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Abstract
Evaluating the impact of papers, researchers and venues objectively is of great signifi-
cance to academia and beyond. This may help researchers, research organizations, and 
government agencies in various ways, such as helping researchers find valuable papers 
and authoritative venues and helping research organizations identify good researchers. A 
few studies find that rather than treating citations equally, differentiating them is a promis-
ing way for impact evaluation of academic entities. However, most of those methods are 
metadata-based only and do not consider contents of cited and citing papers; while a few 
content-based methods are not sophisticated, and further improvement is possible. In this 
paper, we study the citation relationships between entities by content-based approaches. 
Especially, an ensemble learning method is used to classify citations into different strength 
types, and a word-embedding based method is used to estimate topical similarity of the 
citing and cited papers. A heterogeneous network is constructed with the weighted citation 
links and several other features. Based on the heterogeneous network that consists of three 
types of entities, we apply an iterative PageRank-like method to rank the impact of papers, 
authors and venues at the same time through mutual reinforcement. Experiments are con-
ducted on an ACL dataset, and the results demonstrate that our method greatly outperforms 
state-of-the art competitors in improving ranking effectiveness of papers, authors and ven-
ues, as well as in being robust against malicious manipulation of citations.

Keywords Scientific impact evaluation · Heterogeneous network · Content-based citation 
analysis · Citation strength · Topical similarity

Introduction

Due to the rapid development of science and technology, the total number of papers pub-
lished in recent years has increased significantly. According to an STM report (Johnson 
et al., 2018), there were 33,100 peer-reviewed English journals in mid-2018, and over 3 
million articles were published per year. The total number of publications and the number 
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of journals have both grown steadily for over two centuries, at the rates of 3% and 3.5% per 
year, respectively. Facing such a huge number of publications, academia and other sectors 
of the society have become keen to find answers to the following questions: How can the 
importance of a research paper be measured? How can the performance of a researcher or 
a research organization be evaluated? It is necessary to have an objective evaluation system 
to measure the performance of papers, authors and venues.

For a long time, many researchers have tried various ways to evaluate the academic 
impact effectively. Citation count plays an important role in evaluating papers and authors. 
Based on citation count, many metrics, such as the h-index (Hirsch, 2005), the g-index 
(Egghe, 2006), the journal impact factor (Garfield, 2006), and others, have been proposed. 
These metrics are straightforward, but some factors, such as citation sources and co-author-
ship, are not considered. Heterogeneous academic networks, which include multiple types 
of entities including papers, authors, and venues, are very good a platform for academic 
performance evaluation, because all related information is available for us to exploit. Based 
on such networks, graph-based methods can be used (Jiang et al., 2016; Simkin & Roy-
chowdhury, 2003; Zhang & Wu, 2020). For example, both SCImago Journal Rank (SJR) 
(González-Pereira et  al., 2010, 2012) and the Eigenfactor score (Bergstrom, 2007) use 
PageRank-like algorithms (Brin & Page, 1998) to evaluate journals. MutualRank (Jiang 
et al., 2016) and Tri-Rank (Liu et al., 2014) rank papers, authors and venues simultane-
ously based on heterogeneous academic networks. These graph-based methods have some 
advantages for ranking academic entities due to their ability of leveraging structural infor-
mation in academic networks and the mutual reinforcement relationship among papers, 
authors and venues.

Many existing graph-based ranking algorithms treat all citations as equally influential 
(Chakraborty & Narayanam, 2016; Zhu et al., 2015), without distinguishing that some of 
them may be more important than others. Such an approach may be questionable. Typi-
cally, for many papers, a small number of references play an important role (Chakraborty 
& Narayanam, 2016; Simkin & Roychowdhury, 2003; Wan & Liu, 2014), while most of 
the others do not have much impact (Teufel et al., 2006). In order to deal with such a prob-
lem, various aspects have been considered to weight citation links. For a given paper, we 
may consider many different aspects such as who cites the paper, where the citing paper 
is published, the time gap between two papers’ publication, if it is a self-citation, and so 
on. We may also consider the topical similarity of the two papers or how the cited paper is 
related to the citing paper (referred to as citation strength in this paper). Different rationales 
are behind those aspects. For example, considering the venue that the citing paper is pub-
lished, the citation is more valued if it is cited by a paper published in a prestigious venue 
than in an average venue. If it is a self-citation, it will get less credit than the others.

The primary goal of this paper is to investigate the middle to long-term impact of aca-
demic entities through a comprehensive framework (Kanellos et al., 2021). Especially we 
exploit some content-based features such as citation strength and topical similarity between 
the cited and citing papers, which are used to define weighted citation links. A heterogene-
ous network of papers, authors, and venues is built to reflect the relationships among them. 
Three types of entities are ranked at the same time through a PageRank-like algorithm with 
mutual reinforcement.

One possible problem with PageRank is it favors older papers than newer papers. This 
is referred to as the ranking bias (Jiang et al., 2016; Zhang et al., 2019a). It always takes 
time for a paper to be recognized in the community; a similar situation may also happen to 
authors. Therefore, a good evaluation system should be able to balance papers published at 
different time. In the same vein, we apply time-aware weights for all the papers involved.
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Moreover, our framework includes a number of good features. In the heterogeneous net-
work generated, seven types of relations are defined and supported. They are paper cita-
tion, author citation, venue citation, co-authorship, paper-author, paper-venue, and author-
venue relations. For both authors and venues, their performance is evaluated on a yearly 
basis. Such a fine granularity enables us to catch the dynamics of the entities involved more 
precisely.

Citation manipulation (e.g., padded, swapped, and coerced citations) usually occurs in 
citations that do not contribute to the content of an article.1 Because some government 
agencies rely heavily on impact factors to evaluate the performance of researchers and 
research organizations, there is evidence that various types of citation manipulation exist. 
For example, some scholars add authors to their research papers even those individuals 
contribute nothing to the research effort (Fong & Wilhite, 2017). Some journal editors 
suggest or request that authors cite papers in designated journals to inflate their citation 
counts (Fong & Wilhite, 2017; Foo, 2011). Peer reviewers may deliberately manipulate 
the peer-review process to boost their own citation counts (Chawla, 2019). Some scientists 
may self-citing extremely (Noorden & Chawla, 2019). Therefore, it is desirable to take this 
problem seriously into consideration when ranking academic entities. Citation manipula-
tion (Bai et al., 2016; Chakraborty & Narayanam, 2016; Wan & Liu, 2014) is a problem 
that needs to be considered for academic entity ranking. As an extra benefit to the meas-
ures we apply, we believe that the proposed approach is robust and able to mitigate vari-
ous kinds of citation manipulation problems (Bai et al., 2016; Chakraborty & Narayanam, 
2016; Wan & Liu, 2014).

