor contributes equally to a target document. Therefore, the  ATcredit 
model (Xu et al., 2021a, 2022), which powers the AT model’s abilities with the credit allo-
cation schema, is adopted in this work.

Diversity: concept and measurement

In real-world scenarios, many instances of diversity can be observed, such as diverse eco-
logical species, diverse crystal structures, and diverse disciplines in the science and tech-
nology field. Stirling (2007) argued that diversity is a characteristic of any system whose 
elements could be apportioned into categories. Further, three basic properties, “variety,” 
“balance,” and “disparity” were proposed (2007), each of which is a necessary and insuf-
ficient property for diversity.

• Variety is the number of categories to which the elements in a focal system are 
assigned. It can be quantified as an integer (enumerating categories). When all else is 
equal, the greater the variety, the greater the diversity.

• Balance is a function of the pattern of assignment of elements across categories. It can 
be quantified as a vector of fractions summing to unity (apportioning elements). When 
all else is equal, the more even the balance, the greater the diversity.

• Disparity is the degree to which categories in a focal system are different from each 
other. It can be quantified as a matrix of distances (differentiating elements). When all 
else is equal, the more disparate the disparity, the greater the diversity.

To measure the diversity of an interested system, Rao (1982) and Stirling (2007) pre-
sented a general quantitative nonparametric heuristic indicator, Rao-Stirling. To the best 
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of our knowledge, this was the first systematic and transparent approach in the treatment 
of scientific and technological diversity in a broad range of fields. Since then, many alter-
natives have been proposed in the literature. Generally speaking, these indicators can be 
divided into three groups according to the basic properties above: (a) measures sensitive 
to balance, (b) measures sensitive to balance and disparity, and (c) measures sensitive to 
variety, balance, and disparity.

The measures sensitive to balance mainly focus on the distribution of different catego-
ries of elements in the system, such as Shannon entropy (Shannon, 1950) and Simpson 
diversity (Simpson, 1949). This type of indicator makes the following implicit assump-
tion: the categories of system elements are completely different from each other. Obvi-
ously, this is not in line with many real-world scenarios. The measures sensitive to balance 
and disparity consider the balance and disparity of system elements at the same time. Two 
instances of this type of measures are the Rao–Stirling (Rao, 1982; Stirling, 2007) and 2D

S
 

(Zhang et al., 2016), which are closely related. The measures sensitive to variety, balance, 
and disparity, as their names imply, simultaneously operationalize three basic properties. 
The DIV (Leydesdorff et al., 2019) is one such indicator, and the superiority of the DIV 
indicator has been validated by Bu et al. (2020). Hence, the Rao–Stirling and DIV are both 
utilized here to calculate the diversity of interests of academic inventors and their peers.

Research framework and methodology

To answer the research questions in the Introduction, our research framework consists of 
three phases, as shown in Fig. 1. After disambiguating the names of authors and inven-
tors, and linking and identifying the academic inventors in the first phase, the second phase 
measures the node characteristics of authors, inventors, and academic inventors with the 
help of a social network analysis. In this phase, the research interests of each researcher 
are also discovered by the  ATcredit model (Xu et al., 2021a, 2022), and then the diversity of 
each researcher’s interests is measured by the Rao–Stirling and DIV indicators. Finally, we 
analyze the correlation between the node characteristics and the interest diversity in the last 
phase. In the following subsections, several core modules will be described in more detail.

Fig. 1  Research framework for measuring diversity of interests of the academic inventors
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Identifying academic inventors

To identify academic inventors, the names of authors and inventors must first be disambig-
uated. To the best of our knowledge, the authors in several bibliographic databases (such as 
Web of Science and Scopus) are neigher fully unambiguously identified, nor are the inven-
tors in the intellectual property databases [such as United States Patent and Trademark 
Office (USPTO) and European Patent Office (EPO)]. Hence, a revised rule-based scoring 
and clustering method (Xu et al., 2021b) is utilized here for disambiguating the authors. 
As for the inventors, we adopted a semi-automatic method. More specifically, after the first 
and last names of each inventor were split and checked, the inventors were disambiguated 
by several manually curated rules on the basis of the applicants, co-inventors, address, 
theme of the resulting patent, and so on.

To identify academic inventors, we first excluded the nonindividual entities in the inven-
tor field, such as research team (laboratory/group/international organizations/institute), 
company (Co./Corp./LLC/PLC/AG/GmbH), university (Univ.), hospital, etc. Then, we 
matched the last name and initials of each pair of author and inventor. This step can group 
the paired researchers as follows: (a) inconsistent pairs are filtered out, such as pairs 1 and 
2 in Table 1b, while the consistent pairs are linked directly to an academic inventor, such 
as pair 3 in Table 1c. Ambiguous pairs, such as pairs 4, 5, and 6 in Table 1, are manually 
checked for whether the following factors overlap, including the authors’ affiliation and 
assignee, coauthors and coinventors, themes from the resulting publication and patent, and 
so on. For example, pairs 4 and 5 in Table 1 share the same research institutions and coau-
thor information, so we identify them as academic inventors. No evidence can be found to 
support pair 6 in Table 1 as the same individual, so they cannot be linked.

