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Growth rates of modern science: a latent piecewise
growth curve approach to model publication
numbers from established and new literature
databases
Lutz Bornmann 1✉, Robin Haunschild 2 & Rüdiger Mutz3

Growth of science is a prevalent issue in science of science studies. In recent years, two new

bibliographic databases have been introduced, which can be used to study growth processes

in science from centuries back: Dimensions from Digital Science and Microsoft Academic. In

this study, we used publication data from these new databases and added publication data

from two established databases (Web of Science from Clarivate Analytics and Scopus from

Elsevier) to investigate scientific growth processes from the beginning of the modern science

system until today. We estimated regression models that included simultaneously the

publication counts from the four databases. The results of the unrestricted growth of science

calculations show that the overall growth rate amounts to 4.10% with a doubling time of 17.3

years. As the comparison of various segmented regression models in the current study

revealed, models with four or five segments fit the publication data best. We demonstrated

that these segments with different growth rates can be interpreted very well, since they are

related to either phases of economic (e.g., industrialization) and/or political developments

(e.g., Second World War). In this study, we additionally analyzed scientific growth in two

broad fields (Physical and Technical Sciences as well as Life Sciences) and the relationship of

scientific and economic growth in UK. The comparison between the two fields revealed only

slight differences. The comparison of the British economic and scientific growth rates showed

that the economic growth rate is slightly lower than the scientific growth rate.
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Introduction

Growth of science is an ongoing topic in empirical and
theoretical studies on science of science. In a recent
overview of science of science studies, Fortunato et al.

(2018) stated that “early studies discovered an exponential growth
in the volume of scientific literature … a trend that continues
with an average doubling period of 15 years”. The investigation of
growth processes leads to results that can be used to characterize
science. For example, if the literature doubles every 15 years,
science would be characterized by immediacy: “the bulk of
knowledge remains always at the cutting edge” (Wang and
Barabási, 2021, p. 163). Results on growth processes can also be
used to investigate the validity of theories on the development of
science: Does science follow a slow, piecemeal process or a pro-
cess with normal science interrupted by revolutionary periods
with an increased level of activity (Kuhn, 1962; Tabah, 1999)?
Popular early studies on growth of science have been published
by the theoretician of science, Derek John de Solla Price (1965;
1951, 1961) who can be seen as the pioneer in investigating
growth of science processes (see de Bellis, 2009). According to
Price (1986), the development of science follows the law of
exponential growth: “at any time the rate of growth is propor-
tional to the … total magnitude already achieved—the bigger a
thing is, the faster it grows” (p. 4). Although empirical and the-
oretical studies in previous decades have confirmed exponential
growth, a precise estimation of the growth rate based on reliable
and sound publication data has not been done yet.

In most of the studies on growth of science published hitherto,
bibliometric data have been used to measure growth of science
(an alternative measure is the number of researchers, for
instance). It is an advantage of using bibliometric data (compared
to other data) that large-scale, multi-disciplinary databases are
available based on worldwide publication productions. Another
advantage is the characteristic of most scientific disciplines that
publications are the main outcome: “science would not exist, if
scientific results are not communicated. Communication is the
driving force of science. That is why scientists have to publish
their research results in the open, international scientific litera-
ture. Thus, publications are essential” (van Raan, 1999, p. 417).
According to Merton (1988), “what we mean by the expression
‘scientific contribution’: an offering that is accepted, however
provisionally, into the common fund of knowledge” (p. 620).

In a previous study (Bornmann and Mutz, 2015), two authors
of the current study investigated the growth of science based on
data from the Web of Science database (Clarivate Analytics;
Birkle et al., 2020). Bornmann and Mutz (2015) not only used
annual publication numbers but also cited references data (see
Marx and Bornmann, 2016, for an overview of the use of cited
references data in scientometrics). They argued that Web of
Science data (publication counts) are scarcely suitable to inves-
tigate early periods of modern science, since early publications are
not sufficiently covered. Cited references may have the advantage
of covering these early periods and a wider range of document
types, including journal articles, books, book contributions or
proceedings, which are still not fully included in the databases.
However, cited references data can only serve as a less-than-ideal
proxy of publication numbers, because non-cited publications are
not considered. In recent years, new bibliographic databases have
been introduced: Dimensions (Herzog et al., 2020; Hook et al.,
2018) from Digital Science and Microsoft Academic (Wang et al.,
2020), which can be used to study growth processes in science
from centuries back. Thus, it is the intention of the current study
to use both databases for investigating these processes and
compare the results with those from Web of Science and Scopus
(Elsevier; Baas et al., 2020).

With Dimensions, Microsoft Academic, Web of Science, and
Scopus, we considered in this study (the most) important multi-
disciplinary literature databases currently available. The compar-
ison of the empirical results based on the four databases may point
to an assessment of growth processes in science that might be
interpreted as valid—since the assessments can be made indepen-
dently of the use of single data sources. We investigated the growth
processes not only for all annual publications in the databases, but
also for two broad fields: (1) Physical and Technical Sciences and
(2) Life Sciences (including Health Sciences). We selected these
broad fields and did not consider further fields such as social sci-
ences and humanities. Only for these two fields, we can be sure that
publication data can be used as valid proxy for research activity.

In this study, we additionally undertook a comparative ana-
lysis of economic and scientific growth processes. According to
Price (1986), the theoretical basis for the study of econometrics
is similar to that for the study of scientometrics: both follows the
law of exponential growth (differences lie in the parameters).
Previous scientometrics research revealed that growth of science
is related to economic development (Fernald and Jones, 2014;
Salter and Martin, 2001). Although a national science system
producing high-quality research is—without doubt—an impor-
tant condition for national wealth, we primarily consider money
as necessary input to the science system (and thus, economic
growth as independent variable). In principle, national wealth
can be achieved without a modern science system (as has been
done for centuries), but (modern) science needs economy to
exist and function.

Our comparative analysis of scientometrics and econometrics
could not be done based on worldwide data, since long-time
series for publication counts and economic growth indices are not
available at this level. Following seminal research by May (1997)
and King (2004a, 2004b) on the relationship of science and
economy, we focus instead on UK for which time series of eco-
nomic development are available that reach back to the seven-
teenth century (Thomas et al., 2010). Such historical data are not
available for other countries (to the best of our knowledge). Using
similar statistical methods as for publication data, we investigated
in this study annual growth rates in gross domestic product
(GDP) as a measure of economic wealth of a nation similar to the
approach by King (2004a, 2004b).

