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Abstract

Preprints allow researchers to make their findings available to the scientific community

before they have undergone peer review. Studies on preprints within bioRxiv have been

largely focused on article metadata and how often these preprints are downloaded, cited,

published, and discussed online. A missing element that has yet to be examined is the lan-

guage contained within the bioRxiv preprint repository. We sought to compare and contrast

linguistic features within bioRxiv preprints to published biomedical text as a whole as this is

an excellent opportunity to examine how peer review changes these documents. The most

prevalent features that changed appear to be associated with typesetting and mentions of

supporting information sections or additional files. In addition to text comparison, we created

document embeddings derived from a preprint-trained word2vec model. We found that

these embeddings are able to parse out different scientific approaches and concepts, link

unannotated preprint–peer-reviewed article pairs, and identify journals that publish linguisti-

cally similar papers to a given preprint. We also used these embeddings to examine factors

associated with the time elapsed between the posting of a first preprint and the appearance

of a peer-reviewed publication. We found that preprints with more versions posted and more

textual changes took longer to publish. Lastly, we constructed a web application (https://

greenelab.github.io/preprint-similarity-search/) that allows users to identify which journals

and articles that are most linguistically similar to a bioRxiv or medRxiv preprint as well as

observe where the preprint would be positioned within a published article landscape.

Introduction

The dissemination of research findings is key to science. Initially, much of this communication

happened orally [1]. During the 17th century, the predominant form of communication

shifted to personal letters shared from one scientist to another [1]. Scientific journals didn’t
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become a predominant mode of communication until the 19th and 20th centuries when the

first journal was created [1–3]. Although scientific journals became the primary method of

communication, they added high maintenance costs and long publication times to scientific

discourse [2,3]. Some scientists’ solutions to these issues have been to communicate through

preprints, which are scholarly works that have yet to undergo peer review process [4,5].

Preprints are commonly hosted on online repositories, where users have open and easy

access to these works. Notable repositories include arXiv [6], bioRxiv [7], and medRxiv [8];

however, there are over 60 different repositories available [9]. The burgeoning uptake of pre-

prints in life sciences has been examined through research focused on metadata from the bioR-

xiv repository. For example, life science preprints are being posted at an increasing rate [10].

Furthermore, these preprints are being rapidly shared on social media, routinely downloaded,

and cited [11]. Some preprint categories are shared on social media by both scientists and non-

scientists [12]. About two-thirds to three-quarters of preprints are eventually published

[13,14], and life science articles that have a corresponding preprint version are cited and dis-

cussed more often than articles without them [15–17]. Preprints take an average of 160 days to

be published in the peer-reviewed literature [18], and those with multiple versions take longer

to publish [18].

The rapid uptake of preprints in the life sciences also poses challenges. Preprint repositories

receive a growing number of submissions [19]. Linking preprints with their published coun-

terparts is vital to maintaining scholarly discourse consistency, but this task is challenging to

perform manually [16,20,21]. Errors and omissions in linkage result in missing links and con-

sequently erroneous metadata. Furthermore, repositories based on standard publishing tools

are not designed to show how the textual content of preprints is altered due to the peer review

process [19]. Certain scientists have expressed concern that competitors could scoop them by

making results available before publication [19,22]. Preprint repositories by definition do not

perform in-depth peer review, which can result in posted preprints containing inconsistent

results or conclusions [17,20,23,24]; however, an analysis of preprints posted at the beginning

of 2020 revealed that over 50% underwent minor changes in the abstract text as they were pub-

lished, but over 70% did not change or only had simple rearrangements to panels and tables

[25]. Despite a growing emphasis on using preprints to examine the publishing process within

life sciences, how these findings relate to the text of all documents in bioRxiv has yet to be

examined.

Textual analysis uses linguistic, statistical, and machine learning techniques to analyze and

extract information from text [26,27]. For instance, scientists analyzed linguistic similarities

and differences of biomedical corpora [28–30]. Scientists have provided the community with a

number of tools that aide future text mining systems [31–33] as well as advice on how to train

and test future text processing systems [34–36]. Here, we use textual analysis to examine the

bioRxiv repository, placing a particular emphasis on understanding the extent to which full-

text research can address hypotheses derived from the study of metadata alone.

To understand how preprints relate to the traditional publishing ecosystem, we examine

the linguistic similarities and differences between preprints and peer-reviewed text and

observe how linguistic features change during the peer review and publishing process. We

hypothesize that preprints and biomedical text will appear to have similar characteristics, espe-

cially when controlling for the differential uptake of preprints across fields. Furthermore, we

hypothesize that document embeddings [37,38] provide a versatile way to disentangle linguis-

tic features along with serving as a suitable medium for improving preprint repository func-

tionality. We test this hypothesis by producing a linguistic landscape of bioRxiv preprints,

detecting preprints that change substantially during publication, and identifying journals that

publish manuscripts that are linguistically similar to a target preprint. We encapsulate our
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findings through a web app that projects a user-selected preprint onto this landscape and sug-

gests journals and articles that are linguistically similar. Our work reveals how linguistically

similar and dissimilar preprints are to peer-reviewed text, quantifies linguistic changes that

occur during the peer review process, and highlights the feasibility of document embeddings

concerning preprint repository functionality and peer review’s effect on publication time.