Interest discovery model

To discover the research interests of researchers objectively and accurately, this work 
adopts the  ATcredit model (Xu et al., 2021a, 2022) using the author’s credit allocation. This 
model is a generalization of the AT model by introducing a set of hidden random variables 

Table 1  Examples of whether 
an author and an inventor should 
be linked

For each pair, the first line is the author from a paper, and the second 
line is the inventor from a patent

First name Last name Linkage

1 Alon Harris ✗
Alan Harris

2 A S Douglas ✗
Alan W Douglas

3 Kenji Ohmori ✓
Kenji Ohmori

4 K Seibert ✓
Karen Seibert

5 Derek Norris ✓
Derek J Norris

6 K Kimura ✓
K Kimura
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{�⃗cm} . When the indiscriminate counting scheme is adopted, it degenerates into the AT 
model (Rosen-Zvi et  al., 2010). Though many credit allocation schemes have been put 
forward in the literature, this study prefers to use the sequence-determines-credit (SDC) 
schema (Tscharntke et  al., 2007) because (a) the SDC schema takes “hyper-authorship” 
(more than ten coauthors or coinventors) into consideration and (b) this scheme effectively 
combines the advantages of the harmonic counting scheme (Hagen, 2013) and indiscrimi-
nate counting scheme.

The graphical model representation of the  ATcredit model is illustrated in Fig. 2. Here, K , 
M and A represent the number of topics, documents, and unique authors/inventors, respec-
tively. ��⃗𝜑k and �⃗𝜗a denote respective multinomial distribution of words specific to the topic 
k and of topics specific to the author/inventor a . �⃗𝛼 , and �⃗𝛽 are the Dirichlet hyperparameter. 
The byline information of the document m is encoded in the variable �⃗am , and �⃗cm assigns the 
authorship credit to each coauthor/coinventor in the document m according to a specified 
schema with the parameter � . In addition, zm,n and xm,n are the topic and author/inventor 
assignment associated with the n-th word token wm,n in the document m.

The model can also be described from the viewpoint of generative process as follows. 
After ��⃗𝜑k ( k ∈ [1,K] ) and �⃗𝜗a ( a ∈ [1,A] ) are drawn respectively from the Dirichlet ( �⃗𝛽 ) and 
Dirichlet ( �⃗𝛼 ), the authorship credits are calculated for each document m ∈ [1,M] by fol-
lowing a designated authorship credit allocation schema with a parameter � . Finally, for 
each document m ∈ [1,M] , and each word token n ∈

[
1,Nm

]
 in the document m , xm,n is 

drawn from �⃗cm , zm,n from �⃗𝜗xm,n , and then wm,n from ��⃗𝜑zm,n
 . As for many Bayesian models, 

posterior inference cannot be done exactly in this model. The collapsed Gibbs sampling 
algorithm was originally utilized in Xu et al. (2021a) and Xu et al. (2022) to approximate 
the posterior of the  ATcredit model. Please refer to Xu et al. (2021a) and Xu et al. (2022) 
for more detail. In this work, symmetric Dirichlet priors � and � are set at 0.5 and 0.01, 
respectively. The collapsed Gibbs sampling is run for 2000 iterations, including 500 for the 
burn-in period.

Fig. 2  Graphical representation of the  ATcredit model
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Diversity indicators

Since the Rao–Stirling (Rao, 1982; Stirling, 2007) and DIV  (Leydesdorff et al., 2019) can 
simultaneously consider at least two basic properties in a system, these measures were 
adopted to measure the diversity of interests of each researcher in this work. A larger value 
of these two measures indicates more diverse interests. They can be defined formally as 
follows:

Here, i ∈ [1,K] and j ∈ [1,K] represent any two different topics. �a,i and �a,j are the 
probability of the topic i and j specific to the author/inventor a , respectively. na,k denotes 
the number of themes that the author/inventor a prefers. (1 − Gini) indicates the balance of 
the diversity, and dij is the degree of difference (i.e., disparity of the diversity) between the 
theme i and j . In our work, the disparity dij between the theme i and j is operationalized 
with symmetrized Kullback–Leibler (KL) divergence, Jensen–Shannon (JS) divergence, 
and cosine distance. See Table 2 for more detail on how to operationalize the disparity.

Empirical results and discussions

Dataset

It is well known that the research and development (R&D) procedure of a novel drug often 
involves rich scientific knowledge, intellectual property protection, and reliable clinical tri-
als. Thus, science–technology interactions in the pharmaceutical field are prominent (Glän-
zel & Meyer, 2003). Hence, this work used the DrugBank1 database (version: 1 November 
2019) as our dataset, which is the world’s largest online database of drug and drug-target 
information. The DrugBank database is a free-to-access resource for academic users. Each 

(1)RS =
∑

i,j(i≠j)

�a,i × �a,j × dij

(2)DIV =
(na,k

K

)
× (1 − Gini) ×

na,k∑

i,j(i≠j)

dij

na,k
(
na,k − 1

)

Table 2  Several formulas for operationalizing the disparity

Disparity Formula

Symmetrized KL divergence symKL
(
��⃗𝜑i ∥ ��⃗𝜑j

)
=

1

2

[
KL

(
��⃗𝜑i ∥ ��⃗𝜑j

)
+ KL

(
��⃗𝜑j ∥ ��⃗𝜑i

)]

where KL
�
��⃗𝜑i ∥ ��⃗𝜑j

�
=
∑

v𝜑i,vlog
𝜑i,v

𝜑j,v

JS divergence JS
(
��⃗𝜑i, ��⃗𝜑j

)
=

1

2

[
KL

(
��⃗𝜑i ∥ ��⃗𝜑

)
+ KL

(
��⃗𝜑j ∥ ��⃗𝜑

)]

where ��⃗𝜑 =
1

2

(
��⃗𝜑i + ��⃗𝜑j

)

Cosine distance
1 − cos

�
��⃗𝜑i, ��⃗𝜑j

�
= 1 −

�⃗𝜑i∙�⃗𝜑j

‖�⃗𝜑i‖×‖�⃗𝜑j‖

1 https:// go. drugb ank. com/.

https://go.drugbank.com/
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drug in this database may be issued multiple patents and has an attached list of scholarly 
articles, which provides us an opportunity for further science–technology linkage research.