Methods
Dataset used. We used bibliometric and economic data in this
study. The five different databases and datasets are as follows:

Web of Science. The core citation indices of Web of Science (SCI-
E, SSCI, and A&HCI) date back into the 1960s when they
were founded by Eugene Garfield. The other citation indices
were started later on (e.g., CPCI-S and CPCI-SSH). In total, the
publications indexed in the Web of Science are divided into 44
different document types (e.g., “Review”, “News item”, or
“Note”). The coverage of the scientific literature dates back to
1900. The Web of Science is more selective with respect to the
choice of indexed sources than the other databases in this study
(Visser et al., 2021). We used the advanced search of the Web of
Science online interface1 with the query “py= 1900–2018” in the
indices SCI-E, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S,
BKCI-SSH, ESCI, CCR-EXPANDED, and IC (Index Chemicus)
(date of search: 30 August 2019). No restriction on document
types was imposed. Via the “Analyze Results” function applied to
publication years, we were able to conveniently download the
number of indexed papers per year.
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Broad subject categories were defined via the Web of Science
subject categories:

Physical and Technical Sciences: “Astronomy & Astrophy-
sics”, “Chemistry”, “Crystallography”, “Electrochemistry”,
“Geochemistry & Geophysics”, “Geology”, “Mathematics”,
“Meteorology & Atmospheric Sciences”, “Mineralogy”,
“Mining & Mineral Processing”, “Oceanography”, “Optics”,
“Physical Geography”, “Physics”, “Polymer Science”, “Ther-
modynamics”, “Water Resources”, “Acoustics”, “Automation
& Control Systems”, “Computer Science”, “Construction &
Building Technology”, “Energy & Fuels”, “Engineering”,
“Imaging Science & Photographic Technology”, “Information
Science & Library Science”, “Instruments & Instrumentation”,
“Materials Science”, “Mechanics”, “Metallurgy & Metallurgical
Engineering”, “Microscopy”, “Nuclear Science & Technology”,
“Operations Research & Management Science”, “Remote
Sensing”, “Robotics”, “Science & Technology Other Topics”,
“Spectroscopy”, “Telecommunications”, and “Transportation”.
Life Sciences (including Health Sciences): “Agriculture”,
“Allergy”, “Anatomy & Morphology”, “Anesthesiology”,
“Anthropology”, “Audiology & Speech-Language Pathology”,
“Behavioral Sciences”, “Biochemistry & Molecular Biology”,
“Biodiversity & Conservation”, “Biophysics”, “Biotechnology &
Applied Microbiology”, “Cardiovascular System & Cardiol-
ogy”, “Cell Biology”, “Critical Care Medicine”, “Dentistry, Oral
Surgery & Medicine”, “Dermatology”, “Developmental Biol-
ogy”, “Emergency Medicine”, “Endocrinology & Metabolism”,
“Entomology”, “Environmental Sciences & Ecology”, “Evolu-
tionary Biology”, “Fisheries”, “Food Science & Technology”,
“Forestry”, “Gastroenterology & Hepatology”, “General &
Internal Medicine”, “Genetics & Heredity”, “Geriatrics &
Gerontology”, “Health Care Sciences & Services”, “Hematol-
ogy”, “Immunology”, “Infectious Diseases”, “Integrative &
Complementary Medicine”, “Legal Medicine”, “Life Sciences
Biomedicine Other Topics”, “Marine & Freshwater Biology”,
“Mathematical & Computational Biology”, “Medical Ethics”,
“Medical Informatics”, “Medical Laboratory Technology”,
“Microbiology”, “Mycology”, “Neurosciences & Neurology”,
“Nursing”, “Nutrition & Dietetics”, “Obstetrics & Gynecology”,
“Oncology”, “Ophthalmology”, “Orthopedics”, “Otorhinolar-
yngology”, “Paleontology”, “Parasitology”, “Pathology”,
“Pediatrics”, “Pharmacology & Pharmacy”, “Physiology”,
“Plant Sciences”, “Psychiatry”, “Public, Environmental &
Occupational Health”, “Radiology, Nuclear Medicine &
Medical Imaging”, “Rehabilitation”, “Reproductive Biology”,
“Research & Experimental Medicine”, “Respiratory System”,
“Rheumatology”, “Sport Sciences”, “Substance Abuse”, “Sur-
gery”, “Toxicology”, “Transplantation”, “Tropical Medicine”,
“Urology & Nephrology”, “Veterinary Sciences”, “Virology”,
and “Zoology”.

Scopus. Scopus was launched in 2004 by the publisher Elsevier.
Coverage of the scientific literature dates back to 1861. The
publications indexed in Scopus are divided into 16 different
document types. Scopus has a broader coverage than Web of
Science, especially in the Social Sciences and Humanities
(Visser et al., 2021). We used the advanced search of the
Scopus online interface2 with the query “PUBYEAR AFT
1800” for this study (date of search: 30 August 2019). No
restriction on document types was imposed. Via the “Analyze
Search Results” function applied to publication years, we were
able to conveniently download the number of indexed papers
per year.

Broad subject categories were defined via the Scopus subject
areas:

Physical and Technical Sciences: “Chemical Engineering”,
“Chemistry”, “Computer Science”, “Earth and Planetary
Sciences”, “Energy”, “Engineering”, “Environmental Science”,
“Materials Science”, “Mathematics”, and “Physics and
Astronomy”.
Life Sciences (including Health Sciences): “Medicine”, “Nur-
sing”, “Veterinary”, “Dentistry”, “Health Professions”, “Multi-
disciplinary3”, “Agricultural and Biological Sciences”,
“Biochemistry, Genetics and Molecular Biology”, “Immunol-
ogy and Microbiology”, “Neuroscience”, and “Pharmacology,
Toxicology and Pharmaceutics”.

Microsoft Academic. Microsoft Academic was first released in
2016. It can be considered an unconventional bibliographic
database because its content is not delivered by the publishers but
found by the search engine Bing on the publisher’s websites. This
implies that especially the data from Microsoft Academic might
have a bias towards publications with a digital footprint. How-
ever, many publishers provide websites for their older publica-
tions, too. Microsoft Academic offers a basic search interface4 and
bulk data access via the Azure platform5. Microsoft Academic has
a broader coverage than Web of Science and Scopus (Visser et al.,
2021). We downloaded a snapshot of the Microsoft Academic
data from the Azure platform (last update: 11 January 2019). The
raw Microsoft Academic data were imported and processed in a
locally maintained PostgreSQL database at the Max Planck
Institute for Solid State Research. Our current snapshot of the
Microsoft Academic database contains bibliographic data of
212,209,775 publications, such as title, publication year, and
document type. Content coverage dates back to 1800. The pub-
lications indexed in Microsoft Academic are divided into five
different document types (“Journal”, “Patent”, “Conference”,
“BookChapter”, and “Book”). Unfortunately, 77,227,143 indexed
items are not assigned to any document type. Via SQL com-
mands, we produced items per publication year statistics for all
items with known document type in the Microsoft Academic
database excluding the document type patent but included the
items without document type for a separate analysis.