By consolidating all the measures above-mentioned, in this paper we propose a frame-
work, WCCMR (Weighted Citation Count-based Multi-entity Ranking), to evaluate the 
impact of multiple entities. There are a number of contributions in this piece of work:

1 An ensemble learning method is used with three base classifiers to classify citations 
into five different categories. The fused results are better than that of all base classifiers, 
which represent the up-to-date technologies.

2 A word embedding-based method is used to measure topical similarity between the 
citing paper and the cited paper.

3 The above two content-based features are combined to define weighted citation links. 
To the best of our knowledge, we have not seen such a weighing scheme for citation 
before.

4 Apart from the weighted citation scheme, our framework has a number of good features: 
time-aware weighting, fine granularity for authors and venues, and seven types of rela-
tions among the same or different types of entities.

5 Experiments with the ACL (Association for Computational Linguistics Anthology Net-
work) dataset (Radev et al., 2013) show that the proposed method outperforms other 
state-of-the-art methods in evaluating the effectiveness of papers, authors and venues, 
as well as in robustness against malicious manipulations.

The remainder of this paper is organized as follows: Sect. 2 presents related work on 
performance evaluation of academic entities, mainly by using various types of academic 

1 https:// publi catio nethi cs. org/ files/ COPE_ DD_ A4_ Citat ion_ Manip ulati on_ Jul19_ SCREEN_ AW2. pdf. 
Accessed 30 July 2020.

https://publicationethics.org/files/COPE_DD_A4_Citation_Manipulation_Jul19_SCREEN_AW2.pdf
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networks. Section 3 describes the framework proposed in this study. Section 4 presents the 
detailed experimental settings, procedures, and results. Some analysis of the experimental 
results is also given. Section 5 concludes the paper.

Related work

As an important task to the research community and beyond, evaluating scientific papers, 
authors and venues has been studied by many researchers for a long time. Citation count 
has been widely used and many citation-based metrics have been proposed (Jiang et al., 
2016; Wang et al., 2016). For example, h-index (Hirsch, 2005) and g-index (Egghe, 2006) 
are used to measure researchers, the Impact Factor (IF) (Garfield, 1972), 5  year Impact 
Factor (5 year IF) (Pajić, 2015), and Source Normalized Impact per Paper (SNIP) (Moed, 
2010; Waltman et al., 2013) are used to measure venues. These citation-based metrics are 
easy to understand and calculate. However, they have some crucial shortcomings. Firstly, 
many related metadata about any paper, such as its author(s) and venue, are ignored. This 
may have a negative effect on accuracy of the evaluation; Secondly, simple citation count 
lacks immunity to manipulation of citations. This is also an important issue that needs to 
be addressed.

As a remedy to some of the problems of using simple citation count, applying Pag-
eRank-like algorithms into academic networks has been investigated by quite a few 
researchers in recent years. For instance, the Eigenfactor score (Bergstrom, 2007) and SJR 
(González-Pereira et al., 2010, 2012) are used to evaluate journals. According to what type 
of information is used, we may divide those methods into two categories: metadata-based 
approach (time-aware weighting is a popular sub-category) and content-based approach.

Metadata-based approach has been investigated in (Yan & Ding, 2010; Zhang & Wu, 
2018; Zhang et al., 2019a, b; Zhou et al., 2016) among others. To improve paper ranking 
performance and robustness against malicious manipulation, Zhou et al. (2016) proposed 
a weight assignment method for citation based on the ratio of common references between 
the citing and cited papers. Similar to Zhou et al. (2016), Zhang et al. (2019b) considered 
the reference similarity between the citing and cited papers. They also considered the topi-
cal similarity (calculated using titles and abstracts) between the two papers and combined 
them for weighting. Believing that immediate citations after publication is an indicator 
of good quality, some researchers allocated heavy weights to those papers that are cited 
shortly after publication (Yan & Ding, 2010; Zhang & Wu, 2018; Zhang et  al., 2019a). 
For alleviating the ranking bias towards newly published papers, Walker et al. (2006) and 
Dunaiski et al. (2016) allocated heavier weights to newer papers, while Wang et al. (2019) 
considered the citations in the first 10 years of any paper since its publication and ignored 
the later ones. Self-citation, which is given a lighter weight than a “normal” citation, is 
investigated in (Bai et al., 2016).

Content-based approach has been investigated in (Chakraborty & Narayanam, 
2016; Wan & Liu, 2014; Xu et  al., 2014). Wan and Liu (2014) and Chakraborty and 
Narayanam (2016) classified citations into five categories of strength based on content 
analysis of the citing papers, and then assigned different weights for those citations 
accordingly. In Wan and Liu (2014), Support Vector Regression is used to estimate the 
strength of each citation. While in Chakraborty and Narayanam (2016), a graph-based 
semi-supervised model, GraLap, is used to estimate citation strength. In both cases, 
dozens of features, either metadata-based or content-based, are used in their model. Xu 



7201Scientometrics (2021) 126:7197–7222 

1 3

et al. (2014) proposed a variant of PageRank in which a dynamic damping factor is used 
instead. At each paper node, its damping factor is decided by the topic freshness and 
publication age of the paper in question. Topic freshness per year is obtained by analyz-
ing contents of all the papers in the dataset investigated.

To make full use of the information in academic networks and/or evaluate multiple 
entities at the same time, some researchers have proposed some PageRank variants by 
using various heterogeneous networks (Bai et  al., 2020; Jiang et  al., 2016; Liu et  al., 
2014; Meng & Kennedy, 2013; Yan et al., 2011; Yang et al., 2020; Yang et al., 2020; 
Zhang & Wu, 2018, 2020; Zhang et  al., 2018, 2019a; Zhao et  al., 2019; Zhou et  al., 
2021). Yan et al. (2011) proposed an indicator, P-Rank, to score papers. For each cita-
tion, the impact of the citing paper, the citing authors and the citing journal are consid-
ered at the same time. Differentiating each venue year by year, Zhang and Wu (2018) 
proposed a ranking method, MR-Rank, to evaluate papers and venues simultaneously. 
Meng and Kennedy (2013) proposed a method, Co-Ranking, for ranking papers and 
authors. Tri-Rank, proposed by Liu et al. (2014), can rank authors, papers, and journals 
simultaneously. Especially, Tri-Rank considers the ordering of authors and self-citation 
problems. Jiang et al. (2016) proposed a ranking model MutualRank, which is a modi-
fied version of randomized HITS for ranking papers, authors and venues simultaneously. 
Zhang et al. (2018) proposed a classification-based method to predict authors’ influence. 
They firstly classified authors into different types according to their citation dynamics 
and then applied the modified random walk algorithms in a heterogeneous temporal 
academic network for prediction. Based on a heterogeneous network that includes both 
paper citation and paper-author relations, Zhao et al. (2019) measured the influence of 
authors on two large data sets, and one of which included 500 million citation links. 
By assigning weight to the links of citation network and authorship network according 
to the citation relevance and author contribution, Zhang et  al. (2019a) ranked scien-
tific papers by integrating the impact of papers, authors, venues and time awareness. 
By differentiating each venue and researcher on a yearly basis, Zhang and Wu (2020) 
proposed a framework, WMR-Rank, to predict the future influence of entities includ-
ing papers, authors, and venues simultaneously. For balanced treatment of old and new 
papers, they considered both the publication age and recent citations of all the papers 
involved at the same time. Bai et al. (2020) measured the impact of institutes and papers 
simultaneously based on the heterogeneous institution-citation network. Based on a het-
erogeneous network that including co-authorship, author-paper and paper citation rela-
tion, Zhou et  al. (2021) proposed an improved random walk algorithm to recommend 
research collaborators. Especially, they considered both time awareness and topic simi-
larity. Similar to Zhou et al. (2021), Yang et al. (2020) recommend researcher collabo-
rators by using an improved walking algorithm. A heterogeneous network by combing 
co-author network and institution network is used.