The DrugBank dataset was downloaded on 1 November 2019 in XML, and parsed to 
the MySQL database. There are 13,339 unique drugs, 10,355 unique scientific publica-
tions, and 5,932 granted patents in this dataset. Although the drugs can act as a bridge 
to link scientific publications and patents, not all drugs have explicitly attached scientific 
or technological knowledge. In this dataset, 2768 drugs have linked with 10,836 scientific 
publications, 1026 drugs linked with 7880 granted patents, and 804 drugs with 3713 schol-
arly articles and 6535 granted patents simultaneously. Note that this study does not merge 
the closely related patents derived from the same core technology but issued by different 
authorities into a patent family.

Figure 3 illustrates the linkage relations between drugs and scientific publications (a), 
and drugs and patents (b). More specifically, the number of unique articles and patents 
(y axis) that have linked to k drugs are plotted as a function of k [x-axis]. A power-law 
like distribution of the number of scholarly articles and patents can be noted from Fig. 4. 
That is to say, the vast majority of drugs are linked to few articles or patents, but several 
drugs are associated with a large of articles or patents. For example, Imidacloprid, a neo-
nicotinoid insecticide, links up to 71 scientific publications, and Metformin, an oral blood 
glucose-lowering drug, first approved in Canada in 1972 followed by 1995 in the USA, 
associates with 83 patents. The number of unique academic articles and patent documents 
attached to drugs are 10,257 and 5930, respectively. 

Fig. 3  The number of scientific 
publications a and patents b (y 
axis) linked to drugs (x axis). 
Both axes are shown on a log 
scale. The power-law-like distri-
bution is evident from the near 
linear pattern (in log space)
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Figure 4 intuitively illustrates the procedure for determining the academic inventors in 
this study. This just considers scientific publications and patents directly attached to each 
drug, and the academic inventors are limited to the intersection between the authors in sci-
entific publications and the inventors in patents. It is worth mentioning that the authors in 
scientific publications could be patenting beyond the DrugBank dataset, and the inventors 
in patents could be publishing beyond this dataset. This study does not take these situations 
into consideration.2 Hence, the number of academic inventors in this study may be under-
estimated, and the results from this study should be interpreted with some caution.

Given that the DrugBank dataset only records the patent numbers and PubMed Unique 
Identifier (PMIDs), we further collected the title, abstract, inventor and author list, and other 
related information for each granted patent and scientific publication from the EPO database 
with OPS API3 and PubMed database with E-Fetch API.4 To identify academic inventors, the 
name of each author and inventor was disambiguated with a revised rule-based scoring and 
clustering method (Xu et al., 2021b) and checked manually. After this operation, we obtained 
43,087 unique authors and 8738 unique inventors. Then, by following the procedure in Iden-
tifying academic inventors, we finally obtained 805 unique academic inventors. That is, aca-
demic inventors account for 1.9% and 9.2% of authors and inventors, respectively.

These figures are lower than those observed in previous studies, such as Breschi and 
Catalini (2010) and Carayol and Carpentier (2021). Since this study does not consider the 
scholarly articles and patents beyond the DrugBank dataset, it may result in an underesti-
mation of academic inventors. In addition, the number of authors on a scientific publication 
is frequently higher than that of inventors listed in a patent (Breschi & Catalini, 2010; Lis-
soni & Montobbio, 2008), so the proportion of academic inventors among authors is lower 
than among inventors. This point can be validated from the distribution of the number of 
documents with the number of authors and inventors in Fig.  5. The average number of 
coauthors per article (4.93) is larger than that of coinventors per patent (3.87).

Fig. 4  Procedure of how to deter-
mine the academic inventors

2 These situations have not not considered in this study because (1) as mentioned in Identifying academic 
inventors, the authors in several bibliographic databases and the inventors in the intellectual property data-
bases are not disambiguated at all. This makes it these situations difficult to overcome when only using the 
search interface provided by these databases, and (2) to estimate the number of academic inventors beyond 
the DrugBank dataset, this study randomly draws 1500 solely authors and 1000 solely inventors, and then 
manually checks the retrieved patents and publications from the EPO and PubMed databases, respectively. 
Only one researcher (Anhalt, Grant J.) was identified as an academic inventor. That is to say, the rate of 
academic inventors beyond the DrugBank dataset is about 0.04%. Therefore, we argue that classification 
of individuals into three groups (academic inventors, solely authors, solely inventors) should not affect the 
main conclusions regarding the topic interests of each group in this study.
3 http:// ops. epo. org/.
4 https:// www. ncbi. nlm. nih. gov/ books/ NBK25 499/# chapt er4. EFetch.

http://ops.epo.org/
https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.EFetch


 Scientometrics

1 3

Intuitively, the incentive and funding systems in different countries may affect the pro-
pensity of each individual to either publish or patent, or both. Hence, this study further 
collected the country information of each author and inventor. As for the authors affiliated 
with multiple countries, we only kept the country of the first affiliation of each author in 
the byline information of the resulting scientific publications. In the end, the authors in 
our DrugBank dataset come from 132 countries, and the inventors from 35 countries. The 
authors and inventors in the USA (63.31% versus 55.30%) dominate, followed by the UK 
(6.64% versus 4.99%), Japan (5.55% versus 13.03%), and Germany (4.54% versus 8.15%).

The pre-processing steps in this study are very similar to those in Xu et  al. (2021b, 
2021c). The sentences in the titles and abstracts were detected with geniass (Sætre et al., 
2007), and then the split sentences were tokenized and lemmatized with geniatagger (Tsu-
ruoka et al., 2005). To filter stopwords, the English stopword list from Natural Language 
Toolkit (NLTK) was used to filter stopwords and all numbers were replaced with a special 
word NUMBER. To reduce the interference of unrelated information, copyright informa-
tion was removed with human-curated rules based on regular expressions.