Materials and methods

Corpora examined

Text analytics is generally comparative in nature, so we selected 3 relevant text corpora for

analysis: the bioRxiv corpus, which is the target of the investigation; the PubMed Central

Open Access (PMCOA) corpus, which represents the peer-reviewed biomedical literature; and

the New York Times Annotated Corpus (NYTAC), which is used a representative of general

English text.

bioRxiv corpus

bioRxiv [7] is a repository for life sciences preprints. We downloaded an XML snapshot of this

repository on February 3, 2020, from bioRxiv’s Amazon S3 bucket [39]. This snapshot con-

tained the full text and image content of 98,023 preprints. Preprints on bioRxiv are versioned,

and in our snapshot, 26,905 out of 98,023 contained more than one version. When preprints

had multiple versions, we used the latest one unless otherwise noted. Authors submitting pre-

prints to bioRxiv can select one of 29 different categories and tag the type of article: a new

result, confirmatory finding, or contradictory finding. A few preprints in this snapshot were

later withdrawn from bioRxiv; when withdrawn, their content is replaced with the reason for

withdrawal. We encountered a total of 72 withdrawn preprints within our snapshot. After

removal, we were left with 97,951 preprints for our downstream analyses.

PubMed Central Open Access corpus

PubMed Central (PMC) is a digital archive for the United States National Institute of Health’s

Library of Medicine (NIH/NLM) that contains full text biomedical and life science articles

[40]. Paper availability within PMC is mainly dependent on the journal’s participation level

[41]. Articles appear in PMC as either accepted author manuscripts (Green Open Access) or

via open access publishing at the journal (Gold Open Access [42]). Individual journals have

the option to fully participate in submitting articles to PMC, selectively participate sending

only a few papers to PMC, only submit papers according to NIH’s public access policy [43], or

not participate at all; however, individual articles published with the CC BY license may be

incorporated. As of September 2019, PMC had 5,725,819 articles available [44]. Out of these 5

million articles, about 3 million were open access (PMCOA) and available for text processing

systems [32,45]. PMC also contains a resource that holds author manuscripts that have already

passed the peer review process [46]. Since these manuscripts have already been peer reviewed,

we excluded them from our analysis as the scope of our work is focused on examining the

beginning and end of a preprint’s life cycle. We downloaded a snapshot of the PMCOA corpus

on January 31, 2020. This snapshot contained many types of articles: literature reviews, book

reviews, editorials, case reports, research articles, and more. We used only research articles,

which align with the intended role of bioRxiv, and we refer to these articles as the PMCOA

corpus.
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The New York Times Annotated Corpus

The NYTAC [47] is a collection of newspaper articles from the New York Times dating from

January 1, 1987 to June 19, 2007. This collection contains over 1.8 million articles where 1.5

million of those articles have undergone manual entity tagging by library scientists [47]. We

downloaded this collection on August 3, 2020, from the Linguistic Data Consortium (see Soft-

ware and data availability section) and used the entire collection as a negative control for our

corpora comparison analysis.

Mapping bioRxiv preprints to their published counterparts

We used CrossRef [48] to identify bioRxiv preprints linked to a corresponding published arti-

cle. We accessed CrossRef on July 7, 2020, and successfully linked 23,271 preprints to their

published counterparts. Out of those 23,271 preprint–published pairs, only 17,952 pairs had a

published version present within the PMCOA corpus. For our analyses that involved published

links, we only focused on this subset of preprints–published pairs.

Comparing corpora

We compared the bioRxiv, PMCOA, and NYTAC corpora to assess the similarities and differ-

ences between them. We used the NYTAC corpus as a negative control to assess the similarity

between 2 life sciences repositories compared with nonlife sciences text. All corpora contain

multiple words that do not have any meaning (conjunctions, prepositions, etc.) or occur with

a high frequency. These words are termed stopwords and are often removed to improve text

processing pipelines. Along with stopwords, all corpora contain both words and nonword

entities (for instance, numbers or symbols like ±), which we refer to together as tokens to

avoid confusion. We calculated the following characteristic metrics for each corpus: the num-

ber of documents, the number of sentences, the total number of tokens, the number of stop-

words, the average length of a document, the average length of a sentence, the number of

negations, the number of coordinating conjunctions, the number of pronouns, and the num-

ber of past tense verbs. SpaCy is a lightweight and easy-to-use python package designed to pre-

process and filter text [49]. We used spaCy’s “en_core_web_sm” model [49] (version 2.2.3) to

preprocess all corpora and filter out 326 stopwords using spaCy’s default settings.

Following that cleaning process, we calculated the frequency of every token across all cor-

pora. Because many tokens were unique to one set or the other and observed at low frequency,

we focused on the union of the top 0.05% (approximately 100) most frequently occurring

tokens within each corpus. We generated a contingency table for each token in this union and

calculated the odds ratio along with the 95% confidence interval [50]. We measured corpora

similarity by calculating the Kullback–Leibler (KL) divergence across all corpora along with

token enrichment analysis. KL divergence is a metric that measures the extent to which 2 dis-

tributions differ from each other. A low value of KL divergence implicates that 2 distributions

are similar and vice versa for high values. The optimal number of tokens used to calculate the

KL divergence is unknown, so we calculated this metric using a range of the 100 most fre-

quently occurring tokens between 2 corpora to the 5,000 most frequently occurring tokens.

Constructing a document representation for life sciences text

We sought to build a language model to quantify linguistic similarities of biomedical preprints

and articles. Word2vec is a suite of neural networks designed to model linguistic features of

tokens based on their appearance in the text. These models are trained to either predict a

token based on its sentence context, called a continuous bag of words (CBOW) model, or
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predict the context based on a given token, called a skipgram model [37]. Through these pre-

diction tasks, both networks learn latent linguistic features, which are helpful for downstream

tasks, such as identifying similar tokens. We used gensim [51] (version 3.8.1) to train a CBOW

[37] model over all the main text within each preprint in the bioRxiv corpus. Determining the

best number of dimensions for token embeddings can be a nontrivial task; however, it has

been shown that optimal performance is between 100 and 1,000 dimensions [52]. We chose to

train the CBOW model using 300 hidden nodes, a batch size of 10,000 tokens, and for 20

epochs. We set a fixed random seed and used gensim’s default settings for all other hyperpara-

meters. Once trained, every token present within the CBOW model is associated with a dense

vector representing latent features captured by the network. We used these token vectors to

generate a document representation for every article within the bioRxiv and PMCOA corpora.