It is likely that the work in Wan and Liu (2014) and Chakraborty and Narayanam 
(2016) are the most relevant to our work in this paper, however, there are considerable 
differences between our work in this paper and either of them. First, we use an ensem-
ble learning method for citation strength estimation and the results show that it is more 
effective than the methods used in those two papers. Besides, topic similarity is also 
included for determining the weighting of citation link. This is not included in either 
Wan and Liu (2014) and Chakraborty and Narayanam (2016). Lastly, a sophisticated 
network with multiple types of entities is built and used in this paper to evaluate their 
impact at the same. As we will see later in the experimental part, it works with other 
components to achieve very good results.
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The proposed method

In this section, we introduce all the components required and then present the multi-entity 
ranking algorithm. The Symbols used in this paper and their meanings are summarized in 
Table 1.

Citation strength and topical similarity

When researchers write papers, they usually need to cite other papers for various reasons, 
such as pointing to a baseline method for comparison, applying a proposed method or mak-
ing some improvement of it, referring to the definition of an evaluation metric, as evidence 
of supporting a point of view, and so on. Considering all those different purposes of cita-
tion, some of which may be more important than some others. Therefore, in line with the 
work of Liu (2014) and Chakraborty and Narayanam (2016), we define five levels of cita-
tion strength as follows.

Table 1  Some symbols used in this paper and their meanings

Symbol Description

P Vector indicting the scores of papers for their ranking
A Vector indicting the scores of authors for their ranking
A Vector indicating the scores of authors in a given year
V Vector indicting the scores of venues for their ranking
SP Set of papers in the entire collection
SA Set of authors in the entire collection
SV Set of venues in the entire collection
SP(a) Set of papers of author a
SA(p) Set of authors of paper p
SP(v) Set of papers published in venue v
|SP| Number of papers in SP
|SA| Number of authors in SA
|SV | Number of venues in SV
WPP A |SP| × |SP| matrix indicating the paper citation relation (Eq. 1)
W

CA
A |S

A
| × |S

A
| matrix indicating the author citation relation (Eq. 4)

W
COA

A |S
A
| × |S

A
| matrix indicating the coauthor relation (Eq. 7)

WVV A |SV | × |SV | matrix indicating the venue citation relation (Eq. 8)
WPA A |SP| × |SA| matrix indicating the paper-author relation (Eq. 9)
WPV A |SP| × |SV | matrix indicating the paper-venue relation (Eq. 10)
WAV A |SA| × |SV | matrix indicating the author-venue relation (Eq. 11)
WRP A |SP| × |SP| matrix indicating the recent citation bonus of papers (Eq. 14)
W

RA
A |S

A
| × |S

A
| matrix indicating the recent citation bonus of authors (Eq. 15)

W
AA

A |S
A
| × |SA| matrix connecting an author with herself in each year (Eq. 16)

W
TA

A |SA| × |S
A
| matrix indicating the time-awareness weight (Eq. 17)

WṼV A |SV | × |SV | matrix indicating the performance score of venues in past tv years (Eq. 18)
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1. Level 1 The cited reference has the lowest importance to the citing paper. It is related to 
the citing paper casually. It usually follows words like “such as”, “for example”, “note” 
in the text, and can be removed or replaced without hurting the competence of the refer-
ences.

2. Level 2 The cited reference is related to the citing paper to some extent. For example, 
it is cited to support a point of view or to introduce the development of research fields 
related to the citing paper. It is usually mentioned together with other references and 
appears in parts such as “introduction”, “related work”, or “conclusion and future work”.

3. Level 3 The cited reference is important and related to the citing paper. For example, it 
may serve as a baseline method. It is usually mentioned several times in the paper with 
long citation sentences and may appear in more than one part of the paper.

4. Level 4 The cited reference is very important to the citing paper. It is usually mentioned 
separately in one or more sentences and appears in the methodology section, such as 
algorithms or models used in the citing paper. It can be an integral part of the model 
proposed in the paper.

5. Level 5 The cited reference is extremely important and highly related to the citing paper. 
For example, the citing paper makes an improvement based on the cited reference or 
borrows its main idea from the cited reference. It is usually mentioned multiple times, 
sometimes following “this method is influenced by”, “we extend”, etc., and very likely 
appears in multiple parts of the paper such as “introduction”, “related work”, “method”, 
“experiment”, “discussion”, or “conclusion”.

Citation topical similarity refers to the topical similarity between the cited paper 
and the citing paper. It is independent from citation strength. A word-embedding based 
approach is used for this. It is also a good indicator of proper citation. The higher the 
similarity is between the citing paper and the cited paper, the lower the likelihood that 
the cited paper is artificially manipulated. A linear combination of them is set to be 
the weight of the citation. See Eq. (1) later in this paper. Based on that, a heterogene-
ous network can be built with the desirable properties. We consider that differentiating 
citations instead of taking simple citation counts may produce more reliable evaluation 
results.

A heterogeneous academic network

A heterogeneous academic network is composed of nodes and edges. Each node represents 
an entity and each edge between two nodes represents the relation between the two entities. 
There are three types of nodes: papers, authors, and venues, and seven types of relations: 
paper citation, paper-author relation, paper-venue relation, coauthor relation, author cita-
tion, author-venue relation and venue citation. A suitable weight needs to be assigned to 
each of the edges involved. In the following we discuss these seven types of relations one 
by one, in which weight assignment for each type of edges is the key issue.