Descriptive statistics

To make the comparison of the three types of researchers fair, we kept scientific publica-
tions and patents with at less one academic inventor for further analysis. That is to say, only 

Fig. 5  The distribution of the 
number of scientific publications 
with the number of authors a and 
the number of patents with the 
number of inventors b 
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academic inventors, and their coauthors and coinventors were included in our final dataset. 
In the end, this dataset included 603 scientific publications and 1285 patent documents, 
involving 805 academic inventors, 4088 solely publishing peers and 1803 solely patenting 
peers. Hereinafter, for convenience, the solely publishing peers and solely patenting ones 
are specifically referred to as researchers with a single role.

Among the authors, 16.45% of them also applied for patents, and among the inventors, 
30.87% of them also published academic articles. This is similar to observations in the 
fields of nanoscience and fuel cells (Guan & Wang, 2010; Klitkou et  al., 2007; Meyer, 
2006). Then, we compared the publishing performance of academic inventors with solely 
publishing peers in terms of the number of articles per author, and their patenting perfor-
mance with solely patenting peers in terms of the number of patents per inventor. As a 
whole, most academic inventors are highly productive researchers. In more detail, the aca-
demic inventors are superior to their solely publishing peers (1.42 > 1.10) and solely pat-
enting peers (3.11 > 2.44). This is consistent with the findings of Guan and Wang (2010), 
but is different from those of Meyer (2006).

In our dataset, 521 (64.72%) academic inventors participated in the basic and applied 
research of drugs at the same time. Surprisingly, 24 academic inventors contributed to suc-
cessful delivery of Ombitasvir, an antiviral medication used as part of combination therapy 
to treat chronic hepatitis C. Furthermore, they are more inclined to apply for patents than to 
publish academic papers. The number of articles per author and that of patents per inventor 
are 1.43 and 3.47, respectively. For example, Soni, Paresh patented 23 inventions about the 
methods of treating and/or preventing cardiovascular-related disease, and published three 
articles on the topics of pharmacokinetics and/or clinical application of icosapent ethyl for 
the treatment of hypertriglyceridemia, which is an important risk factor for cardiovascular-
related diseases.

Fig. 6  The country distribution of three types of researchers
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Further, Fig. 6 illustrates the country distribution of academic inventors, solely publish-
ing peers, and solely patenting peers. Researchers from the USA dominate, followed by 
Japan, the UK, and Germany. On closer examination, three interesting phenomena can be 
observed: (1) researchers from Japan and Germany tend to patent rather than publish; (2) 
researchers from USA and the UK are more inclined to publish articles; and (3) in Italy 
and Sweden, no significant differences between publishing and patenting were observed. In 
our opinion, these phenomena may be related to the incentive and funding systems of each 
country.

Network size and node characteristics

For an overall intuitive understanding of the three types of researchers, we constructed 
coauthorship, coinventorship, and hybrid networks. Several statistics are reported in 
Table 3. The number of components and isolated nodes in the hybrid network are less than 
the sum of those in other two networks. The number of nodes in the giant component of 
the hybrid network is much more than that in the giant component of the coauthorship or 
coinventorship network. This shows that the academic inventors can effectively bridge sci-
ence and technology and connect more authors and inventors with each other, as shown in 
Fig. 7.

Here, four indicators (“degree centrality,” “normalized betweenness centrality,” “close-
ness centrality,” and “constraint”) in Table 4 are adopted to measure the importance and 
influence of the resulting researchers in the hybrid network, as presented in Table  5. A 
higher degree of centrality means that the resulting researcher cooperated with more 
researchers. If a researcher can bridge more pairs of researchers through the shortest paths, 
which do not have direct connectivity between them, their normalized betweenness central-
ity will assume a higher value. Similarly, in a network, if a researcher occupies the more 
central position with the shortest average distance to other researchers, they will have a 
higher closeness centrality value. A lower value of constraint implies that the correspond-
ing researcher occupies a less constrained position, thereby brokering more extensively 
in the network. Table  5 shows that the academic inventors are more sociable, more “in 
between,” more centrality positioned, and more likely to be structural whole than their 
peers, which is in line with the observation of Breschi and Catalini (2010).

Table 3  Statistics for coauthorship, coinventorship, and hybrid networks

Coauthorship Coinventorship Hybrid

Number of nodes 4893 2608 6696
Number of edges 38,282 10,305 47,536
Number of components 277 337 207
Number of isolates 13 22 0
Nodes in the giant (% of all nodes) 411 (8.40%) 128 (4.91%) 1784 (26.64%)
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Research interest discovery

In this subsection, we first identify the number of interest topics, and then answer the ques-
tion: do academic inventors have more diverse research interests than those with a single 
role?

Fig. 7  The giant component of coauthorship a, coinventorship b and hybrid c network. The red circle nodes 
denote solely publishing authors, blue diamond nodes represent the solely patenting inventors, and yellow 
triangle nodes are academic inventors. The nodes are sized with their degrees, and the edges are thickened 
by cooperation strength of the resulting researchers
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Number of topics

To identify the proper number of research interest topics, the perplexity is calculated for 
a different number of topics K . As a standard measure for model selection, this index is 
defined as the exponential of the negative normalized predictive likelihood of the word 
observations under the trained model M [Equations (3 and 4)], and a lower value on the 
test corpus indicates a better generalization performance.