We used spaCy to lemmatize each token for each document and then took the average of every

lemmatized token present within the CBOW model and the individual document [38]. Any

token present within the document but not in the CBOW model is ignored during this calcula-

tion process.

Visualizing and characterizing preprint representations

We sought to visualize the landscape of preprints and determine the extent to which their

representation as document vectors corresponded to author-supplied document labels. We

used principal component analysis (PCA) [53] to project bioRxiv document vectors into a

low-dimensional space. We trained this model using scikit-learn’s [54] implementation of a

randomized solver [55] with a random seed of 100, an output of 50 principal components

(PCs), and default settings for all other hyperparameters. After training the model, every pre-

print within the bioRxiv corpus receives a score for each generated PC. We sought to uncover

concepts captured within generated PCs and used the cosine similarity metric to examine

these concepts. This metric takes 2 vectors as input and outputs a score between −1 (most dis-

similar) and 1 (most similar). We used this metric to score the similarity between all generated

PCs and every token within our CBOW model for our use case. We report the top 100 positive

and negative scoring tokens as word clouds. The size of each word corresponds to the magni-

tude of similarity, and color represents a positive (orange) or negative (blue) association.

Discovering unannotated preprint–publication relationships

The bioRxiv maintainers have automated procedures to link preprints to peer-reviewed ver-

sions, and many journals require authors to update preprints with a link to the published ver-

sion. However, this automation is primarily based on the exact matching of specific preprint

attributes. If authors change the title between a preprint and published version (for instance,

[56,57]), then this change will prevent bioRxiv from automatically establishing a link. Further-

more, if the authors do not report the publication to bioRxiv, the preprint and its correspond-

ing published version are treated as distinct entities despite representing the same underlying

research. We hypothesize that close proximity in the document embedding space could match

preprints with their corresponding published version. If this finding holds, we could use this

embedding space to fill in links missed by existing automated processes. We used the subset of

paper–preprint pairs annotated in CrossRef as described above to calculate the distribution of

available preprint to published distances. We calculated this distribution by taking the Euclid-

ean distance between the preprint’s embedding coordinates and the coordinates of its corre-

sponding published version. We also calculated a background distribution, which consisted of

the distance between each preprint with an annotated publication and a randomly selected

article from the same journal. We compared both distributions to determine if there was a
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difference between both groups as a significant difference would indicate that this embedding

method can parse preprint–published pairs apart. After comparing the 2 distributions, we cal-

culated distances between preprints without a published version link with PMCOA articles

that weren’t matched with a corresponding preprint. We filtered any potential links with dis-

tances greater than the minimum value of the background distribution as we considered these

pairs to be true negatives. Lastly, we binned the remaining pairs based on percentiles from the

annotated pairs distribution at the [0,25th percentile), [25th percentile, 50th percentile), [50th

percentile, 75th percentile), and [75th percentile, minimum background distance). We ran-

domly sampled 50 articles from each bin and shuffled these 4 sets to produce a list of 200

potential preprint–published pairs with a randomized order. We supplied these pairs to 2

coauthors to manually determine if each link between a preprint and a putative matched ver-

sion was correct or incorrect. After the curation process, we encountered 8 disagreements

between the reviewers. We supplied these pairs to a third scientist, who carefully reviewed

each case and made a final decision. Using this curated set, we evaluated the extent to which

distance in the embedding space revealed valid but unannotated links between preprints and

their published versions.

Measuring time duration for preprint publication process

Preprints can take varying amounts of time to be published. We sought to measure the time

required for preprints to be published in the peer-reviewed literature and compared this time

measurement across author-selected preprint categories as well as individual preprints. First,

we queried bioRxiv’s application programming interface (API) to obtain the date a preprint

was posted onto bioRxiv as well as the date a preprint was accepted for publication. We did

not include preprint matches found by our paper matching approach (see Discovering unan-

notated preprint–publication relationships). We measured time elapsed as the difference

between the date a preprint was first posted on bioRxiv and its publication date. Along with

calculating the time elapsed, we also recorded the number of different preprint versions posted

onto bioRxiv.

We used this captured data to apply the Kaplan–Meier estimator [58] via the KaplanMeier-

Fitter function from the lifelines [59] (version 0.25.6) python package to calculate the half-life

of preprints across all preprint categories within bioRxiv. We considered survival events as

preprints that have yet to be published. We encountered 123 cases where the preprint posting

date was subsequent to the publication date, resulting in a negative time difference, as previ-

ously reported [60]. We removed these preprints for this analysis as they were incompatible

with the rules of the bioRxiv repository.

We measured the textual difference between preprints and their corresponding published

version after our half-life calculation by calculating the Euclidean distance for their respective

embedding representation. This metric can be difficult to understand within the context of

textual differences, so we sought to contextualize the meaning of a distance unit. We first ran-

domly sampled with replacement a pair of preprints from the Bioinformatics topic area as this

was well represented within bioRxiv and contains a diverse set of research articles. Next, we

calculated the distance between 2 preprints 1,000 times and reported the mean. We repeated

the above procedure using every preprint within bioRxiv as a whole. These 2 means serve as

normalized benchmarks to compare against as distance units are only meaningful when com-

pared to other distances within the same space. Following our contextualization approach, we

performed linear regression to model the relationship between preprint version count with a

preprint’s time to publication. We also performed linear regression to measure the relationship

between document embedding distance and a preprint’s time to publication. For this analysis,
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we retained preprints with negative time within our linear regression model, and we observed

that these preprints had minimal impact on results. We visualize our version count regression

model as a violin plot and our document embeddings regression model as a square bin plot.

Building classifiers to detect linguistically similar journal venues and

published articles

Preprints are more likely to be published in journals that publish articles with similar content.

We assessed this claim by building classifiers based on document and journal representations.