Paper citation relation

A paper citation relation exists when one paper cites another paper. If paper pj cites paper 
pi , the weight is defined as



7204 Scientometrics (2021) 126:7197–7222

1 3

where strength
(
pi, pj

)
 and sim

(
pi, pj

)
 are the citation strength and topical similarity between 

pi and pj , respectively. pi ← pj denotes that paper pi is cited by paper pj . It is required that 
both strength

(
pi, pj

)
 and sim

(
pi, pj

)
 are defined in the same range. Otherwise, normaliza-

tion may be required to make them comparable.

Author citation relation

Through paper citation, we can set up an indirect relation of author citation. paper pi 
is cited by paper pj , am is the only author or one of the authors of pi , and an is the only 
author or one of the authors of pj , then am is cited by an (am ← an) . The same as in 
Zhang and Wu (2020), we differentiate each author year by year and allocate the credit 
that author am who published paper pi in year tam , obtains from an who published paper 
pj in year tan , through paper citation pi ← pj as

where order(a, p) is the position of author a in paper p . Normalization is required for all the 
authors involved.

where SA(p) is the set of all the authors of paper p.
An author an may cite another author am multiple times. The total credit that am in 

year tam obtains from an in year tan is the summation of all the papers involved.

where SP(a) is the set of papers written by author a.

Coauthorship relation

A coauthorship relation exists in the network if two or more author nodes connect to the 
same paper node. Any author obtains certain credit from all other authors if they write 
a paper together. The credit that ai who has published papers in year tai obtains from her 
coauthor aj through paper p is defined as

(1)WPP

(
pi, pj

)
=

{
strength(pi, pj) + sim(pi, pj) pi ← pj
0 otherwise

(2)W
CA_raw

(
am, an, pi, pj

)
=

1

order
(
am, pi

)
× order

(
an, pj

)

(3)
W

CA

�
am, an, pi, pj

�
= WPP(pi, pj)

W
CA_raw

�
am, an, pi, pj

�

∑

pi ← pj
ak ∈ SA

�
pi
�

al ∈ SA
�
pj
�

W
CA_raw

�
ak, al, pi, pj

�

(4)

W
CA

(
am, an

)
=

∑

pi ∈ SP
(
am

)

pj ∈ SP(an)

pi ← pj

W
CA

(
am, an, pi, pj

)
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which needs to be normalized. We have

Two authors may co-write more than one paper. Hence, the credit that ai in year tai 
obtains from aj over all co-authored papers is

where SP
(
ai
)
 denotes all the papers written by ai.

Venue citation relation

Similar to author citation, we may define venue citation. For venues vi and vj , if vi ← vj , the 
weight between vi and vj can be denoted as

Paper‑author relation

Paper coauthorship happens very often. However, for one paper written by a group of coau-
thors, their contributions to the paper are differentiated by their ordered positions (Abbas, 
2011; Du & Tang, 2013; Egghe et al., 2000; Stallings et al., 2013). More specifically, we 
adopt a geometric counting approach (Egghe et  al., 2000) for the paper-author relation. 
Suppose author ai is in the Rth position among all T coauthors in paper pj ; then, the amount 
of credit that author ai and paper pj obtain from each other is as follows:

Paper‑venue relation

If paper pi is published in venue vj , then there is an edge between paper pi and venue vj ; 
thus, paper pi and venue vj get credit from each other. We let

(5)W
COA_raw

(
ai, aj, p

)
=

1

order(ai, p) × order(aj, p)

(6)W
COA

�
ai, aj, p

�
=

W
COA_raw

�
ai, aj, p

�

∑
ak,al∈SA(p)

W
COA_raw

�
ak, al, p

�

(7)
W

COA

(
ai, aj

)
=

∑

p ∈ SP
(
ai
)

p ∈ SP
(
aj
)

W
COA

(
ai, aj, p

)

(8)

WVV

(
vi, vj

)
=

∑

pk ← pl
pk ∈ SP

(
vi
)

pl ∈ SP
(
vj
)

WPP

(
pk, pl

)

(9)WAP

(
ai, pj

)
= WPA

(
pj, ai

)
=

2T−R

2T − 1

(10)WVP

(
vj, pi

)
= WPV

(
pi, vj

)
=

{
1 pi ∈ SP

(
vj
)

0 otherwise
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Author‑venue relation

If author ai publishes more than one paper in venue vj , then the credit that ai obtains 
from vj is the sum of the credit she obtains from all the papers published in vj . The same 
is true for the credit vj obtains from ai.

Recent citation bonus

An entity (paper or author) obtains a score from a citation and its final score is the sum 
of these individual scores. In order to mitigate the ranking bias toward old papers (Jiang 
et al., 2016) and treat all the papers in a balanced way, it is necessary to consider the 
recent citations of entities including papers and authors. Therefore, besides the normal 
scores, an entity obtains an extra bonus if the citation is very close to the evaluation 
year.

For an entity ei , assume that ei has been cited in the most recent N years (including the 
evaluation year), and the evaluation year is tevaluate . A bonus is given to entity ei as

where score
(
ej
)
 is the score of ej that is calculated based on some other aspects of the 

entity, W(ei, ej) is the weight between ei and ej , f (tj) is a time-related function.

where � is a parameter. In this paper, we set �= 0.8 and N = 5. W(ei, ej) × f (tj) is the bonus 
weight of entities.

For papers, the bonus weight WRP is defined as

For authors, the bonus weight W
RA

 is defined as

Self‑connections between same type of entities

In this framework, both authors and venues may be considered as a whole or on a yearly 
basis. Therefore, we need to connect them in some situations. For example, for an author 
aj ∈ A , there are a group of  ai ∈ A (for 1 ≤ i ≤ n), both aj and ai refer to the same author. 
Each ai refers to aj in a specific year. W

AA

(
ai, aj

)
 is defined as

(11)
WAV

(
ai, vj

)
= WVA

(
vj, ai

)
=

∑

pk ∈ SP(ai)

pk ∈ SP(vj)

WAP(ai, pk)

(12)RCB
(
ei
)
=

∑

ei←ej

score
(
ej
)
×W(ei, ej) × f (tj)

(13)f
(
tj
)
=

{
�
tevaluate−tj tevaluate − tj ≤ N

0 otherwise

(14)WRP

(
pi, pj

)
= WPP

(
pi, pj

)
× f (tj)

(15)W
RA

(
ai, aj

)
= W

CA

(
ai, aj

)
× f (tj)
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The second one is to set different weights for papers published in different years.

where � is a parameter, taj is the year at which aj is published.
Venues are considered on a yearly basis. However, there is a need to consider its 

previous performance for tv years. Suppose vi and vj are the same conference but held 
in different years, vi is held later than vj but within tv years, the corresponding weight is 
defined as

The WCCMR method

The proposed method, WCCMR, works with the abovementioned heterogeneous aca-
demic network. After setting initial values for all the entities, an iterative process is 
applied to them, and at each step every entity obtains an updated score. Note that all the 
entities involved affect each other and all the scores converge after enough iterations. 
The algorithm stops when a threshold ε for the difference between two consecutive iter-
ations is satisfied. Algorithm 1 gives the details of the proposed method.