For the  ATcredit model, the likelihood of a document of the test corpus Pr
(
��⃗�wm,∙| �⃗�am,M

)
 

can be directly expressed as a function of the multinomial parameters (Interest discovery 
model) as follows:

(3)Pr
�
��⃗�w� �⃗�a,M

�
= exp −

∑M

m=1
logPr

�
��⃗�wm,∙� �⃗�am,M

�

∑M

m=1
Nm

Table 5  Node characteristics of solely publishing authors, solely patenting inventors, and academic inven-
tors

The table reports average and median (in parentheses) of each centrality indicator. All values have been 
increased 100 times
Bold indicates the best results corresponding to each indicator

Authors Inventors Academic inventors

Degree centrality 0.2313 (0.1792) 0.1217 (0.0896) 0.3171 (0.2539)
Normalized betweenness 

centrality
0.0054 (0.0000) 0.0056 (0.0000) 0.0512 (0.0000)

Closeness centrality 35.7021 (31.6667) 29.3608 (23.4676) 39.0719 (34.4828)
Constraint 31.1741 (27.5268) 46.2873 (43.5887) 23.6752 (19.3102)

Fig. 8  The perplexity with differ-
ent number of topics
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Figure 8 depicts the perplexity with different number of topics. From Fig. 8, it is not dif-
ficult to see that the perplexity of the  ATcredit model converges when the number of topics 
K is 90. Hence, the number of interest topics was fixed at 90 in this work.

Interest diversity

Two diversity indicators, Rao–Stirling and DIV  , are utilized here to calculate the diversity 
of research interests of solely publishing authors, solely patenting inventors, and academic 
inventors. To determine the number of preferred research interest topics of an author/
inventor ( na,k ) in the DIV  indicator [Equation  (2)], we set three cumulative probability 
thresholds of interest topics (0.80, 0.85, 0.90). Whichever value the cumulative probability 
threshold takes, the following conclusion can be drawn: solely publishing authors have the 
most diverse research interests, followed by the solely patenting inventors, and the research 
interests of academic inventors are least diverse. Please check Table 6 for more detail.

This observation does not seem to be in line with our intuitive understanding of aca-
demic inventors. In fact, we reconducted all experiments on the whole DrugBank dataset, 
and a similar conclusion was drawn (Table 11 in Appendix). In our opinion, the main rea-
sons are twofold: (1) most patents on drugs come from pharmaceutical companies with a 
clear R&D goal, but the authors can usually carry out free exploratory research, and even 

(4)Pr
(
��⃗�wm,∙| �⃗�am,M

)
=

Nm∏

n=1

Am∑

a=1

∑K

k=1
𝜑k,�wm,n

𝜗a,kcm,a

Table 6  Diversity of research interests for solely publishing authors, solely patenting inventors, and aca-
demic inventors

Standard deviation is shown in parentheses
Bold indicates the best results corresponding to each indicator

Authors Inventors Academic inventors

RS (symmetrized KL divergence) 7.360 (± 0.261) 7.371 (± 0.446) 7.100 (± 0.758)
RS (JS divergence) 0.617 (± 0.020) 0.611 (± 0.038) 0.589 (± 0.062)
RS (cosine distance) 0.955 (± 0.033) 0.946 (± 0.061) 0.910 (± 0.099)
DIV_0.80 (symmetrized KL divergence) 4.684 (± 1.277) 4.455 (± 1.464) 2.993 (± 1.614)
DIV_0.80 (JS divergence) 0.394 (± 0.107) 0.374 (± 0.123) 0.252 ( ±0.136)
DIV_0.80 (cosine distance) 0.613 (± 0.167) 0.582 (± 0.192) 0.391 (± 0.211)
DIV_0.85 (symmetrized KL divergence) 5.088 (± 1.263) 4.862 (± 1.458) 3.389 (± 1.665)
DIV_0.85 (JS divergence) 0.429 (± 0.106) 0.409 (± 0.123) 0.285 (± 0.140)
DIV_0.85 (cosine distance) 0.667 (± 0.166) 0.636 (± 0.192) 0.443 (± 0.218)
DIV_0.90 (symmetrized KL divergence) 5.510 (± 1.239) 5.286 (± 1.440) 3.819 (± 1.687)
DIV_0.90 (JS divergence) 0.464 (± 0.104) 0.444 (± 0.121) 0.321 (± 0.142)
DIV_0.90 (cosine distance) 0.720 (± 0.161) 0.690 (± 0.188) 0.499 (± 0.220)
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Table 7  Diversity of research interests for solely publishing authors, solely patenting inventors, and aca-
demic inventors from the USA (a), Japan (b), the UK (c), Germany (d), and Italy (e)

Bold indicates the best results corresponding to each indicator

(a) The USA
Authors Inventors Academic inventors

RS (symmetrized KL divergence) 7.371 (± 0.227) 7.367 (± 0.471) 7.103 (± 0.798)
RS (JS divergence) 0.618 (± 0.017) 0.610 (± 0.041) 0.588 (± 0.066)
RS (cosine distance) 0.957 (± 0.028) 0.944 (± 0.065) 0.909 (± 0.104)
DIV_0.85 (symmetrized KL divergence) 5.181 (± 1.204) 4.794 (± 1.513) 3.424 (± 1.707)
DIV_0.85 (JS divergence) 0.436 (± 0.101) 0.403 (± 0.128) 0.288 (± 0.144)
DIV_0.85 (cosine distance) 0.679 (± 0.158) 0.627 (± 0.199) 0.447 (± 0.224)

(b) Japan
Authors Inventors Academic inventors

RS (symmetrized KL divergence) 7.300 (± 0.364) 7.409 (± 0.299) 6.978 (± 0.801)
RS (JS divergence) 0.612 (± 0.027) 0.615 (± 0.025) 0.580 (± 0.064)
RS (cosine distance) 0.948 (± 0.042) 0.953 (± 0.039) 0.894 (± 0.103)
DIV_0.85 (symmetrized KL divergence) 4.755 (± 1.304) 5.117 (± 1.220) 2.997 (± 1.629)
DIV_0.85 (JS divergence) 0.400 (± 0.110) 0.431 (± 0.103) 0.252 (± 0.137)
DIV_0.85 (cosine distance) 0.623 (± 0.171) 0.670 (± 0.161) 0.392 (± 0.214)