First, we removed all journals that had fewer than 100 papers in the PMC corpus. We held our

preprint–published subset (see above section Mapping bioRxiv preprints to their published

counterparts) and treated it as a gold standard test set. We used the remainder of the PMCOA

corpus for training and initial evaluation for our models.

Training models to identify which journal publishes similar articles is challenging as not all

journals are the same. Some journals have a publication rate of at most hundreds of papers per

year, while others publish at a rate of at least 10,000 papers per year. Furthermore, some jour-

nals focus on publishing articles within a concentrated topic area, while others cover many dis-

persive topics. Therefore, we designed 2 approaches to account for these characteristics. Our

first approach focuses on articles that account for a journal’s variation of publication topics.

This approach allows for topically similar papers to be retrieved independently of their respec-

tive journal. Our second approach is centered on journals to account for varying publication

rates. This approach allows more selective or less popular journals to have equal representation

to their high publishing counterparts.

Our article-based approach identifies most similar manuscripts to the preprint query, and

we evaluated the journals that published these identified manuscripts. We embedded each

query article into the space defined by the word2vec model (see above section Constructing a

document representation for life sciences text). Once embedded, we selected manuscripts

close to the query via Euclidean distance in the embedding space. Once identified, we return

articles along with journals that published these identified articles.

We constructed a journal-based approach to accompany the article-based classifier while

accounting for the overrepresentation of these high publishing frequency journals. We identified

the most similar journals for this approach by constructing a journal representation in the same

embedding space. We computed this representation by taking the average embedding of all pub-

lished papers within a given journal. We then projected a query article into the same space and

returned journals closest to the query using the same distance calculation described above.

Both models were constructed using the scikit-learn k-Nearest Neighbors implementation

[54] with the number of neighbors set to 10 as this is an appropriate number for our use case.

We consider a prediction to be a true positive if the correct journal appears within our

reported list of neighbors and evaluate our performance using 10-fold cross-validation on the

training set along with test set evaluation.

Web application for discovering similar preprints and journals

We developed a web application that places any bioRxiv or medRxiv preprint into the overall

document landscape and identifies topically similar papers and journals (similar to [61]). Our

application attempts to download the full text xml version of any preprint hosted on the bioR-

xiv or medRxiv server and uses the lxml package (version num) to extract text. If the xml ver-

sion isn’t available our application defaults to downloading the pdf version and uses

PyMuPDF [62] to extract text from the pdf. The extracted text is fed into our CBOW model to

construct a document embedding representation. We pass this representation onto our journal
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and article classifiers to identify journals based on the 10 closest neighbors of individual papers

and journal centroids. We implemented this search using the scikit-learn implementation of

k-d trees. To run it more cost-effectively in a cloud computing environment with limited avail-

able memory, we sharded the k-d trees into 4 trees.

The app provides a visualization of the article’s position within our training data to illustrate

the local publication landscape. We used SAUCIE [63], an autoencoder designed to cluster sin-

gle-cell RNA-seq data, to build a two-dimensional embedding space that could be applied to

newly generated preprints without retraining, a limitation of other approaches that we

explored for visualizing entities expected to lie on a nonlinear manifold. We trained this

model on document embeddings of PMC articles that did not contain a matching preprint ver-

sion. We used the following parameters to train the model: a hidden size of 2, a learning rate of

0.001, lambda_b of 0, lambda_c of 0.001, and lambda_d of 0.001 for 5,000 iterations. When a

user requests a new document, we can then project that document onto our generated two-

dimensional space, thereby allowing the user to see where their preprint falls along the land-

scape. We illustrate our recommendations as a shortlist and provide access to our network

visualization at our website (https://greenelab.github.io/preprint-similarity-search/).

Analysis of the Preprints in Motion collection

Our manuscript describes the large-scale analysis of bioRxiv. Concurrent with our work,

another set of authors performed a detailed curation and analysis of a subset of bioRxiv [25]

that was focused on preprints posted during the initial stages of the COVID-19 pandemic. The

curated analysis was designed to examine preprints at a time of increased readership [64] and

includes certain preprints posted from January 1, 2020 to April 30, 2020 [25]. We sought to con-

textualize this subset, which we term “Preprints in Motion” after the title of the preprint [25],

within our global picture of the bioRxiv preprint landscape. We extracted all preprints from the

set reported in Preprints in Motion [25] and retained any entries in the bioRxiv repository. We

manually downloaded the XML version of these preprints and mapped them to their published

counterparts as described above. We used PMC’s digital object identifier (DOI) converter [65]

to map the published article DOIs with their respective PMC IDs. We retained articles that were

included in the PMCOA corpus and performed a token analysis as described to compare these

preprints with their published versions. As above, we generated document embeddings for

every obtained preprint and published article. We projected these preprint embeddings onto

our publication landscape to visually observe the dispersion of this subset. We performed a time

analysis that paralleled our approach for the full set of preprint–publication pairs to examine

relationships between linguistic changes and the time to publication. The “Preprints in Motion”

subset includes recent papers, and the longest time to publish in that set was 195 days; however,

our bioRxiv snapshot contains both older preprint–published pairs and many with publication

times longer than this time point. The optimum comparison would be to consider only pre-

prints posted on the same days as preprints with the “Preprints in Motion” collection. However,

based on our results examining publication rate over time, these preprints may not have made

it entirely through the publication process. We performed a secondary analysis to control for

the time since posting, where we filtered the bioRxiv snapshot to only contain publication pairs

with publication time of less than or equal to 195 days.