Microsoft Academic offers a subject classification on different
hierarchical levels. There are 19 different fields on the highest
level. Broad subject categories were defined via that highest level:

Physical and Technical Sciences: “Geology”, “Chemistry”,
“Materials science”, “Mathematics”, “Engineering”, “Environ-
mental science”, “Physics”, “Geography”, and “Computer
science”.
Life Sciences (including Health Sciences): “Biology” and
“Medicine”.

Dimensions. Dimensions is the most recent database used in this
study. It was launched in 2018 by Digital Science and contains
meta-information about grants, publications, clinical trials, and
patents. Like Web of Science and Scopus, Dimensions receives
publication data information from the publishers but pursues a
different indexing strategy. Dimensions tries to cover as many
publications and publication types as possible. Dimensions is
accessible via an online search interface6 an API, Google Big-
Query, and, additionally, Digital Science shares the raw data
without cost for research purposes7. The raw Dimensions data
(last update: 26 September 2019) were downloaded, imported and
processed in a locally maintained PostgreSQL database at the
Max Planck Institute for Solid State Research. The raw data of the
Dimensions database are provided as separate sub-databases:
“Grants”, “Publications”, “Clinical trials”, and “Patents”. In the
following, by using the term “Dimensions” in the text, we refer
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only to the Dimensions sub-database “Publications”. The indexed
publications therein are divided into six different publication
types (“Article”, “Chapter”, “Proceeding”, “Preprint”, “Mono-
graph”, and “Book”). Dimensions offers the second largest cov-
erage of the literature in this study (Visser et al., 2021).
Dimensions offers a much larger coverage of books and book
chapters than Web of Science or Scopus (Clarivate, 2020; Elsevier,
2020; Taylor, 2020). Via simple SQLs, we produced publications
per publication year statistics without restrictions on publication
types in the Dimensions database.

Dimensions offers many different classification schemes, some
of them are focused on specific disciplines or topics like
Sustainable Development Goals (SDGs). For the purposes of
our study, we have made use of the Dimensions implementation
of the Australian and New Zealand Standard Research Classifica-
tion (ANZSRC) Fields of Research (FOR) codes, as per the 2008
field definitions.8 The ANZSRC codes are delivered at three levels,
the two least granular levels of which have been implemented in
Dimensions. There are 22 fields of the highest level. Broad subject
categories were defined in this study via that higher level:

Physical and Technical Sciences: “Mathematical Sciences”,
“Physical Sciences”, “Chemical Sciences”, “Earth Sciences”,
“Environmental Sciences”, “Information and Computing
Sciences”, “Engineering”, “Technology”, and “Built Environ-
ment and Design”.
Life Sciences (including Health Sciences): “Biological
Sciences”, “Agricultural and Veterinary Sciences”, and “Med-
ical and Health Sciences”.

Federal Reserve Bank of St. Louis (FRED). The economic research
department of the FRED offers a series of datasets for economic
analyses and for analyses of the historical development of eco-
nomic indicators. A time series from 1770 to 2016 of the annual
“Nominal Gross Domestic Product at Market Prices in the UK,
Millions of British Pounds, Annual, Not Seasonally Adjusted”
(NGDPMPUKA) for UK was downloaded as an Excel table.9 We
use in the following the term “gross domestic product” or GDP
instead of NGDPMPUKA (to facilitate the reading of the results).
Since the values are nominal values, GDP is not adjusted for
inflation. Publication counts for UK were retrieved from
Dimensions for the years 1788 until 2016.

Growth Analysis. The data retrieved from the various databases is the
number of publications published in 1 year. For the growth analysis,
however, the cumulative number of publications is used. If, for
example, up to a year x, 1000 publications were published, and in the
year x 100, the accumulated number of publications in the year x is
1100 publications. The difference to year x – 1 is exactly the absolute
growth in year x, i.e., 100 publications, the number of publications
published in year x. For simplification, “Number of Publications” is
used below instead of “Cumulative Number of Publications”.

Statistical Analyses. Scientific growth processes do not necessa-
rily run homogeneously over time, especially when a long-time
horizon is chosen, for example, from the beginning of modern
science in the sixteenth/seventeenth century until today. There-
fore, modern growth analysis has to simultaneously address three
different problems: (1) Science can grow according to different
growth functions, which provide hypotheses about the nature of
growth processes (e.g., unrestricted exponential). (2) It can be
assumed that science grows at different rates in different time
periods or segments, i.e., growth rates vary over time. (3) Growth
functions might vary across different databases such as Scopus or
Web of Science covering different time horizons. In the following

sections, solutions to the three problems are presented, which
refer to growth functions (unrestricted and restricted exponential
growth), segmented regression, and latent growth curve models.

Growth functions. The simplest growth function is that of
unrestricted growth in the form of an exponential function, where
the growth of science in each year is proportional to the volume
of publications available in the previous year. An equal percen-
tage of volume grows every year. For example, if we assume an
annual growth rate of 10% and 100 publications in a certain year,
then there are 100+ 0.10*100= 110 publications in the following
year. One year later, there are 110+ 0.10*110= 121 publications
(and so on). Another growth function assumed by Price (1963) is
that of restricted growth: Science would run exponentially at the
beginning, but with time the growth process approaches an upper
capacity limit with constantly decreasing growth rates (s-shaped
course). In view of the limited capacities of human and invest-
ment capital for research (and other sections of society), the latter
thesis by Price (1963) seems to be more plausible than the sim-
plest growth function: Since resources (human resources, capital)
are limited, growth cannot be limitless either.

These considerations make it necessary to choose a statistical
analysis approach that starts from different time segments, in
which different growth rates apply and different growth functions
are possible as well. The time segments themselves are not known
in advance and have to be estimated. Such an opportunity is
offered by the “Segmented Regression” or “Piecewise Regression”
analyses, which start from different intervals of a dependent
variable (in this case: time). These regression analyses apply
different functional relationships and simultaneously make it
possible to estimate time segments and parameters of the growth
functions (Gallant and Fuller, 1973; McZgee and Carleton, 1970;
Schwarz, 2015; Toms and Lesperance, 2003; Valsamis et al., 2019;
Wagner et al., 2002). In this study, we assume a time series in
which the total number of publications yt is available per year,
where t denotes the index of the time series, and t= 0 the starting
year of the time series (e.g., for the year 1665: t= year–1665). We
assume two growth functions (see above):

Unrestricted exponential growth. The functional relationship for
exponential growth assumes that the derivative of the function is
proportional to the function itself: f(t) ~ b1 f(t). The resolution of
this differential equation leads to a functional relationship, which
can be represented in the following statistical model:

yt ¼ f tð Þ ¼ eb0eb1teεt ; εt � N 0; σ2CORRεtεt�1

� �
; ð1Þ

where eb0 represents the initial volume of publications at the
starting point of the time series (t= 0), b1 the growth constant,
and εt the residual with the variance σ2 as well as the correlation
matrix of the residuals CORRεtεt�1

. The latter is equated here with
the identity matrix I, which means that the residuals do not
(auto-)correlate. After the model estimation, we checked whether
the residuals of the estimated model are actually auto-correlated
or not. In the simplest case of an autoregressive process of first
order (AR(1)), the residuals at time t are (auto-)correlated with
the residuals at time t – 1.