(c) The UK
Authors Inventors Academic inventors

RS (symmetrized KL divergence) 7.362 (± 0.279) 7.346 (± 0.397) 7.255 (± 0.506)
RS (JS divergence) 0.617 (± 0.023) 0.607 (± 0.034) 0.600 (± 0.041)
RS (cosine distance) 0.955 (± 0.039) 0.939 (± 0.053) 0.925 (± 0.076)
DIV_0.85 (symmetrized KL divergence) 5.141 (± 1.283) 4.342 (± 1.750) 3.679 (± 1.382)
DIV_0.85 (JS divergence) 0.433 (± 0.108) 0.365 (± 0.148) 0.309 (± 0.116)
DIV_0.85 (cosine distance) 0.674 (± 0.168) 0.568 (± 0.230) 0.480 (± 0.181)

(d) Germany
Authors Inventors Academic inventors

RS (symmetrized KL divergence) 7.343 (± 0.235) 7.398 (± 0.270) 7.122 (± 0.522)
RS (JS divergence) 0.616 (± 0.019) 0.614 (± 0.023) 0.589 (± 0.047)
RS (cosine distance) 0.954 (± 0.032) 0.950 (± 0.039) 0.908 (± 0.079)
DIV_0.85 (symmetrized KL divergence) 4.801 (± 1.319) 5.023 (± 1.268) 3.085 (± 1.580)
DIV_0.85 (JS divergence) 0.404 (± 0.111) 0.422 (± 0.107) 0.259 (± 0.133)
DIV_0.85 (cosine distance) 0.629 (± 0.173) 0.657 (± 0.167) 0.403 (± 0.207)

(e) Italy
Authors Inventors Academic inventors

RS (symmetrized KL divergence) 7.369 (± 0.154) 7.173 (± 0.920) 7.193 (± 0.514)
RS (JS divergence) 0.618 (± 0.010) 0.595 (± 0.077) 0.599 (± 0.043)
RS (cosine distance) 0.957 (± 0.017) 0.922 (± 0.120) 0.928 (± 0.068)
DIV_0.85 (symmetrized KL divergence) 4.998 (± 1.144) 4.496 (± 1.694) 2.997 (± 1.629)
DIV_0.85 (JS divergence) 0.421 (± 0.096) 0.378 (± 0.143) 0.313 (± 0.119)
DIV_0.85 (cosine distance) 0.655 (± 0.150) 0.589 (± 0.223) 0.486 (± 0.186)
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constantly adjust their research directions according to hot themes; and (2) as science–tech-
nology gatekeepers, academic inventors span across academia and industry. Correspond-
ingly, their interests are mainly at the interface between science and technology. In this 
way, they can seek a trade-off between research significance and the risk of patent uncer-
tainty under the circumstance of market economy (Li et  al., 2020). Hence, the scope of 
their interests may not be as diverse as the researchers with a single role.

Fig. 9  The distribution of interest topics of solely publishing authors, solely patenting inventors, and aca-
demic inventors
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To check whether the interest diversity varies by country, the researchers from the 
following five countries were further analyzed: the USA, Japan, the UK, Germany, and 
Italy, presented in Table 7. Since the diversity of research interests is not sensitive to the 
threshold (Table 6), a threshold of 0.85 is utilized here. From Table 7, it is evident that the 
research interests of academic inventors are less diverse than those of the researchers with 
a single role across countries. This indicates that this conclusion seems be independent 
from national incentive and funding systems.

Distribution and preferred content of interest topics

To determine which interest topics the solely publishing authors, the solely patenting 
inventors, and the academic inventors prefer, Fig. 9 illustrates the distribution of interest 
topics. In Fig. 9, the horizontal axis denotes the topic identification, and the vertical axis 
represents the average probability distribution of a focal topic. Among these three types 
of researchers, the solely publishing authors have most even probability distribution. This 
is consistent with having the most diverse research interests (Table  6). Further, we can 

Table 8  An illustration of 12 themes from a 90-topic solution with the  ATcredit model. Each theme is shown 
with top ten words conditioned on that theme

17 23 25 28 37 48

Safety Virus Number Heart Alkyl Disorder
Study Hcv Aminoglycoside Hypertension Hydrogen Serotonin
Placebo Antiviral Related Vascular Aryl Antidepressant
Controlled Infection Spar Cardiovascular Substitute Depression
Baseline Hepatitis Sequencing Mortality Cycloalkyl Norepinephrine
Efficacy HIV Kd Dysfunction Halogen Mood
Evaluate Replication Intrinsic Angiotensin Alkylene Anxiety
Significantly Genotype Potassium Cardiac Alkoxy Symptom
Difference Nucleoside Deprive Prevention Alkenyl Depressive
Compare Immunodeficiency Hydroxytryptophan Ischemia Carboxy Escitalopram

59 63 64 69 82 89

Atom Pain Metabolite Process Number Disorder
carbon Opioid Metabolism Preparation Phenyl Treat
Hydrogen Chronic Oral Crystalline Fluoro Weight
Fluorine Analgesic Urine Aripiprazole Combine Acid
Phenyl Fentanyl Excretion Product Fluorophenyl Gel
Formula Sublingual Metabolic Solubility Phthalazin Inflammatory
Acyl Morphine Excrete Convert Acetamide Erythema
Amide Ziconotide Mass Hygroscopic Cyclopropyl Dermatological
Nitrogen Management Pathway Original Phenylamino Topically
Methoxy Continuous Metabolize Substance Tosylate Cream



 Scientometrics

1 3

observe the following commonality and specialty in terms of interest topics by inspect-
ing the difference between the resulting average probability distributions. The topics 63, 
25, and 28 are shared by all three types of researchers since their average probabilities are 
very closer to each other. Different from academic inventors, the researchers with a single 
role (solely publishing or patenting) are interested in topics 82, 89, and 23. In addition, the 
solely publishing authors prefer the topics 17, 64, and 90; solely patenting inventors prefer 
the topics 37, 59, and 69; and the academic inventor prefer the topics 23, 82, and 48. For 
ease of understanding, Table 8 illustrates examples of 12 themes.