Initially, the rank vector of papers P, authors A (without considering the time), and 
venues V are set to IP∕|VP| , IA∕|VA| , and IV∕|VP| . IP , IA and IV are unit vectors, and ||VP

|
| , 

|VA| and |VV | are the number of papers, authors and venues.
The main part of the algorithm is included in a while loop. Inside the loop (lines 

1–13), the scores for all the nodes involved are updated. All papers’ new scores are cal-
culated in lines 3–4. Four factors are considered: authors (line 3), venues (line 3), cita-
tions (line 4), and recent citation bonus (line 4). All authors’ new scores are calculated 
in lines 5–7. Five factors are considered: published papers (line 5), coauthors to the 
published papers (line 5), the venues in which the papers are published (line 5), author 
citations (line 6), and recent citation bonus (line 6). Finally, we sum up all the yearly 
scores by using a time function to obtain the total score for each author (line 7). All 
venues’ new scores are calculated in line 8–9. Three factors are considered: published 
papers (line 8), authors (line 8), and venue citations (line 9). Although multiple types of 
entities are involved in the algorithm, it still converges quite quickly. For example, with 
the dataset used in this study and ε set to 1e-6., the algorithm stops after 13 iterations.

(16)W
AA

(
ai, aj

)
=

{
1 if aiandajisthesameauthor

0 otherwise

(17)W
TA

(
ai, aj

)
=

{
e
�(taj−

tevaluate) if aiandajisthesameauthor

0 otherwise

(18)WṼV

(
vi, vj

)
=

{
1

tv+1
vjandvisatisfythecondition

0 otherwise
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Experimental setting

Dataset

In this experiment, we use the ACL Anthology Network dataset2 (AAN) (Radev et  al., 
2013), which is constructed from papers published in natural language processing venues 
(including journals, conferences and workshops from 1965 to 2011).3 We choose AAN 
because it provides both citations and full text for almost all the papers involved.

In order to make it suitable for the experiment, the dataset is pre-processed as follows. 
First, those papers that neither cite any other papers nor are cited by any other papers are 
removed, because they have no impact to the investigation in this paper. Those papers that 
have no full text are also removed, because we need full text for citation strength analy-
sis and estimation. Second, any joint conferences are considered to have dual identity. For 
example, COLING-ACL’2006 is a joint conference of COLING and ACL. Third, in addi-
tion to regular papers, many conferences publish short papers, student papers, demos, post-
ers, tutorials, etc. Usually, the quality of non-regular papers is not as good as that of regular 
papers. Therefore, we let all regular papers remain in the main conference while putting 
all non-regular papers into its companion, a separate venue. Finally, for those papers with 
more than 5 authors, we retained the first five authors and ignored the rest. After above-
mentioned pre-processing, 13,591 papers remain with an average of 5.26 references for 
each of them, 10,140 authors and 248 venues without considering time, or 437 venues if 
taking each venue per year as a separate entity. Table 2 shows the general statistics of the 
dataset.

Table 2  Statistical information of 
experimental data sets

Number

Number of papers 13, 591
Number of authors (considering year) 23, 161
Number of authors (without considering year) 10, 140
Number of venues (considering year) 437
Number of venues (without considering year) 248
Number of paper citation links 71, 486
Number of author citation links (considering year) 381, 243
Number of author citation links (without considering year) 254, 323
Number of coauthor links (considering year) 60, 503
Number of coauthor links (without considering year) 46, 871
Number of venue citation links (considering year) 18, 118
Number of venue citation links (without considering year) 5 455
Average number of citations of each paper 5.26

2 See http:// clair. eecs. umich. edu/ aan/ index. php.
3 Note that the dataset we use does not include papers published in 2011, just as in Jiang et al. (2016).

http://clair.eecs.umich.edu/aan/index.php
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Calculating citation strength and topical similarity

Machine learning methods are good options for estimating citation strength because they 
have been very successful in many such applications. Stacking technique can combine 
classifiers via a meta-classifier to achieve better performance. In this study, we classify 
the citation strength by using the stacking technique with the features used in Chakraborty 
and Narayanam (2016). Random Forest (RF), Support Vector Classifier (SVC) and GraLap 
(Chakraborty & Narayanam, 2016) are selected as base classifiers because they are very 
good and represent up-to-date technology. Figure 1 shows the major steps involved in a 
meta-classifier. First a training data set is required to training base models and the meta-
model as well. Then the trained model can be used to classify instances in the test set.

First, we select a group of 96 papers from the whole data set randomly. From them we 
get 2735 valid references whose full texts are available in the data set. By using the Par-
scit package (Councill et al., 2008) plus a few hand-coded rules, we extracted 4993 cita-
tion sentences and sections in which the sentences locate. Such information along with the 
original papers are provided to a group of 15 annotators, all of which are graduate research 
students in computer science in our school. Among all 2735 papers, 215 are annotated at 
level 1, 2046 are at level 2, 287 are at level 3142 are at level 4, and 45 are at level 5.

Then as in Chakraborty and Narayanam (2016) and Wan and Liu (2014), we extracted 
citation features such as the number of occurrences, sections in which it appears, similarity 
between the citing paper and cited paper, and others for all 2735 citing papers. They are 
divided into five groups, each of which includes one fifth of the papers at each individual 
level. This was done by running a random selection process to the papers at each level 
separately.

A five-fold cross-validation is carried out to validate the performance of the stack-
ing approach. We find that classification of the instances at level 5 are the least accu-
rate, while level 2 instances reaches the highest classification accuracy of more than 
0.8. Note that level 2 has the largest number of instances while level 5 has the least 
number of instances. One possible explanation is: for level 2 instances, we have enough 
instances for the base classifiers and the stacking method to learn a good model. In con-
trast for level 5 instances, they are not enough. Table 3 shows its performance with two 
other approaches, SVR (Support Vector Regression) (Wan & Liu, 2014), and GraLap 

Fig. 1  The major processes in 
stacking classification
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(Chakraborty & Narayanam, 2016). Note that SVR is slightly different from SVC. Both 
use support vector machine but treat the same problem as either a classification problem 
or a regression problem. We can see that the stacking classifier is slightly better than the 
two other methods when any of the three measures are used for evaluation.

For topical similarity, we extract the title and abstract of each paper and calculate the 
topic similarity based on word2vec after performing stemming. In the experiment, the 
dimension of the word vector is set to 200, and the context window is set to 5.