Results

Comparing bioRxiv to other corpora

bioRxiv metadata statistics. The preprint landscape is rapidly changing, and the number

of bioRxiv preprints in our data download (71,118) was nearly double that of a recent study
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that reported on a snapshot with 37,648 preprints [13]. Because the rate of change is rapid, we

first analyzed category data and compared our results with previous findings. As in previous

reports [13], neuroscience remains the most common category of preprints, followed by bioin-

formatics (S2 Fig). Microbiology, which was fifth in the most recent report [13], has now sur-

passed evolutionary biology and genomics to move into third. When authors upload their

preprints, they select from 3 result category types: new results, confirmatory results, or contra-

dictory results. We found that nearly all preprints (97.5%) were categorized as new results,

consistent with reports on a smaller set [66]. The results taken together suggest that while

bioRxiv has experienced dramatic growth, how it is being used appears to have remained con-

sistent in recent years.

Global analysis reveals similarities and differences between bioRxiv and PMC. Docu-

ments within bioRxiv were slightly longer than those within PMCOA, but both were much

longer than those from the control (NYTAC) (Table 1). The average sentence length, the frac-

tion of pronouns, and the use of the passive voice were all more similar between bioRxiv and

PMC than they were to NYTAC (Table 1). The KL divergence of term frequency distributions

between bioRxiv and PMCOA were low, especially among the top few hundred tokens (Fig

1A). As more tokens were incorporated, the KL divergence started to increase but remained

much lower than the biomedical corpora compared against NYTAC. We provide a listing of

the top 100 most frequently occurring tokens from all 3 corpora in our supporting information

(S4 Table). These findings support our notion that bioRxiv is linguistically similar to the

PMCOA repository.

The terms “neurons,” “genome,” and “genetic,” which are common in genomics and neuro-

science, were more common in bioRxiv than PMCOA, while others associated with clinical

research, such as “clinical,” “patients,” and “treatment” were more common in PMCOA (Fig

1B, Fig 1C, and S3 Fig). When controlling for the differences in the body of documents to

identify textual changes associated with the publication process, we found that tokens such as

“et” and “al” were enriched for bioRxiv, while “±” and “–” were enriched for PMCOA (Fig 1D

and 1E). When removing special and single-character tokens, data availability and presenta-

tion-related terms “file,” “supplementary,” and “fig” appeared enriched for published articles,

and research-related terms “mice,” “activity,” and “neurons” appeared enriched for bioRxiv

Table 1. Summary statistics for the bioRxiv, PMC, and NYTAC corpora.

Metric bioRxiv PMC NYTAC

document count 71,118 1,977,647 1,855,658

sentence count 22,195,739 480,489,811 72,171,037

token count 420,969,930 8,597,101,167 1,218,673,384

stopword count 158,429,441 3,153,077,263 559,391,073

avg. document length 312.10 242.96 38.89

avg. sentence length 22.71 21.46 19.89

negatives 1,148,382 24,928,801 7,272,401

coordinating conjunctions 14,295,736 307,082,313 38,730,053

coordinating conjunctions% 3.40% 3.57% 3.18%

pronouns 4,604,432 74,994,125 46,712,553

pronouns% 1.09% 0.87% 3.83%

passives 15,012,441 342,407,363 19,472,053

passive% 3.57% 3.98% 1.60%

NYTAC, New York Times Annotated Corpus; PMC, PubMed Central.

https://doi.org/10.1371/journal.pbio.3001470.t001
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Fig 1. (A) The KL divergence measures the extent to which the distributions, not specific tokens, differ from each other. The token

distribution of bioRxiv and PMC corpora is more similar than these biomedical corpora are to the NYTAC one. (B) The significant

differences in token frequencies for the corpora appear to be driven by the fields with the highest uptake of bioRxiv, as terms from

neuroscience and genomics are relatively more abundant in bioRxiv. We plotted the 95% confidence interval for each reported token.

(C) Of the tokens that differ between bioRxiv and PMC, the most abundant in bioRxiv are “et” and “al,” while the most abundant in

PMC is “study.” (D) The significant differences in token frequencies for preprints and their corresponding published version often

appear to be associated with typesetting and supporting information or additional materials. We plotted the 95% confidence interval for

each reported token. (E) The tokens with the largest absolute differences in abundance appear to be stylistic. Data for the information

depicted in this figure are available at https://github.com/greenelab/annorxiver/blob/master/FIGURE_DATA_SOURCE.md#figure-

one. KL, Kullback–Leibler; NYTAC, New York Times Annotated Corpus; PMC, PubMed Central.

https://doi.org/10.1371/journal.pbio.3001470.g001
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(S4 Fig). Furthermore, we found that specific changes appeared to be related to journal styles:

“figure” was more common in bioRxiv, while “fig” was relatively more common in PMCOA.

Other changes appeared to be associated with an increasing reference to content external to

the manuscript itself: the tokens “supplementary,” “additional,” and “file” were all more com-

mon in PMCOA than bioRxiv, suggesting that journals are not simply replacing one token

with another but that there are more mentions of such content after peer review.

These results suggest that the text structure within preprints on bioRxiv is similar to pub-

lished articles within PMCOA. The differences in uptake across fields are supported by the

authors’ categorization of their articles and the text within the articles themselves. At the level

of individual manuscripts, the most change terms appear to be associated with typesetting,

journal style, and an increasing reliance on additional materials after peer review.

Following our analysis of tokens, we examined the PCs of document embeddings derived

from bioRxiv. We found that the top PCs separated methodological approaches and research

fields. Preprints from certain topic areas that spanned approaches from informatics-related to

cell biology could be distinguished using these PCs (see S1 Text).

Document embedding similarities reveal unannotated preprint–

publication pairs

Distances between preprints and their corresponding published versions were nearly always

lower than preprints paired with a random article published in the same journal (Fig 2A). This

suggested that embedding distances may predict the published form of preprints. We directly

tested this by selecting low-distance but unannotated preprint–publication pairs and curating

the extent to which they represented matching documents. Approximately 98% of our 200

pairs with an embedding distance in the 0 to 25th and 25th to 50th percentile bins were suc-

cessfully matched with their published counterpart (Fig 2B). These 2 bins contained 1,542 pre-

print–article pairs, suggesting that many preprints may have been published but not

previously connected with their published versions. There is a particular enrichment for pre-

prints published but unlinked within the 2017 to 2018 interval (Fig 2C). We expected a higher

proportion of such preprints before 2019 (many of which may not have been published yet);

however, observing relatively few missed annotations before 2017 was against our expecta-

tions. There are several possible explanations for this increasing fraction of missed annota-

tions. As the number of preprints posted on bioRxiv grows, it may be harder for bioRxiv to

establish a link between preprints and their published counterparts simply due to the scale of

the challenge. It is possible that the set of authors participating in the preprint ecosystem is

changing and that new participants may be less likely to report missed publications to bioRxiv.