If Eq. (1) is logarithmically transformed, a simple linear
regression function can be obtained:

lne yt
� � ¼ b0 þ b1t þ εt ; εt � N 0; σ2CORRεtεt�1

� �
ð2Þ

The doubling time k as the time the growth process needs to
double the population size at a given time point is:

k ¼ ln 2ð Þ= ln 1þ g
� �� �

; ð3Þ
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where k is the doubling time and g is the growth rate. The annual
growth rate g as the percentage change between two time points is
eb1 � 1 for Eq. (1). For b1= 0.05, for example, g amounts to 0.051
or 5.1%.

Restricted exponential growth (Verhulst-Pearl). For restricted
exponential growth as a special case of a logistic growth model
with a capacity limit C, the derivation of the function is pro-
portional to the following function: f(t)= b1 f(t) (1 – f(t)/C). The
resolution of this differential equation leads to a functional
relationship, which can be represented in the following statistical
model (Tsoularis and Wallace, 2002, p. 28f.):

yt ¼ f tð Þ ¼ eK eb0
eK�eb0ð Þe�b1 tþeb0

eεt ; εt � N 0; σ2CORRεtεt�1

� �
ð4Þ

It can be seen from Eq. 4 that if t→∞, the exponential
expression in the denominator, eb1t , goes towards zero and the
function approaches the capacity limit C= eK. At time t= 0,
the start of the time series, the exponential expression in the
denominator, e�b1t , is equal to 1 and the function corresponds to
the initial volume eb0 multiplied by the error term eεt . A limited
growth is assumed only for the first segment to rule out or not the
de Solla Price hypothesis of growth of science. The combination
of s-shaped segments over time seems to be implausible in light of
the empirical results on the growth of science by Bornmann and
Mutz (2015).

If Eq. (4) is logarithmically transformed, the following linear
regression function results:

lne yt
� � ¼ K þ b0 � lne eK � eb0

� �
e�b1t þ eb0

� �þ εt; εt � N 0; σ2CORRεtεt�1

� �

ð5Þ
In the following, we call the “restricted exponential growth

model (Verhulst-Pearl)” the “logistic growth model”.

Segmented regression. Following classic theories of economic
development, we consider the process of development in science
and economy as a sequence of historical stages (Dang and Sui
Pheng, 2015). In addition to the functional model, therefore, a
statistical framework model is required. We used segmented
regression that defines the regression models for different time
segments and can be represented in the form of nested IF-THEN
clauses for each segment j. In the case of unrestricted growth in
all segments j, the following overall model applies with year t0 as
the starting year of the time series (e.g., 1665):

IF t ≤ α1 THEN

log yt
� � ¼ b0 þ b1 t � t0

� �þ εt

ELSE IF t ≤ α2 THEN

log yt
� � ¼ b0 þ b1 a1 � t0

� �þ b2 t � a1
� �þ εt

ELSE IF t ≤ a3 THEN

log yt
� � ¼ b0 þ b1 a1 � t0

� �þ b2 a2 � a1
� �þ b3 t � a2

� �þ εt

ELSE IF t ≤ αj THEN

log yt
� � ¼ b0 þ j > 1

� �
∑j�1

k¼1 bk ak � ak�1

� �� �
þ bjðt � aj�1Þ

þεt ; εt � N 0; σ2CORRεtεt�1

� �
ð6Þ

where aj denotes the year at which the jth time segment ends, and
where a0= t0—the starting year of the time series. In addition to
the parameters of the growth model, the year parameters a1 to
aj–1 are estimated. The same distribution of residuals is assumed
for each segment.

Publication counts is a count variable. The variable includes
positive integer values with zero. This implies that the values are

distributed, for example, according to a Poisson distribution
(Hilbe, 2014, p. 2). In this study, however, a logarithmic
transformation (base e) of the publication data was favored over
a Poisson model for the following reasons: (1) with regard to
growth rates of science, unrestricted growth can be assumed, in
which the logarithmic transformation leads to a simple linear
regression function. The parameters of the function can be
interpreted in terms of the original non-transformed growth
function (Panik, 2014, p. 33). (2) If it can be demonstrated that
the observed values are well explained by the function (because of
low-residual variance), then neither the distribution function nor
the transformation play a major role. (3) Owing to the smaller
scale of the values resulting from log-transformation, there is a
greater chance that complex statistical models converge in the
estimation process.

Piecewise latent growth curve model with missing imputation.
In this study, we used data from several bibliographic databases. We
therefore needed to find an answer to the question of how the
various datasets reflecting the same information (scientific output)
should be analyzed statistically. It was one option to conduct the
analyses for each database separately. This approach would accord
with the analyses by Bornmann and Mutz (2015). Analyses for each
database separately, however, run the risk of obtaining four different
results that might reflect specific aspects of a database. Another
option was to analyze the data from the different databases within
one statistical model. This solution would still need solutions to the
following problems:

(1) The time intervals at which publication data are available
vary from database to database. The largest time interval (from
1665 to 2018) is available from Dimensions. To analyze only the
time interval for which all databases provide complete data would
significantly limit the period of investigation of the development
of science. (2) The publication data vary greatly in volume
between the databases. Dimensions, for example, has the highest
volume of publications when the entire time series is considered,
whereas Web of Science has the comparatively lowest volume.
Here, the question arises whether some form of data weighting
according to volume is necessary.

The solution for these problems that we favored in this study
was the application of the so-called “Latent Piecewise Growth
Curve Model”. This model can be run in conjunction with an
approach based on completed time series, i.e., incomplete time
series are treated statistically as missing-value problem. Another
possible solution for the problems would be to refer only to those
years for which all time series have information. This solution
would limit the time horizon of the analysis (elimination of
epochs). Furthermore, the possibility of looking further into the
past would get lost with consideration of only complete
information. The problem of missing values only becomes
relevant when the years before the turn into the twentieth
century are considered.