Ranking benchmarks

For papers, rather than calculating citation count of each paper, we consider that experts’ 
opinion is a more authoritative measure to decide the impact of papers in the scientific 
community. Therefore, in this article, we use the gold standard papers provided in Jiang 
et al. (2016). A collection of gold standard papers, named GoldP, is assembled as rec-
ommended papers from the reading lists of graduate-level courses in natural language 
processing or computational linguistics and the reference lists of two best-selling natu-
ral language processing textbooks. Only those papers taken from the AAN dataset with 
at least two recommendations are selected. In total, 93 papers are selected in GoldP. The 
statistical information of those selected papers is shown in Table 4.

In the same vein as gold standard papers, we use WRT (weighted recommendation 
times) to measure the influence of authors. The influence score of author ai is defined as

where RT(pj) is the number of recommendations that paper pj receives and WAP

(
ai, pj

)
 is 

related to the ordering position of the author in question. See Eq. (12) in the “Paper-author 
relation” section for its definition of WAP

(
ai, pj

)
 . The final score that ai obtains, WRT(ai) , 

is the sum of the scores of all the papers in GoldP written by ai . We consider this measure 
to be better than the citation count for authors because the inflationary effect can be miti-
gated. All the authors are regarded as influential authors (GoldA) if he/she wrote one or 
more gold standard papers. In this way, we obtain 149 authors in total.

(19)WRT(ai) =
∑

pj∈AP(ai)&pj∈GoldP

WAP

(
ai, pj

)
× RT(pj)

Table 3  Performance comparison 
of three citation strength 
estimation methods

Method MSE F1 Accuracy

SVR 0.586 0.632 0.720
GraLap 0.521 0.662 0.748
Stacking 0.498 0.705 0.776

Table 4  Statistical information of the gold standard papers

Number of recommendations 2 3 4 5 6 7 8 9 10 Total

Number of gold standard papers 63 19 7 1 1 0 0 1 1 93
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For any venue, if it has two or more recommended papers in GoldP, then we set it as a 
recommended venue, GoldV. It includes 55 venues in total. The statistical information of 
GoldV is shown in Table 5.

The influence score of venue vi is defined as

It summarizes the recommendations received by all the papers in the venue.

Evaluation metrics

We use two evaluation metrics: precision at a given ranking level and a modified version 
of NDCG (Jiang et al., 2016). They are used to evaluate the effectiveness of a ranked list of 
entities E = {e1 , e2,…,en}.

Precision P@K is defined as

where inf (ei) takes binary values of 0 or 1. If ei is an influential entity, then inf (ei) is 1, oth-
erwise, inf (ei) is 0.

For a number of entities, the best ranking must exist, and it ranks all the entities in 
descending order of a given metric values. A group of papers can be ranked according 
to the times of recommendation received. WRT scores and number of recommended 
papers can be used for author and venue ranking, respectively. For a ranked list of entities 
E =

{
e1, e2,… , eK

}
 , assume that its corresponding best ranking list is E� =

{
e�
1
, e�

2
,… , e�

K

}
 

, we let credit() denote the metric value of entity ek obtain, and best_credit() the metric 
value of entity e′

k
 obtain. NDCG@K is defined as

In Eq. (22), the top-ranked entities are given a weight of 1, then the weights decrease 
with rank by a factor 1∕log2(k + 1).

Methods for comparison

The ranking algorithms used for comparison are as follows:

(20)InS(vi) =
∑

pi∈VP(vi)&pi∈GoldP

RT(pi)

(21)P@K =

∑K

i=1
inf (ei)

K

(22)NDCG@K =

∑K

k=1

credit(ek)

log2(k+1)

∑K

k=1

best_credit(ek)

log2(k+1)

Table 5  Statistical information of the gold standard venue collection

Number of recommended papers 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Total

Number of gold standard venues 24 5 8 3 8 1 2 0 0 0 0 1 1 1 0 0 1 55
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1. Citation Count (CC). It is widely used to assess the influence of papers because it is 
single-valued and easy to understand (Zhu et al., 2015).

2. SVR-based Weighted Citation Count (WCC-SVR). It provides each citation with a cita-
tion strength value calculated by SVR (Wan & Liu, 2014).

3. GraLap-based Weighted Citation Count (WCC-GraLap). It provides each citation with 
a citation strength value calculated by GraLap (Chakraborty & Narayanam, 2016).

4. MutualRank (MR). A state-of-the-art method that ranks papers, authors and venues 
simultaneously in heterogeneous networks (Jiang et al., 2016).

5. Tri-Rank (Tri). Similar to MutualRank, Tri-Rank also ranks papers, authors and venues 
simultaneously in heterogeneous networks (Liu et al., 2014).

6. PageRank with SVR_based network (PR-SVR). The PageRank algorithm runs over a 
modified citation network in which each citation has a specific weight calculated by 
SVR (Wan & Liu, 2014).

7. PageRank with GraLap-based network (PR-GraLap). The PageRank algorithm runs over 
a modified citation network in which each citation has a specific weight calculated by 
GraLap (Chakraborty & Narayanam, 2016).

8. WCCMR. The method proposed in this paper (see Algorithm 1).

Parameter setting

There are five parameters in the proposed ranking model: �1 , �2 , �3 , �4 and ε . We set ε 
to 1e-6. For �1 , �2 , �3 and �4 , we first set an intuitively reasonable value for each param-
eter: �1= 0.50, �2 = �4= 0.33, and �4= 0.50. Then, fix three of them and let the remaining 
one vary to see its effect, and Fig. 2 shows the results (P@100 is used for performance 
evaluation).

From Fig. 2a, one can see that paper evaluation performance is quite stable when �1 is 
in the range of 0.00 and 1.00. The best performance is achieved when �1= 0.90. Similarly, 
from Fig.  2b, c we can see that �2= 0.35, �3= 0.35, and �4= 0.5 are also good for these 
parameters.

Note that the parameters of �1 and (1 − �1 ) are used to adjust the relative weights of 
authors and venues. A larger � value does not necessarily mean that authors are more 
important than venues because these two components are not directly comparable. �1 par-
tially serves as a normalization measure. We find the same conclusion for the other param-
eters �2 , �3 and �4.

Fig. 2  Effect of different parameter values on ranking performance. a Effect of α1 on papers. b Effect of α2 
and α3 on authors. c Effect of α4 on venues



7214 Scientometrics (2021) 126:7197–7222

1 3

Ranking performance

In this section, we present the evaluation results of the proposed algorithm, along with 
those of a group of state-of-the-art baseline methods.

Ranking effectiveness for papers

We first study paper ranking effectiveness of the proposed algorithm. Figure 3 shows the 
effectiveness curves of the different algorithms for ranking papers measured by P@K and 
NDCG@K. We can see that the proposed method, WCCMR, constantly outperforms all 
the other methods when either P@K or NDCG@K is used. Tri and CC are close. They 
are not as good as WCCMR but better than the others. It is also noticeable that the curves 
of PR-SVR and PR-GraLap are always very close. This is not surprising because both run 
PageRank. The difference between them is the way of setting citation weights in the hetero-
geneous network.