Finally, as familiarity with preprinting grows, it is possible that authors are posting preprints

earlier in the process and that metadata fields that bioRxiv uses to establish a link may be less

stable.

Preprints with more versions or more text changes relative to their

published counterpart took longer to publish

The process of peer review includes several steps, which take variable amounts of time [67],

and we sought to measure if there is a difference in publication time between author-selected

categories of preprints (Fig 3A). Of the most abundant preprint categories, microbiology was

the fastest to publish (140 days, (137, 145 days) [95% CI]), and genomics was the slowest (190

days, (185, 195 days) [95% CI]) (Fig 3A). We did observe category-specific differences; how-

ever, these differences were generally modest, suggesting that the peer review process did not

differ dramatically between preprint categories. One exception was the Scientific
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Communication and Education category, which took substantially longer to be peer reviewed

and published (373 days, (373, 398 days) [95% CI]). This hints that there may be differences in

the publication or peer review process or culture that apply to preprints in this category.

Examining peer review’s effect on individual preprints, we found a positive correlation

between preprints with multiple versions and the time elapsed until publication (Fig 3B).

Every additional preprint version was associated with an increase of 51 days before a preprint

was published. This time duration seems broadly compatible with the amount of time it would

Fig 2. (A) Preprints are closer in document embedding space to their corresponding peer-reviewed publication than they are to random papers published in

the same journal. (B) Potential preprint–publication pairs that are unannotated but within the 50th percentile of all preprint–publication pairs in the document

embedding space are likely to represent true preprint–publication pairs. We depict the fraction of true positives over the total number of pairs in each bin.

Accuracy is derived from the curation of a randomized list of 200 potential pairs (50 per quantile) performed in duplicate with a third rater used in the case of

disagreement. (C) Most preprints are eventually published. We show the publication rate of preprints since bioRxiv first started. The x-axis represents months

since bioRxiv started, and the y-axis represents the proportion of preprints published given the month they were posted. The light blue line represents the

publication rate previously estimated by Abdill and colleagues [13]. The dark blue line represents the updated publication rate using only CrossRef-derived

annotations, while the dark green line includes annotations derived from our embedding space approach. The horizontal lines represent the overall proportion

of preprints published as of the time of the annotated snapshot. The dashed horizontal line represents the overall proportion published preprints for preprints

posted before 2019. Data for the information depicted in this figure are available at https://github.com/greenelab/annorxiver/blob/master/FIGURE_DATA_

SOURCE.md#figure-two.

https://doi.org/10.1371/journal.pbio.3001470.g002
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take to receive reviews and revise a manuscript, suggesting that many authors may be updating

their preprints in response to peer reviews or other external feedback. The embedding space

allows us to compare preprint and published documents to determine if the level of change

that documents undergo relates to the time it takes them to be published. Distances in this

space are arbitrary and must be compared to reference distances. We found that the average

distance of 2 randomly selected papers from the bioinformatics category was 4.470, while the

average distance of 2 randomly selected papers from bioRxiv was 5.343. Preprints with large

embedding space distances from their corresponding peer-reviewed publication took longer

to publish (Fig 3C): Each additional unit of distance corresponded to roughly 43 additional

days.

Overall, our findings support a model where preprints are reviewed multiple times or

require more extensive revisions take longer to publish.

Preprints with similar document embeddings share publication venues

We developed an online application that returns a listing of published papers and journals

closest to a query preprint in document embedding space. This application uses 2 k-nearest

Fig 3. (A) Author-selected categories were associated with modest differences in the median time to publish. Author-selected preprint categories are shown on

the y-axis, while the x-axis shows the median time-to-publish for each category. Error bars represent 95% confidence intervals for each median measurement.

(B) Preprints with more versions were associated with a longer time to publish. The x-axis shows the number of versions of a preprint posted on bioRxiv. The

y-axis indicates the number of days that elapsed between the first version of a preprint posted on bioRxiv and the date at which the peer-reviewed publication

appeared. The density of observations is depicted in the violin plot with an embedded boxplot. (C) Preprints with more substantial text changes took longer to

be published. The x-axis shows the Euclidean distance between document representations of the first version of a preprint and its peer-reviewed form. The y-

axis shows the number of days elapsed between the first version of a preprint posted on bioRxiv and when a preprint is published. The color bar on the right

represents the density of each hexbin in this plot, where more dense regions are shown in a brighter color. Data for the information depicted in this figure are

available at https://github.com/greenelab/annorxiver/blob/master/FIGURE_DATA_SOURCE.md#figure-three.

https://doi.org/10.1371/journal.pbio.3001470.g003
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neighbor classifiers that achieved better performance than our baseline model (S5 Fig) to iden-

tify these entities. Users supply our app with DOIs from bioRxiv or medRxiv, and the corre-

sponding preprint is downloaded from the repository. Next, the preprint’s PDF is converted to

text, and this text is used to construct a document embedding representation. This representa-

tion is supplied to our classifiers to generate a listing of the 10 papers and journals with the

most similar representations in the embedding space (Fig 4A–4C). Furthermore, the user-

requested preprint’s location in this embedding space is then displayed on our interactive

map, and users can select regions to identify the terms most associated with those regions (Fig