There are several methods available to deal with missing values
(Little and Rubin, 2019). The most important are two types of
procedures: “Maximum Likelihood” and “Imputation”. Max-
imum Likelihood methods can be used to identify different
patterns of missing values and then efficiently estimate the
parameters in the estimation procedure using all available
information across the patterns, so called “Full Information
Maximum Likelihood” (FIML). In imputation procedures,
missing values are replaced by estimated values, for example by
the mean value of a variable. In the “Multiple Imputation
Procedure” several predicted values from a stochastic regression
on variables with full information (here time series) are used for a
missing value, representing the uncertainty in the estimate.
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Three different assumptions about the missing-value process
are crucial for both procedures. In the case of “Missing
Completely at Random” (MCAR), it is assumed that the
missing-value process is completely random, i.e., the missing
values do not dependent on observed values of other variables or
the unobserved values of the variable under investigation itself.
The missing-value process can be ignored. A case-wise deletion
would be appropriate in this case. “Missing at Random” (MAR)
assumes that the missing-value process depends on observed
values of other variables, but not on the unobserved values of the
variable under investigation itself. “Missing not at Random”
(MNAR) assumes that the missing-value process depends not
only on observed values of other variables in the data but also on
unobserved values of the variable under investigation itself.

Imagine, for example, database providers would exclude papers
of specific publication years, because only a small set of
documents were published. An MNAR assumption is not very
plausible in this case. Database providers did not make any
selections of publication years on the basis of the number of
publications in a year. Since bibliographic databases provide
measurement replications of the same growth process with high
correlations (>0.90) among the time series, the MCAR assump-
tion cannot hold either, leaving the assumption of “Missing at
Random”. Our data from Web of Science, for example, cover the
range from 1900 to 2018, and our data from Dimensions cover
the range from 1670 to 2018. MAR requires that the missing
values of Web of Science between 1670 and 1899 are not the
results of intended actions by the database provider, Clarivate
Analytics. In the case of intended actions, for example, the
company would systematically (completely) leave out publication
years with low publications counts. Owing to the fact that the
missing-value process is not observable, unfortunately, MAR
cannot be verified.

We opt for a multiple imputation procedure. In contrast to
FIML, the procedure allows to make imputed values visible in
order to check for possible biases. The problem of missing values
becomes relevant in this study when we focused in time before
1900. The assumed inaccuracy of the model estimation by
missing imputation reflects the uncertainty of the historical
perspective: the further the empirical analysis goes back in
history, the more uncertain the results become.

In the first step of the imputation procedure in this study,
based on the complete information across all four time series/
databases, the missing values of a time series are imputed with
estimated values. To take into account the inaccuracy of values
in the estimation (when imputed values are used), five imputed
values are estimated for each missing value, which should
represent a random sample of missing values. Graham et al.
(2007) recommend >5 imputed values. The relative efficiency of
an imputation estimator as a measure of how well the true
parameters in the population are estimated was very high
(above .99). The statistical estimation of one imputation was
too time-consuming to allow for more imputations. A Markov-
Chain Monte Carlo (MCMC) procedure was used to estimate
the imputed value from the available time series with full
information.

In the second step of the imputation procedure in this study, for
each of the five complete datasets with imputed values, a
segmented regression model is estimated and then synthesized to
an overall result considering the inaccuracy of the missing
imputation in the calculation of standard errors. The point
estimate of the overall segmented regression model parameter is
the average of the parameters of the five complete-data estimates.
The point estimate of the predicted value (missing or not) for
each time point and database is the average of the corresponding
estimates of the five complete-data estimates. The standard error

of the overall segmented regression model parameter consists of
two estimates: the average of the standard errors of the regression
parameter estimated for each of the five imputed datasets (within
variance) and the variability of the regression parameter across
the five imputed datasets (between variance).

The main challenge in the analyses was to obtain convergence
of the estimation algorithm across all models and all imputations.
Especially for models with many segments, convergence problems
occurred due to different scaling of the variance components
(high variability in the intercept and decreasing variability in the
slopes with increasing number of segments). Therefore, random
effects were partly scaled (e.g., multiplied by 100 or 0.01) to
establish convergence.

The statistical analyses in this study were done with the
statistical software package SAS and the procedures PROC
NLMIXED, PROC NLIN, PROC MI, and PROC MIANALYZE
(SAS Institute Inc., 2015).

Results
In this section, the results of the model estimations are presented.
The first 5 years of each time series were discarded for the esti-
mations because they seemed to reflect only a pseudo segment or
artifact without any empirical meaning. Therefore, the actual
starting years were 1670 for Dimensions, 1805 for Microsoft
Academic, 1905 for Web of Science, and 1866 for Scopus. Each
time series ran until the year 2018.

Model comparison. Statistical model comparisons make it pos-
sible to rule out unrealistic models with poor model fit in order to
get the model with the relatively best fit to the data. The model
formulation is associated with certain assumptions about scien-
tific growth (see Table 1): (1) A model with unconstrained
exponential growth can be distinguished from a model with
logistic growth. (2) One can distinguish whether the models based
on different bibliographic databases come to similar or different
results (e.g., are there mixed-effects or not?). (3) If there are sig-
nificant differences between the results based on the databases,
the following question would arise: Do the databases with a
comparable high (low) volume of publications in the beginning of
the time series show a high (low) increase in the later publication
count? If so, the covariance or correlation between starting
volume of publications and slope across the databases would be
high (is there covariance or not?). (4) The models can provide
different answers to the question of how many segments exist in
the growth of science (how many segments can be distinguished?).

Model M1 “Exponential Growth” (see Table 1), for example,
includes three parameters: intercept, slope and residual variance.
If intercepts and slopes are allowed to vary across the four
databases, two variance components were additionally estimated
with overall five parameters. In M3, the covariance of intercept
and slope only for the first segment was added as a further
parameter.

Instead of statistical significance testing, model comparison is
undertaken in this study based on Schwarz’s Bayesian informa-
tion criterion (BIC). The smaller the BIC, the better the model
fits the data (see Table 1). Models represent overall hypotheses
about the nature of growth (e.g., exponential). The BIC is
corrected for the number of parameters. A selection of models
(e.g., number of segments) was made that were still estimable
given the number of parameters and that still showed model
improvement in terms of BIC.

Comparing model 1 and model 2, it becomes clear that a simple
fixed-effects model (M1) does not fit the data well. The differences
between the growth curves based on the various databases are too
large, so that a mixed-effects model (M2) can be assumed, which
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results in a significantly smaller BIC. The hypothesis of logistic
growth can be rejected as well since the exponential model fits
better. Among the models in Table 1, model M9 with five
segments and a covariance of intercept and slope in the first
segment fits best for “Physical and Technical Sciences”, model M8

with four segments fits bests for “All Publications” and “Life
Sciences” with a negligible improvement for “All Publications”
with five segments (period of 2nd World War). This result applies
to all datasets (databases) considered in this study that refer to (1)
“All Publications”, (2) “Physical and Technical Sciences” publica-
tions, and (3) “Life Science” publications. Since the explained
variance—measured in terms of the coefficient of determination
(R2)—exceeds 0.99, any autocorrelation among residuals or
possible heterogeneity of residual variances can be neglected
(Eqs. 2 to 5). The covariance matrix of the residuals, CORRεt;εt�1

,
is assumed to be an identity matrix I.