As for academic inventors, Fig. 10 shows the top five interest topics in terms of average 
probability distribution, in which each topic is attached with one researcher, one scien-
tific publication, and one patent document. Theme 42 is on drugs with blocking function, 

Fig. 10  An illustration of five interest topics of academic inventors. Each topic is attached with one 
researcher, one scientific publication, and one patent document

Table 9  Top two interest topics 
for two representatives from each 
type of researcher

Name Topic distribution

Authors Shen, Jianwei 64: 62.44% 25: 5.56%
Ringold, Forrest G 17: 36.79% 87: 21.79%

Inventors Bando, Takuji 69: 61.79% 6: 5.36%
Arimilli, Murty N 37: 70.90% 34: 2.24%

Academic inventors De Clercq, Erik 23: 43.22% 61: 7.72%
Wang, Bing 82: 56.25% 78: 11.32%
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which have two major classes as inhibitors and antagonists. This kind of drugs plays a 
role in reducing activity and alleviating symptoms. For example, R406 is an orally avail-
able spleen tyrosine kinase (Syk) inhibitor, which blocks Fc receptor signaling and reduces 
immune complex-mediated inflammation. It potentially modulates Syk activity in human 
disease (Braselmann et  al., 2006). Theme 34 discusses antitumor drugs, which inhibit 
tumor cell growth and induce apoptosis, providing promising therapeutic options for 
patients. Theme 56 discusses antidiabetic drugs and focuses on insulin, which has always 
been the primary pharmacological agent for treating diabetes and preventing its complica-
tions (Falcetta et al., 2022). In addition, academic inventors are also interested in antiviral 
drugs (Theme 23): two RNA-viruses: human immunodeficiency virus (HIV) and hepati-
tis C virus (HCV) received the most attention. Both have similar blood and mother-to-
child transmission routes, but act on different types of cells. The former mainly infects 
human immune cells, and the latter infects liver cells. Theme 78 is clinical application 
and preparation of compound drugs. Once the clinical drug discovery is demonstrated, the 
researchers under this topic are more invested in the production of related drug reagents 
and products.

To verify whether the discovered research interests make sense, two representatives 
from each type of researchers were taken as examples, as reported in Table 9. Shen, Jian-
wei published two articles in our dataset about metabolism and disposition of inhibitor of 
hepatitis C. Bando, Takuji patented six inventions on the preparation of low hygroscopic 
aripiprazole drug. As an academic inventor, Wang, Bing worked at BioMarin Pharma-
ceutical Inc. His research interests include clinical application research and preparation 
of anticancer agents, involving one scientific publication and five patents in our dataset. 

Fig. 11  The diversity of research interests of each type of researcher, with the percentile of node character-
istic indicators
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Table 12 in the Appendix illustrates the titles of scientific publications and patents of these 
six researchers.

Interest diversity with position characteristics

In this subsection, we answer the other question: does the position of the researcher cor-
relate with their diverse research interests? From Table 6, one can see that the diversity of 
research interests is not sensitive to the threshold. Therefore, a threshold 0.85 was fixed for 
the following analysis.

Figure 11 illustrates the distribution of the diversity of research interests of each type 
of researcher with the percentile of node characteristic indicators. The patterns are not 
consistent across the three types of researchers. The diversity of research interests of the 
researchers with one single role mainly concentrates on the top percentile of the degree 
centrality indicator and the bottom percentile of the constraint indicator. Inventors who are 
closer to the geometric center of the network and with medium extent of control over non-
adjacent nodes have more diverse research interests.

To find out whether the interest diversity correlates with the position characteristics, 
we implemented Spearman rank correlation coefficient test, as presented in Table 10. The 
“degree centrality” and “constraint” present significant positive correlation and negative 
correlation with the diversity of interests of researchers, respectively. That is, whichever 
role one researcher has, the more widely connected, and the more structural nodes in the 
network, the more diverse their research interests tend to be.

In term of “closeness centrality,” the results are mixed. More specifically, only academic 
inventors show a significant weaker negative correlation. For the researchers with one sin-
gle role, we cannot conclude that the important positions at the center of a network corre-
late with the diversity of interests. As for “normalized betweenness centrality,” nearly half 
of the cells in Table 10 are nonsignificant, and the other half have low values. We argue 
that this indicator does not correlate with the interest diversity.

In summary, the position of the researchers in a cooperative network does have a cer-
tain relation with the diversity of their research interests. For all researcher types, those 
with more social and more as structural nodes in the network have more diverse research 
interests.

Conclusions

Academic inventors play an import role in the knowledge diffusion between science and 
technology. Considerable efforts have been spent analyzing academic inventors in the liter-
ature. However, it is still unknown whether they have more diverse interests than research-
ers with one single role, and whether their position in science–technology interactions cor-
relates with their interest diversity.

To answer these two questions, this study puts forward a rule-based identification 
approach of academic inventors. After research interests of each researcher were identified 
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by an interest discovery  ATcredit model, two diversity indicators with three disparity meas-
urements were calculated for each type of researcher. Extensive empirical results on the 
DrugBank dataset indicate that academic inventors have less diverse research interests than 
the researchers with a single role, followed by solely patenting inventors.