4D and 4E). Users can also explore the terms associated with the top 50 PCs derived from the

document embeddings, and those PCs vary across the document landscape. You can access

this application using the following url: https://greenelab.github.io/preprint-similarity-search/

Contextualizing the Preprints in Motion collection

The Preprints in Motion collection included a set of preprints posted during the first 4 months

of 2020. We examined the extent to which preprints in this set were representative of the pat-

terns that we identified from our analysis on all of bioRxiv. As with all of bioRxiv, typesetting

tokens changed between preprints and their paired publications. Our token-level analysis

identified certain patterns consistent with our findings across bioRxiv (Fig 5A and 5B). How-

ever, in this set, we also observe changes likely associated with the fast-moving nature of

COVID-19 research: The token “2019-ncov” became less frequently represented, while “sars”

Fig 4. The preprint-similarity-search app workflow allows users to examine where an individual preprint falls in the overall document landscape. (A)

Starting with the home screen, users can paste in a bioRxiv or medRxiv DOI, which sends a request to bioRxiv or medRxiv. Next, the app preprocesses the

requested preprint and returns a listing of (B) the top 10 most similar papers and (C) the 10 closest journals. (D) The app also displays the location of the query

preprint in PMC. (E) Users can select a square within the landscape to examine statistics associated with the square, including the top journals by article count

in that square and the odds ratio of tokens. DOI, digital object identifier; PMC, PubMed Central.

https://doi.org/10.1371/journal.pbio.3001470.g004
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Fig 5. The Preprints in Motion collection results are similar to all preprint results, except that their time to publication was independent of the number

of preprint versions and amount of linguistic change. (A) Tokens that differed included those associated with typesetting and those related to the

nomenclature of the virus that causes COVID-19. Error bars show 95% confidence intervals for each token. (B) Of the tokens that differ between Preprints in

Motion and their published counterparts, the most abundant were associated with the nomenclature of the virus. (C) The Preprints in Motion collection fall
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and “cov-2” became more represented, likely due to a shift in nomenclature from

“2019-nCoV” to “SARS-CoV-2”. The Preprints in Motion were not strongly colocalized in the

linguistic landscape, suggesting that the collection covers a diverse set of research approaches

(Fig 5C). Preprints in this collection were published faster than the broader set of bioRxiv pre-

prints (Fig 5D and 5E). We see the same trend when filtering the broader bioRxiv set to only

contain preprints published within the same time frame as this collection (S6A and S6B Fig).

The relationship between time to publication and the number of versions (Fig 5D and S6A

Fig) and the relationship between time to publication and the amount of linguistic change (Fig

5E and S6B Fig) were both lost in the Preprints in Motion set. Our findings suggest that Pre-

prints in Motion changed during publication in ways aligned with changes in the full preprint

set but that peer review was accelerated in ways that broke the time dependencies observed

with the full bioRxiv set.

Discussion and conclusions

bioRxiv is a constantly growing repository that contains life science preprints. Over 77% of

bioRxiv preprints with a corresponding publication in our snapshot were successfully detected

within PMCOA corpus. This suggests that most work from groups participating in the pre-

print ecosystem is now available in final form for literature mining and other applications.

Most research on bioRxiv preprints has examined their metadata; we examine the text content

as well. Throughout this work, we sought to analyze the language within these preprints and

understand how it changes in response to peer review.

Our global corpora analysis found that writing within bioRxiv is consistent with the bio-

medical literature in the PMCOA repository, suggesting that bioRxiv is linguistically similar to

PMCOA. Token-level analyses between bioRxiv and PMCOA suggested that research fields

drive significant differences; for instance, more patient-related research is prevalent in

PMCOA than bioRxiv. This observation is expected as preprints focused on medicine are sup-

ported by the complementary medRxiv repository [8]. Token-level analyses for preprints and

their corresponding published version suggest that peer review may focus on data availability

and incorporating extra sections for published papers; however, future studies are needed to

ascertain individual token level changes as preprints venture through the publication process.

One future avenue of research could examine the differences between only preprints and

accepted author manuscripts within PMC to identify changes prior to journal publication.

Document embeddings are a versatile way to examine language contained within preprints,

understand peer review’s effect on preprints, and provide extra functionality for preprint

repositories. Our approach to generate document embeddings was focused on interpretability

instead of predictive performance; however, using more advanced strategies to generate docu-

ment vectors such as Doc2Vec [38] or BERT [68] should increase predictive performance.

across the landscape of PMCOA with respect to linguistic properties. This square bin plot depicts the binning of all published papers within the PMCOA

corpus. High-density regions are depicted in yellow, while low-density regions are in dark blue. Red dots represent the Preprints in Motion collection. (D) The

Preprints in Motion collection were published faster than other bioRxiv preprints, and the number of versions was not associated with an increase in time to

publication. The x-axis shows the number of versions of a preprint posted on bioRxiv. The y-axis indicates the number of days that elapsed between the first

version of a preprint posted on bioRxiv and the date at which the peer-reviewed publication appeared. The density of observations is depicted in the violin plot

with an embedded boxplot. The red dots and red regression line represent Preprints in Motion. (E) The Preprints in Motion collection were published faster

than other bioRxiv preprints, and no dependence between the amount of linguistic change and time to publish was observed. The x-axis shows the Euclidean

distance between document representations of the first version of a preprint and its peer-reviewed form. The y-axis shows the number of days elapsed between

the first version of a preprint posted on bioRxiv and when a preprint is published. The color bar on the right represents the density of each hexbin in this plot,

where more dense regions are shown in a brighter color. The red dots and red regression line represent Preprints in Motion. Data for the information depicted

in this figure are available at https://github.com/greenelab/annorxiver/blob/master/FIGURE_DATA_SOURCE.md#figure-five. PMCOA, Pubmed Central’s

Open Access.

https://doi.org/10.1371/journal.pbio.3001470.g005
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Examining linguistic variance within document embeddings of life science preprints revealed

that the largest source of variability was informatics. This observation bisects the majority of

life science research categories that have integrated preprints within their publication work-

flow. This embedding space could also be used to quantify sentiment trends or other linguistic

features. Furthermore, methodologies for uncovering latent scientific knowledge [69] may be

applicable in this embedding space.