The model comparison in Table 1 demonstrates that the
assumption of constant scientific growth over time is not realistic;
hence, we can start with the premise that periods with different
growth rates exist. This premise seems reasonable since, for
example, the history of the twentieth century is characterized by
two World Wars with drastic consequences for the science system
worldwide. As the results by Bornmann and Mutz (2015) based
on cited references data have shown, the negative effects of the
World Wars on scientific activities are clearly visible (for
the estimated parameters of the model, see Table S1 in the
Supplementary Information). Comparing model M3 with model
M2 and model M6 with model M5, BIC improves in both cases.
There is a covariance across all databases between the intercept
and the slope in the first segment that is negative in all models.
The higher the initial time series level of a database, the more the
time series slope in the first segment is below the average slope of
all databases et vice versa.

With respect to the single time series of the GDP, a model
with seven segments fits the data best (see Table 2). For
publication counts, a model with eight segments shows the best
fit (see Table 2). We additionally compared the models using
the mean square error (MSE) and the BIC derived from the
MSE to select certain models (Kim and Kim, 2016) (see Table
S2 in the Supplementary Information for the estimated
parameters of the model).

Growth rates of science (all publications). In our analyses of
growth processes in science using publication data, we follow
typical assumptions such as those formulated by Long and Fox
(1995): “while research productivity is not strictly equivalent to
publication productivity, publication is generally taken as an
indication of research” (p. 51).

Figure 1 shows the result of the unrestricted growth (M1) and
segmented unrestricted growth (M9) models based on the data
from Dimensions, Microsoft Academic, Scopus, and Web of
Science. The graphs in the figure present the annual logarith-
mized number of publications cumulated across time. The gray
dots represent the missing imputed values for one imputation, the
colored symbols the observed values (the raw data from the
databases), and the black solid line (with the two black dashed
lines) the predicted values from the regression analyses (with 95%
prediction intervals). As the results of the unrestricted growth
(M1) in Fig. 1a show, the overall growth rate amounts to 4.10%
with a doubling time of 17.3 years.

As the model comparison in section “Model Comparison”
revealed, a model with four segments fits the data best. The
results of this model are presented in Fig. 1b. The colored
dashed lines show the individual regression line based on the
data from the various databases, and the black solid line theT
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overall regression for the whole data (across all databases). The
symbols represent single values, either observed (colored
symbols) or imputed (gray dots). The results in the figure
show—with the exception of the results based on the Scopus
data for the first segment—that the predicted values from the
regression (dashed lines) cover the observed values (points)
very well.

The four segments in Fig. 1b seem to represent separate
historical epochs in the modern history of science: These
segments with different growth rates are oriented towards either
phases of economic (e.g., industrialization) and / or political
developments (e.g., World Wars):

1. Phase: Emergence of modern physics and pre-
industrialization (1675–1809). The phase up to the end of
the Napoleonic wars is characterized by a moderate annual
growth of 2.87% and a doubling time of 24.5 years, i.e.,
during 24.5 years the volume of publications doubles. This
early phase of science is characterized by major discoveries
in physics by Isaac Newton (1643–1727) and the develop-
ment of the steam engine (James Watt, from 1769).

2. Phase: Industrial Revolution (1815–1882). In this phase of
industrial revolution, science grew very strongly with an
annual growth rate of 5.62% and a doubling time of
12.6 years.

3. Phase: Economic crises and periods of World Wars and
Post-war (1881–1952): The development of science
flattened out with an annual growth rate of 3.78% and a
doubling time of 18.7 years. In this period, two economic
depressions and two World Wars took place. The “long
depression” is a period that started in 1873 and ended in
1896. The period is mainly characterized by a deflation in
the USA and Europe (Capie and Wood, 1997). The “long
depression” can be distinguished from the “Great
Depression” that ranged from 1929 until the beginning
of the Second World War.

4. Phase: Post-war period (after 1952 until today): Since 1952,
science has grown exponentially without restrictions with
an annual growth rate of 5.08% and a doubling time of
14.0 years.

In the statistical analyses of Microsoft Academic data, we
considered all publications with known document types except
patents, i.e., we excluded publications with unknown document
type. Among publications without document type but with DOI,
we identified book chapters and journal publications as well as
conference papers and technical reports. We also found

summaries and reports about conferences. Since not all publica-
tions can be seen as equal contributions to scientific progress, we
analyzed the influence of the document type on our results by
including documents with known and unknown document type
without patents (see the results in the Supplementary Informa-
tion, Fig. S6). The differences between the results including all
documents and only those documents with known document
types are small. For all documents a further segment could be
identified, which represents the period of Second World War
(1940–1945).

Growth rates of science for Life Sciences and Physical and
Technical Sciences. In addition to the analyses including all
publications, we have also conducted analyses for two broad
fields: Life Sciences and Physical and Technical Sciences. The
estimated parameters of the models are reported in Table S1 in
the Supplementary Information. The results are visualized in Figs.
2 and 3. With the comparison of two broad fields, we wanted to
find out whether different fields are characterized by similar or
different growth rates in their historical developments. As the
results in Fig. 2a show, the overall annual average growth rate for
Life Science amounts to 5.07% with a doubling time of 14.0 years.
The results for the Physical and Technical Sciences are similar,
with a growth rate of 5.51% (see Fig. 3a) and a doubling time of
12.9 years.

In agreement with the results for all publications in Fig. 1b,
the predicted values of the segmented regression model (dashed
lines) cover the observed values (points) very well (high
amount of explained variance) in both broad fields (see Figs. 2b
and 3b). In both figures, we can observe trends that—although
not completely congruent with the trends based on all
publications—roughly illustrate the four central stages in the
development of science and society: pre-industrialization (until
1793/1808), Industrial Revolution (till 1810 /1848), Second
World War (1936–1943) only for Physical and Technical
Science with a decline in the volume of publications, and the
post-World War period.

In the segment reflecting the period after 1945, with an annual
growth rate of 5.99% and a doubling time of 11.9 years, the
growth in the Physical and Technical Sciences is higher than the
growth rate in the Life Sciences. In the Life Sciences the growth
rate is 4.79% with a doubling time of 14.8 years. The growth rate
in the Physical and Technical Sciences is also (slightly) higher
than the growth rate that we calculated based on all publications
in this segment (see Fig. 1b): 5.08%.

Table 2 Model comparison using Schwarz’s Bayesian information criterion (BIC) for publication data and growth domestic
product data (GDP) of UK.