The position of the researchers has a certain relation with the diversity of their research 
interests. The “degree centrality” has a significant positive correlation with the diversity of 
research interests, and the “constraint” presents a significant negative correlation. Among 
the three types of researchers, interest diversity of only academic inventors shows a weakly 
negative correlation with the “closeness centrality,” and does not correlate with the “nor-
malized betweenness centrality.”

There are several limitations of this study. As mentioned in the Dataset subsection, this 
study only considers scholarly articles and patents attached to each drug in the DrugBank 
database, which may result in a lower proportion of academic inventors. In the near future, 
we will retrieve scholarly articles and patents authored or patented by each researcher in 
the DrugBank database from comprehensive bibliographic databases. Further, the identi-
fication of academic inventors can benefit from a good name disambiguation method, and 
the rules for identifying academic inventors will be further enriched in our next study. In 
addition, we will try to identify the factors contributing to the position and interest diver-
sity of academic inventors for science–technology interactions.

Appendix

See Tables 11 and 12.

Table 11  Diversity of research interests for solely publishing authors, solely patenting inventors, and aca-
demic inventors in the whole DrugBank dataset

Standard deviation is shown in parentheses
Bold indicates the best results corresponding to each indicator

Authors Inventors Academic inventors

RS (symmetrized KL divergence) 9.251 (± 0.263) 9.231 ( ± 0.522) 9.146 ( ± 0.555)
RS (JS divergence) 0.643 (± 0.016) 0.636 ( ± 0.036) 0.629 ( ± 0.037)
RS (cosine distance) 0.965 (± 0.025) 0.954 ( ± 0.055) 0.943 ( ± 0.059)
DIV_0.80 (symmetrized KL divergence) 5.517 (± 1.787) 5.245 ( ± 2.047) 4.212 ( ± 2.046)
DIV_0.80 (JS divergence) 0.380 (±0.123) 0.361 ( ± 0.141) 0.290 ( ± 0.141)
DIV_0.80 (cosine distance) 0.571 (± 0.185) 0.542 ( ± 0.212) 0.435 ( ± 0.212)
DIV_0.85 (symmetrized KL divergence) 6.035 (± 1.777) 5.759 ( ± 2.055) 4.723 ( ± 2.081)
DIV_0.85 (JS divergence) 0.417 (± 0.123) 0.397 ( ± 0.142) 0.326 ( ± 0.144)
DIV_0.85 (cosine distance) 0.625 (± 0.185) 0.596 ( ± 0.214) 0.489 ( ± 0.216)
DIV_0.90 (symmetrized KL divergence) 6.569 (± 1.748) 6.294 ( ±2.039) 5.271 ( ± 2.083)
DIV_0.90 (JS divergence) 0.454 (± 0.121) 0.434 ( ± 0.141) 0.364 ( ± 0.144)
DIV_0.90 (cosine distance) 0.681 (± 0.181) 0.652 ( ± 0.212) 0.546 ( ± 0.216)
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Table 12  The title of scientific publications and patents authored by inventor, author, and academic inventor

Name Title

Authors Shen, Jianwei Metabolism and disposition of hepatitis C poly-
merase inhibitor dasabuvir in humans

[PMID: 27179126]
Metabolism and disposition of pan-genotypic 

inhibitor of hepatitis C virus NS5A ombitasvir 
in humans. [PMID: 27179128]

Ringold, Forrest G Sufentanil sublingual tablet system for the man-
agement of postoperative pain following open 
abdominal surgery [PMID: 25318408]

Inventors Bando, Takuji Low hygroscopic aripiprazole drug substance and 
processes for the preparation thereof

[PN: US8017615/PN: US8399469/PN: 
US8580796/PN: US8642760/PN: US8993761/
PN: US9359302]

Arimilli, Murty N Nucleotide analogs [PN: CA2261619]
Nucleotide analog compositions [PN: 

CA2298057/US6451340]
Antiviral phosphonomethyoxy nucleotide analogs 

having increased oral bioavarilability
[PN: US5922695/US5977089/US6043230]

Academic inventors De Clercq, Erik HIV resistance to reverse transcriptase inhibitors. 
[PMID: 7508227]

Approved antiviral drugs over the past 50 years. 
[PMID: 27281742]

Emerging anti-HIV drugs. [PMID: 15934866]
Specific phosphorylation of 5-ethyl-2′-

deoxyuridine by herpes simplex virus-infected 
cells and incorporation into viral DNA. [PMID: 
2822705]

N-phosphonylmethoxyalkyl pyrimidines and 
purines and therapeutic application thereof

[PN: CA1340856]
N-phosphonylmethoxyalkyl derivatives of 

pyrimidine and purine bases and a therapeutical 
composition therefrom with antiviral activity 
[PN:US5142051]

Wang, Bing Discovery and characterization of (8S,9R)-
5-Fluoro-8-(4-fluorophenyl)-9-methyl-1H-
1,2,4-triazol-5-yl)-2,7,8,9-tetrahydro-3H-
pyrido[4,3,2-de]phthalazin-3-one (BMN 673, 
Talazoparib), a novel, highly potent, and orally 
efficacious poly(ADP-ribose) polymerase-1/2 
inhibitor, as an anticancer agent. [PMID: 
26652717]

Crystalline (8S,9R)-5-fluoro-8-(4-fluorophenyl)-
9-(1-methyl-1H-1,2,4-triazol-5-yl)-8,9-dihydro-
2H-pyrido[4,3,2-de]phthalazin-3(7H)-one 
tosylate salt

[PN:US10189837/US8735392]
Dihydropyridophthalazinone inhibitors of 

poly(ADP-ribose)polymerase (PARP)
[PN:US8012976/US8420650/US9820985]
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