Preprints are typically linked with their published articles via bioRxiv manually establishing

links or authors self-reporting that their preprint has been published; however, gaps can occur

as preprints change their appearance through multiple versions or authors do not notify bioR-

xiv. Our work suggests that document embeddings can help fill in missing links within

bioRxiv.

Furthermore, our analysis reveals that the publication rate for preprints is higher than pre-

viously estimated, even though our analysis can only account for published open access papers.

Our results raise the lower bound of the total preprint publication fraction; however, the true

fraction is necessarily higher. Future work, especially that which aims to assess the fraction of

preprints that are eventually published, should account for the possibility of missed

annotations.

Preprints take a variable amount of time to become published, and we examined factors

that influence a preprint’s time to publication. Our half-life analysis on preprint categories

revealed that preprints in most bioRxiv categories take similar amounts of time to be pub-

lished. An apparent exception is the scientific communication and education category, which

contained preprints that took much longer to publish. Regarding individual preprints, each

new version adds several weeks to a preprints time to publication, which is roughly aligned

with authors making changes after a round of peer review; furthermore, preprints that

undergo substantial changes take longer to publish. Overall, these results illustrate that bioRxiv

is a practical resource for obtaining insight into the peer review process.

Lastly, we found that document embeddings were associated with the eventual journal at

which the work was published. We trained 2 machine learning models to identify which jour-

nals publish linguistically similar papers toward a query preprint. Our models achieved a con-

siderably higher fold change over the baseline model, so we constructed a web application that

makes our models available to the public and returns a list of the papers and journals that are

linguistically similar to a bioRxiv or medRxiv preprint.

Supporting information

S1 Text. Document embeddings derived from bioRxiv reveal fields and subfields.

(DOCX)

S1 Data. Listing of published preprints and their corresponding publication times.

(XLSX)

S1 Table. PC1 divided the author-selected category of systems biology preprints along an

axis from computational to molecular approaches.

(DOCX)

S2 Table. Top and bottom 5 cosine similarity scores between tokens and the PC1 axis.

(TSV)

S3 Table. Top and bottom 5 cosine similarity scores between tokens and the PC2 axis.
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S4 Table. The top 100 frequently occurring tokens across our three corpora.

(TSV)

S1 Fig. (A) PCA of bioRxiv word2vec embeddings groups documents based on author-

selected categories. We visualized documents from key categories on a scatterplot for the first

2 PCs. The first PC separated cell biology from informatics-related fields, and the second PC

separated bioinformatics from neuroscience fields. (B) A word cloud visualization of PC1.

Each word cloud depicts the cosine similarity score between tokens and the first PC. Tokens in

orange were most similar to the PC’s positive direction, while tokens in blue were most similar

to the PC’s negative direction. The size of each token indicates the magnitude of the similarity.

(C) A word cloud visualization of PC2, which separated bioinformatics from neuroscience.

Similar to the first PC, tokens in orange were most similar to the PC’s positive direction, while

tokens in blue were most similar to the PC’s negative direction. The size of each token indi-

cates the magnitude of the similarity. (D) Examining PC1 values for each article by category

created a continuum from informatics-related fields on the top through cell biology on the

bottom. Specific article categories (neuroscience and genetics) were spread throughout PC1

values. (E) Examining PC2 values for each article by category revealed fields like genomics,

bioinformatics, and genetics on the top and neuroscience and behavior on the bottom. PC,

principal component; PCA, principal component analysis.

(TIFF)

S2 Fig. Neuroscience and bioinformatics are the 2 most common author-selected topics

for bioRxiv preprints.

(TIFF)

S3 Fig. (A) The significant differences in token frequencies for the corpora appear to be

driven by the fields with the highest uptake of bioRxiv, as terms from neuroscience and geno-

mics are relatively more abundant in bioRxiv. We plotted the 95% confidence interval for each

reported token. (B) Of the tokens that differ between bioRxiv and PMC, the most abundant in

bioRxiv are “gene,” “genes,” and “model,” while the most abundant in PMC is “study.” PMC,

PubMed Central.

(TIFF)

S4 Fig. (A) The significant differences in token frequencies for preprints and their corre-

sponding published version often appear to be associated with data availability and supporting

information or additional materials. We plotted the 95% confidence interval for each reported

token. (B) The tokens with the largest absolute differences in abundance appear related to sci-

entific figures and data availability.

(TIFF)

S5 Fig. Both classifiers outperform the randomized baseline when predicting a paper’s

journal endpoint. This bargraph shows each model’s accuracy in respect to predicting the

training and test set.

(TIFF)

S6 Fig. (A) The Preprints in Motion were published faster than other bioRxiv preprints, and

the number of versions was not associated with an increase in time to publication. The x-axis

shows the number of versions of a preprint posted on bioRxiv. The y-axis indicates the number

of days that elapsed between the first version of a preprint posted on bioRxiv and the date at

which the peer-reviewed publication appeared. The density of observations is depicted in the

violin plot with an embedded boxplot. The red dots and red regression line represent Preprints

in Motion. (B) The Preprints in Motion collection were published faster than other bioRxiv
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preprints, and no dependence between the amount of linguistic change and time to publish

was observed. The x-axis shows the Euclidean distance between document representations of

the first version of a preprint and its peer-reviewed form. The y-axis shows the number of days

elapsed between the first version of a preprint posted on bioRxiv and when a preprint is pub-

lished. The color bar on the right represents the density of each hexbin in this plot, where

more dense regions are shown in a brighter color. The red dots and red regression line repre-

sent Preprints in Motion.

(TIFF)
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