Mnr Model description Number of segments Number of parameters Publication count GDP

MSE BIC MSE BIC

M1 Exponential growth 1 2 0.152 −419.82 1.056 27.62
M2 Logistic growth 1 2 0.195 −365.83 2.0 237.81
M3 Segmented regression to M1 2 4 0.150 −414.51 0.058 −881.90
M4 Segmented regression to M1 3 6 0.006 −1157.17 0.051 −912.71
M5 Segmented regression to M1 4 8 0.005 −1174.78 0.038 −995.51a

M6 Segmented regression to M1 5 10 0.004 −1197.21a 0.038 −983.99a

M7 Segmented regression to M1 6 12 0.002 −1354.62a 0.024 −1121.85
M8 Segmented regression to M1 7 14 0.002 −1350.37 0.012 −1343.92
M9 Segmented regression to M1 8 16 0.002 −1356.72 0.029 −1042.64a

M10 Segmented regression to M1 9 18 0.002 −1337.75a 0.016 −1225.21

BIC Schwarz’s Bayesian information criterion, MSE mean square error.
aNo convergence of the iterations in the estimation process.
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Comparative analysis of growth rates of science and of growth
domestic product in UK. For a comparative analysis of economic
and scientific growth (using similar statistical methods), we used
data from UK as explained in the “Introduction” section. We
analyzed logarithmic transformed GDP and logarithmic trans-
formed cumulative publication data to estimate the different
segments of growth rates and the growth rates themselves. Both
rates are percentages and can be directly compared. The pub-
lication counts were obtained by the Dimensions database. The
average annual growth rate of science in UK since 1780 is 4.97%
(see Fig. 4a). This corresponds to a doubling time of 14.3 years.
This annual growth rate is slightly higher than the average
worldwide growth rate of 4.10% (see Fig. 1a). The statistical
analysis revealed eight segments with different growth rates (see
Fig. 4b). The growth is, therefore, more differentiated than the
overall growth with five segments (see Fig. 1a). Between 1780 and
1805 (pre-industrialization) as well as 1805 and 1844 (early

industrialization), a strong growth of 7.73% and 5.93%, respec-
tively, can be observed. The growth weakens to 3.70% in the
phase of industrialization from 1848 and the First World War as
well as the 1920s.

Comparable to worldwide results (see Fig. 1b), a significant
slowdown in scientific growth with a growth rate of 2.62% is
apparent around the Second World War (between 1940 and 1948).
While the overall analysis shows an unrestricted exponential
growth after 1945 (see Fig. 4b), the growth of science in UK took
place in three stages: a strong growth of 6.80% until 1959, which
intensified between 1959 and 1983 (8.65%), and slowed down to
6.42% in the years after 1983. The growth rates in these three
segments are even higher than the worldwide growth rate of 5.28%
in the corresponding time segment (between 1945 and 2018). At
the beginning of the 1980s, Margaret Thatcher was Prime Minister
of UK and with her party, the Conservative Party, having won the
majority in the House of Commons for the second time in 1983.

Fig. 1 Plots for scientific growth based on the number of publications from four bibliographic databases. Shown are a the unrestricted growth (M1) and
b the segmented unrestricted growth (M9).
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Figure 5 shows the annual GDP growth rate between 1700 and
2018 for comparison with the publication numbers. The figure is
based on the logarithmized annual GDP, presented as raw data
and predicted values from the regression model. Previous studies
investigating the relationship between economic and scientific
growth have demonstrated positive relationships (e.g., Halpenny
et al., 2010; Hart and Sommerfeld, 1998; Ntuli et al., 2015). The
results in Fig. 5a reveal an annual GDP growth rate of 3.05% and
doubling time of 23.1 years, which is lower than the growth rate
based on publication counts of 4.97% (see Fig. 4a).

At first glance, economic growth and scientific growth do not
seem to be linked necessarily. A more detailed view shows,
however, that both growths are related at certain points over time
(see Figs. 4b and 5b). For example, science and economy grew
from 1780 to the beginning of the nineteenth century (1810,
1805), i.e., in the phase of pre-industrialization at a comparable
rate: whereas the economy grew by 4.29%, science grew by 5.93%.

Furthermore, there is a coupling of economic and scientific
development at the beginning of industrialization in the 1840s
(1843, 1844) with a moderate annual growth rate of 2.37% in
economy and 3.70% in science. A last temporal coupling can be
observed in the years after the Second World War with a strong
economic growth, especially from 1969 to 1987 of 14.45%. Three
years later, in 1990, Margaret Thatcher resigned as Prime
Minister. While the slowdown in the economy did not begin
until after 1987, science began to grow at a rate of only 6.42% as
early as 1983.

Discussion
Modern science is based on knowledge-producing institutions
and processes (Gieryn, 1982). Current research is a method of
“systematically exploring the unknown to acquire knowledge and
understanding. Efficient research requires awareness of all prior

Fig. 2 Plots for scientific growth based on the number of publications in Life Sciences. Shown are a the unrestricted growth (M1) and b the segmented
unrestricted growth (M9).
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research and technology that could impact the research topic of
interest, and builds upon these past advances to create discovery
and new advances” (Kostoff and Shlesinger, 2005, p. 199). Society
expects a steady increase in scientific growth since only con-
siderable growth processes would lead to growth in other sectors
of society such as economics and health. Since (public) invest-
ments in science are frequently justified on the basis of growth of
science and science contribution to national economic growth
(Wagner et al., 2015), measurements of scientific growth pro-
cesses are ongoing topics. These measurements are usually based
on numbers of publications, since the results of research mostly
appear in publications: “in academic institutions, publications
constitute in all scientific-scholarly subject fields an important
form of academic output” (Moed, 2017, p. 63). The results of
Digital Science (2016) show that especially the journal article
becomes increasingly popular as a medium for presenting sci-
entific results. The popularity of journal articles could also be the

consequence of the higher than average growth in disciplines
using journal articles.

The motivation by researchers for publishing their results
(in journal articles) is especially fostered by the specificity of
the scientific reward system: “Publications have another
function as well [besides the open availability of research
results]: The principal way for a scholar to be rewarded for his
contribution to the advancement of knowledge is through
recognition by peers. In order to receive such an award,
scholars publish their findings openly, so that these can be used
and acknowledged by their colleagues” (Moed, 2017, p. 62).
Although the publication of findings is so basic in science,
researchers also process their findings in other forms of output
(e.g., patents or presentations). An overview of indicators for
measuring productivity based on these other forms can be
found in Godin (2009). The problem of most of these indica-
tors for measuring productivity or scientific growth, however,

Fig. 3 Plots for scientific growth based on the number of publications in Physical and Technical Sciences. Shown are a the unrestricted growth (M1) and
b the segmented unrestricted growth (M9).
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is that annual and historical data without missing values are
scarcely available.