To investigate the properties of all the methods involved for top-ranked papers, we list 
the top 20 papers returned by WCCMR and its competitors in Table 6. We can see that 18 
of the top 20 WCCMR papers are influential papers, while the numbers for Citation Count, 
MutualRank, Tri-Rank, PR-SVR, and PR-GraLap are 16, 15, 16, 7, and 8, respectively. All 
the methods fail to identify the most influential paper, but all of them successfully identify 
the second most influential paper in top 20.

Ranking effectiveness for authors

We use both GoldA and WRC for influence evaluation of authors (see Eq. 19 in “Rank-
ing benchmarks” section for its definition). Figure 4 shows the effectiveness curves of the 
different algorithms for ranking authors measured by precision and NDCG. From Fig. 4, 
we can see that the proposed method, WCCMR, is better than all the other methods when 
NDCG is used, MutualRank is the worst, while the other four are very close. However, 

Fig. 3  Effectiveness of different algorithms for ranking papers. a Measured by P@K. b Measured by 
NDCG@K
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when P@K is used, the performances of all the methods are closer. When K is 50 or more, 
WCCMR is a little better than the others. MutualRank is the worst in most of the cases, 
although the difference between it and the others is small.

To have a close look at the top 20 ranked authors by all the methods involved, we list 
them in Table  7 their corresponding ranking position in GoldA by their WRT scores. 
MutualRank identifies 17 influential authors, while all other methods reach 19. The results 

Table 6  Top 20 papers ranked 
by WCCMR and other baseline 
methods (compared with the 
Gold standard ranking in 
descending order of the times of 
recommendation received, each 
number indicates the ranking 
position of that paper in the Gold 
standard ranking, an interval is 
given if two or more papers share 
the same ranking position inside 
the Gold standard ranking)

CC Citation Count; MR MutualRank; Tri = Tri-Rank; SVR = PR-SVR; 
GraLap = PR-GraLap

Rank WCCMR CC MR Tri SVR GraLap

1 2 31–93 31–93 31–93 5–11 5–11
2 31–93 2 2 2 – –
3 31–93 5–11 12–30 12–30 – –
4 5–11 31–93 5–11 5–11 – –
5 12–30 31–93 31–93 5–11 – –
6 12–30 – 5–11 – 31–93 31–93
7 – 12–30 12–30 31–93 12–30 12–30
8 31–93 5–11 31–93 12–30 2 2
9 31–93 12–30 31–93 31–93 – –

10 5–11 31–93 – 31–93 – 12–30
11 31–93 – 12–30 12–30 – –
12 – 5–11 12–30 – – –
13 31–93 31–93 – 12–30 – –
14 12–30 31–93 31–93 – 12–30 –
15 31–93 12–30 – 5–11 5–11 5–11
16 31–93 5–11 – 31–93 12–30 12–30
17 12–30 3 31–93 3 – –
18 5–11 – – 31–93 – –
19 5–11 31–93 5–11 5–11 – 31–93
20 31–93 – 31–93 – – –

Fig. 4  Effectiveness of different algorithms for ranking authors. a Measured by P@K. b Measured by 
NDCG@K
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show that all the algorithms are very good on identifying influential authors. Therefore, 
P@20 is very good for all the methods involved.

Ranking effectiveness for venues

Figure 5 shows the effectiveness curves of different algorithms for ranking venues meas-
ured by precision and NDCG. From Fig. 5, we can see that WCCMR performs better than 

Table 7  Top 20 authors 
ranked by WCCMR and other 
baseline methods (compared 
with the Gold standard ranking 
in descending order of WRT 
scores, each number indicates 
the ranking position of that paper 
in the Gold standard ranking, an 
interval is given if two or more 
papers share the same ranking 
position inside the Gold standard 
ranking)

CC ranks authors by their total citation count; MR MutualRank; 
Tri = Tri-Rank; SVR = WCC-SVR; GraLap = WCC-GraLap

Rank WCCMR CC MR Tri SVR GraLap

1 4 4 36–44 4 4 4
2 1 27–30 27–30 27–30 27–30 27–30
3 7 75–79 4 1 9 9
4 8 9 9 25 1 1
5 75–79 14 8 7 31 31
6 2 1 25 6 75–79 75–79
7 27–30 31 31 14 23 14
8 6 25 16 9 2 2
9 36–44 16 1 8 14 16

10 3 2 14 16 36–44 36–44
11 19 6 6 31 25 23
12 23 7 2 75–79 16 25
13 36–44 23 – 2 83 6
14 36–44 51 47 23 7 51
15 27–30 36–44 7 51 51 83
16 25 83 51 27–30 6 7
17 83 27–30 – 83 3 –
18 16 8 – 69 8 3
19 – 3 23 36–44 – 8
20 14 – 83 – 27–30 27–30

Fig. 5  Effectiveness of different algorithms for ranking venues. a Measured by Precision. b Measured by 
NDCG
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the other algorithms when either the precision or NDCG is used. However, the difference 
between and WCCMR and four others besides MutualRank is small. MutualRank is the 
worst and it is much worse than all the others.

For the top 20 venues returned by WCCMR and all other algorithms, we also list their 
corresponding ranking positions by the number of recommended papers in Table  8. It 
shows that all five algorithms besides MutualRank are equally good by identifying the 
same number of 16 influential venues, while MutualRank is not as good as the others and it 
secures 12 of them.

Average and median ranking positions of all influential entities

It is generally accepted that a good ranking algorithm should be effective in identifying 
all the influential entities in a comprehensive style (Wang et al., 2019). For the ranked list 
from a given ranking method, we find out the ranking positions of all those influential enti-
ties (e.g., all the papers in GoldP) and calculate the average rank and median rank of them. 
In this way, we are able to evaluate the general performance of the algorithm by using a 
single metric. Figure 6 shows the results.