In this study, we used publication data from four literature
databases to investigate scientific growth processes from the
beginning of the modern science system until today. In accor-
dance with the law of exponential growth, the results of the
unrestricted growth show that the overall growth rate amounts to
4.10% with a doubling time of 17.3 years. This annual growth rate
(over the various databases) is different from the Web of Science
growth rate of 2.96% reported in Bornmann and Mutz (2015),
since we considered in the current study a significantly longer
time period than Bornmann and Mutz (2015): from 1900 until
2018 in this study (119 years) versus from 1980 until 2012 (33
years) in Bornmann and Mutz (2015). As the comparison of
various segmented regression models in the current study
revealed, the model with five segments fits the data best. We
demonstrated that these segments with different growth rates can
be interpreted very well since they are related to either phases of

economic (e.g., industrialization) and/or political developments
(e.g., World Wars). Obviously, the war efforts (allocation of
funds) led to a visible decline in research (by output measure of
publication) but research went on nevertheless, possibly with even
more vigor. However, that research was not being made available
openly for security reasons (and researchers pulled in for the sake
of war efforts from physics to languages, material science to
mathematics/emerging computer science)—and arguably the
results of war-time research triggered post-war discoveries, too.

We additionally undertook two further analyses focusing on (1)
growth in two broad fields (Life Sciences and Physical and
Technical Sciences) as well as (2) the relationship between sci-
entific and economic growth. (1) The comparison between the two
broad fields revealed that although slight differences are obser-
vable, these differences are not so great that they can be denoted as
fundamental. For example, whereas the overall annual average
growth rate for Life Science is 5.07% with a doubling time of 14.0
years, the overall growth rate for Physical and Technical Sciences

Fig. 4 Plots for growth based on the number of publications from UK. Shown are the results for a the unrestricted growth (M1) and b the segmented
unrestricted growth (M9) (using Dimensions data).
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is 5.51% with a doubling time of 12.9 years. (2) In the investigation
of the relationship of scientific and economic growth, we focused
on UK—one of the few countries with corresponding available
(historical) data. The results showed that the scientific growth rate
of UK’s number of publications (4.97%) is slightly higher than the
average worldwide growth rate (4.10%). Furthermore, the results
demonstrated that the growth of UK’s number of publications is
more differentiated (with eight segments) than the worldwide
growth (with five segments). The comparison of the British eco-
nomic and scientific growth rates revealed that the GDP growth
rate is lower than the scientific growth rate (3.05% versus 4.97%).
Since GDP is not corrected for inflation in this study, results on
the comparison of growth rates of science and economy should be
interpreted with great care.

In the interpretation of the scientific growth rates that were
mostly increasing in the historical development, two interpreta-
tions are possible: Either researchers were able to publish more
publications in the same time or the increased publication counts

can be traced back to an increase in the number of researchers. The
study by Fanelli and Larivière (2016) targeted this question. Their
results pointed to the second interpretation being more plausible.
Fanelli and Larivière (2016) analyzed “individual publication pro-
files of over 40,000 scientists whose first recorded paper appeared
in the Web of Science database between the years 1900 and 1998,
and who published two or more papers within the first 15 years of
activity—an ‘early-caree’ phase in which pressures to publish are
believed to be high. As expected, the total number of papers
published by scientists has increased, particularly in recent decades.
However, the average number of collaborators has also increased,
and this factor should be taken into account when estimating
publication rates. Adjusted for co-authorship, the publication rate
of scientists in all disciplines has not increased overall, and has
actually mostly declined” (Fanelli and Larivière, 2016).

Two limitations mentioned by Bornmann and Mutz (2015) are
still valid for the current study and should be considered in the
interpretation of the results:

Fig. 5 Plots for economic growth based on gross domestic product (GDP) data from UK. Shown are a the unrestricted growth (M1) and b the segmented
unrestricted growth (M8) (source: FRED Economic Research).
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The first limitation refers to the use of publication counts to
measure growth processes. According to Tabah (1999), there are
advantages and disadvantages in using these numbers: “although
counting publications is simple and relatively straightforward,
interpretation of the data can create difficulties that have in the
past led to severe criticisms of bibliometric methodology … The
main problems concern the least publishable unit (LPU), dis-
ciplinary variance, variance in quality of work, and variance in
journal quality” (p. 264). The second limitation concerns the
interpretation of “growth” as an “increase in numbers”. Accord-
ing to Bornmann and Mutz (2015), “it is not clear whether an
“increase in numbers” is directly related to an “increase of
actionable knowledge”, for example for reducing needs, extending
our knowledge about nature in some lasting way or some other
“higher purposes” (p. 2221).

Both limitations might be targeted in future studies on growth
processes of science. The results of our study show that an
exponential growth explains quite well the data and there is
different speed in different epochs. However, our study does not
target the questions why the growth processes are different and
why an exponential growth is present. For example, we show
that a regression with four segments have different growth
speeds. However, we do not empirically investigate these dif-
ferences: How can we explain, e.g., that between 1660 and 1793
the growth rate is 3.23%, while between 1793 and 1810 it is
25.41% (Technical Sciences)? Therefore, future studies should
try to explore empirically the reasons for different growth
processes over time.

This study is based on multi-disciplinary databases only.
Future studies that focus on growth processes in various (broad)
fields—as we did it in section “Growth rates of science for Life
Sciences and Physical and Technical Sciences” for two broad
fields—could use data from mono-disciplinary databases such as
Chemical Abstracts (see https://www.cas.org) or Medline (see
https://pubmed.ncbi.nlm.nih.gov).

Data availability
The datasets analyzed during the current study are available in the
Edmond data repository: https://edmond.mpdl.mpg.de/imeji/
collection/D1F8Nf6Sv5aJUKP0 and https://doi.org/10.17617/3.7o.
These datasets were derived from the following resources: The
Microsoft Academic and Dimensions data used in this paper are
from a locally maintained database at the Max Planck Institute for
Solid State Research derived from the snapshots provided by
Microsoft and Digital Science, respectively. Web of Science and
Scopus data were retrieved using the corresponding web-interfaces:
https://login.webofknowledge.com and https://www.scopus.com.

Received: 2 November 2020; Accepted: 16 September 2021;

Notes
1 See https://login.webofknowledge.com
2 https://www.scopus.com.
3 We included “Multidisciplinary” in Life Sciences—following the suggestions by
Elsevier—since most of the papers in this category are also assigned to Life Sciences or
Health Sciences categories.

4 https://academic.microsoft.com.
5 https://azure.microsoft.com/.
6 See https://app.dimensions.ai/.
7 See https://ds.digital-science.com/NoCostAgreement-Collaborators.
8 See https://www.abs.gov.au/AUSSTATS/abs@.nsf/Lookup/1297.0Main
+Features12008.

9 See https://fred.stlouisfed.org/series/NGDPMPUKA.
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