From Fig. 6, we can see that the average rank and the median rank for WCCMR are the 
smallest in all the cases. In five out of six cases, the difference between it and the others 
are significant. However, the difference is very small in the case of average rank for venues. 
On the other hand, considering performance variance of all the algorithms involved, paper 

Table 8  Top 20 venues 
ranked by WCCMR and other 
baseline methods (compared 
with the Gold standard 
ranking in descending order of 
recommended paper numbers, 
each number in the table 
indicates the corresponding 
ranking position of that venue 
in the Gold standard ranking, an 
interval is given if two or more 
venues share the same ranking 
position inside the Gold standard 
ranking)

CC citation count; MR MutualRank; Tri = Tri-Rank; SVR = WCC-
SVR; GraLap = WCC-GraLap

Rank WCCMR CC MR Tri SVR GraLap

1 4 4 18–26 18–26 4 4
2 2 2 – 4 2 18–26
3 1 18–26 – 2 18–26 2
4 8–14 1 4 17 1 1
5 18–26 8–14 32–55 – 8–14 8–14
6 32–55 5–6 – 8–14 5–6 5–6
7 5–6 – – 8–14 – 32–55
8 32–55 15–16 5–6 – 17 17
9 27–31 32–55 – 32–55 15–16 –

10 – 17 2 27–31 32–55 15–16
11 32–55 32–55 32–55 15–16 32–55 32–55
12 5–6 18–28 32–55 – – 32–55
13 8–14 – – 8–14 32–55 18–26
14 – 32–55 32–55 5–6 32–55 32–55
15 15–16 32–55 32–55 32–55 18–26 –
16 – 32–55 32–55 15–16 32–55 32–55
17 3 27–31 8–14 1 27–31 27–31
18 32–55 – – 7 – –
19 7 – 17 18–26 – –
20 8–14 18–26 – – 18–26 18–26
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ranking is the highest, venue ranking is the lowest, while author ranking is in the middle. 
Especially when average rank is considered for author ranking, all the algorithms are very 
close.

Evaluation of several variants of WCCMR

WCCMR incorporates a few factors such as variable citation weights and bonus for recent 
citations. It is interesting to find how these two factors impact ranking performance. To 
achieve this goal, we define some variants that implement none or one of the features of 
WCCMR.

1. WCCMR-R. It is a variant of WCCMR that sets equal weight to all the citations.
2. WCCMR-S. It is a variant of WCCMR that does not implement bonus for recent cita-

tions.
3. WCCMR-N. It is a variant of WCCMR. It sets all citation weights equally and does not 

implement bonus for recent citations.

Now let us have a look at how these variants perform compared with the original algo-
rithm. See Fig. 7 for the results. It is not surprising that WCCMR performs better than all 

Fig. 6  Performance of different ranking methods by identifying the positions of all influential entities. a 
Measured by average ranking positions. b Measured by median ranking positions

Fig. 7  Comparison of three feature-based variants of WCCMR with the original algorithm. a Paper rank-
ing. b Author ranking. C Venue ranking
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three variants of WCCMR, while the variant with none of the two components performs 
the worst in ranking all three types of academic entities. Such a phenomenon demonstrates 
that both components are useful for entity ranking, either used separately or in combina-
tion. However, the usefulness of these two components is not the same. In most cases, 
WCCMR-S performs better than WCCMR-R, which means that variable citation weights 
have larger impact than bonus for recent citations.

Robustness

Some types of abnormality may happen in citation networks. it can be caused by cita-
tion manipulation. Such a phenomenon certainly impacts the ranking of scientific entities, 
especially for PageRank-like algorithms. Therefore, robustness is a desirable property for 
ranking algorithms to fight against inappropriate citations. Of course, if there is no way to 
distinguish important citations from trivial ones, then we cannot do much to mitigate this 
problem. Therefore, we assume that it is more likely that citation manipulation happens to 
those with low to moderate citation strength and/or topical similarity and to those recently 
published papers.

To investigate the robustness of WCCMR when working with an abnormous network, 
we need a proper data set. AAN may not be good for this without any moderation. Instead 
of using some other data sets, we decide to make AAN more suitable for this purpose by 
adding some fake citations into it. Let us look at the situation for paper, author, and venue 
ranking separately.

• For paper ranking, we select a target paper pt from the data set, then generate up to 50 
fake papers, and each of which cites pt and a number of others chosen randomly.

• For author ranking, we select a target author at from the data set, then generate up to 50 
fake papers, and each of which cites a randomly chosen paper written by at and a num-
ber of others not written by at.

• For venue ranking, we select a target venue vt from the data set, then generate up to 50 
fake papers, and each of which cites a randomly selected paper published in vt and a 
number of other papers not published in vt.

For a target entity, we observe its ranking position change when more fake citations are 
added into the network. It is obvious that if an entity already has relatively a large number 
of citations, then adding a few more may not affect much its ranking position, while those 
entities with very few citations are more sensitive to such changes. In order to investigate 
the robustness of our algorithm, we choose those entities with very few citations (0 citation 
for a paper or an author and up to 10 citations for a venue). For all added fake citations, 
both citation strength and topical similarity are set to small to moderate values. We use 
rank difference to measure the robustness of any algorithm ΔRh = R0 − Rh . Here R0 is the 
initial rank of the entity and Rh is the rank position of the entity after h citations are added. 
Naturally, smaller rank difference indicates better robustness (Zhou et al., 2016).

Figure 8 shows the results of a group of algorithms, which is the average of 50 trials. 
The curves of WCC-SVR, WCC-GraLap always overlap with each other, because they are 
implemented in a very similar way with small difference. Not surprisingly, Citation Count 
is the most sensitive to added citations and WCCMR is the most insensitive, while WCC-
SVR, WCC-GraLap, and Tri-Rank are in the middle.
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Conclusions

In this paper, we have presented a ranking method for the impact of papers, authors, 
and venues in a heterogeneous academic network. Its main characteristic is rather than 
assigning equal weights to all the citations, we assign variable weight to each of them 
based on its strength and topical similarity between the citing paper and the cited paper. 
Both of these two values are determined through content analysis of the papers involved. 
Especially the ensemble learning technique has been used to decide citation strength 
of two papers. Experiments carried out with a publicly available data set AAN show 
that the proposed ranking algorithm, WCCMR, outperforms other baseline algorithms 
including MutualRank, Tri-rank, and GraLap.

Based on the AAN data set with some fake citations added, we demonstrate that 
WCCMR is more robust than the others. Although the data set used for this purpose is 
not completely real, the assumptions behind the artificial citations is reasonable.

As our future work, we would go further in a few directions. The first is to study 
appropriate approaches to deal with the missed citation information in the data set used. 
For example, for many papers in the AAN data set, their citation information is not 
complete. Some external resources such as Google scholar and Microsoft Academic 
may be used to enhance it. How to include such extra information into the academic 
network and the ranking framework in an efficiently and effectively style is a chal-
lenging issue. The second is how to evaluate academic entities across disciplines. For 
example, Biology and Mathematics are very different. One can expect that on average 
a Biology research paper can attract more citations than a Mathematics research paper. 
Even inside one discipline different research areas may have different properties. For 
example, in computer science, one can expect that on average a machine learning paper 
may attract more citations than an information retrieval paper. How to balance disparity 
among different disciplines or areas is also a challenging research problem. The third is 
to further study machine learning methods for content-based citation strength estima-
tion. Two major subtasks includes detecting useful features and effective machine learn-
ing models.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 

Fig. 8  Robustness of different ranking algorithms against citation manipulation. a Paper ranking. b Author 
ranking. c Venue ranking
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