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Abstract
Assessing the credibility of research claims is a central, continuous, and laborious part of the
scientific process. Credibility assessment strategies range from expert judgment to aggregating
existing evidence to systematic replication efforts. Such assessments can require substantial
time and effort. Research progress could be accelerated if there were rapid, scalable, accurate
credibility indicators to guide attention and resource allocation for further assessment. The
SCORE program is creating and validating algorithms to provide confidence scores for research
claims at scale. To investigate the viability of scalable tools, teams are creating: a database of
claims from papers in the social and behavioral sciences; expert and machine generated
estimates of credibility; and, evidence of reproducibility, robustness, and replicability to validate
the estimates. Beyond the primary research objective, the data and artifacts generated from this
program will be openly shared and provide an unprecedented opportunity to examine research
credibility and evidence.
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A primary activity of science is evaluating the credibility of claims--assertions reported as
findings from the evaluation of evidence. Researchers create evidence and make claims about
what that evidence means. Others assess those claims to determine their credibility including
assessing reliability, validity, generalizability, and applicability. Assessment occurs by journal
reviewers during the peer review process; by readers deciding whether claims should inform
their judgment; by researchers trying to replicate, extend, confirm, or challenge prior claims; by
funders deciding what is worth further investment; and by practitioners and policymakers
determining whether the claims should inform policy or practice.

Assessing confidence in research claims is important and resource intensive. A reader must
read and think about a paper to assess confidence in its claims against their expert judgment
and reasoning. A researcher expends substantial effort planning, conducting, and reporting
follow up research to assess the credibility of prior claims. Rarely is a single follow up
investigation the end of the story. Researchers may go back and forth for multiple years
challenging, debating, and refining their understanding of claims. And, sometimes it is difficult or
impossible to obtain additional evidence; A decision needs to be made about credibility with only
what is already available.

The “Systematizing Confidence in Open Research and Evidence” (SCORE) program has an
aspirational objective to develop and validate methods to assess the credibility of research
claims at scale with much greater speed and much lower cost than is possible at present.
Imagine it takes a year to achieve 95% accuracy in assessing the credibility of a claim by
conducting replication and generalizability studies, a month to achieve 85% accuracy by
conducting reproduction and robustness tests of the same claim, and a few hours to achieve
80% accuracy by consulting a group of experts to review the readily available evidence. Could
we create automated methods to achieve similar accuracy as experts in a few minutes or a few
seconds? If that were possible, readers, researchers, reviewers, funders, and policymakers
could use the rapid assessments to direct their attention for more laborious assessment and
improve judicious allocation of resources to examine claims that are important but relatively
uncertain or low in confidence.

There is accumulating evidence that such a service is needed and possible to achieve. In the
social and behavioral sciences, replication efforts have indicated that the literature is not as
replicable as might be expected (Camerer et al., 2016, 2018; Cova et al., 2018; Ebersole et al.,
2016, 2020; Klein et al., 2014, 2018; Open Science Collaboration, 2015). For example, Nosek
and colleagues (2021) aggregated 307 replication attempts of published findings in psychology
and observed that 64% reported statistically significant evidence in the same direction as the
original studies, with effect sizes 68% as large as the original studies. Investigations of
robustness and reproducibility of claims suggest that some published evidence is highly
contingent on specific analytic decisions, or even irreproducible (Botvinik-Nezer et al., 2020;
Silberzahn et al., 2018; Simonsohn et al., 2020). These investigations indicate that the credibility
of published claims is more uncertain than expected.
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Multiple studies indicate that people can anticipate which findings are likely to replicate after
reading the original paper or even just reviewing a subset of information about the finding and
supporting evidence (Camerer et al., 2016, 2018; Dreber et al., 2015; Forsell et al., 2019; Wintle
et al., 2021). Human judgments were correlated with successful replication using prediction
markets (r = 0.52), surveys (r = 0.48), and structured elicitations (r = 0.75; see Nosek et al.,
2021 for a review). This provides initial evidence that relatively accurate credibility assessments
are achievable with an order (or orders) of magnitude lower resource investment than
conducting replication or reproduction studies.

Finally, three studies provide initial evidence that machine learning methods may provide a
scalable solution that could match, or perhaps even exceed, the capabilities of human judgment
(Altmejd et al., 2019; Pawel & Held, 2020; Y. Yang et al., 2020). Each machine learning
investigation used a distinct approach drawing on narrative text of the original paper, information
about original designs and replication sample sizes, or other contextual information about the
original finding. These promising findings provide a basis for SCORE’s primary goal to
investigate scalable methods of assessing credibility of claims in the social-behavioral sciences.

SCORE began in February 2019 and the main activities are expected to conclude in May 2022.
This paper introduces the program structure, activities, and expected outcomes of the program,
including data and artifacts that will be made available to the research community for further
investigation.

Program Scope and Structure

SCORE is a large-scale collaboration involving eight primary research teams and more than a
thousand contributing researchers. The teams are organized into three technical areas (TAs) -
TA1, TA2, and TA3 - and a Testing and Evaluation (T&E) group that evaluates the TAs and
program effectiveness. The primary research teams have clearly specified roles, distinct areas
of expertise, and shared objectives organized around a common set of articles constituting the
shared Common Task Framework (CTF). The research teams work with the shared CTF dataset
in a coordinated way to advance the SCORE program’s goals (see Figure 1).

The CTF consists of approximately 30,000 articles from 2009-2018, representing 62 journals
from the following disciplines: Criminology, Economics and Finance, Education, Health,
Management, Marketing and Organizational Behavior, Political Science, Psychology, Public
Administration, and Sociology (see Table 1). From the CTF, a stratified random sample of 3,000
papers was selected for additional investigation and enhancement, called the annotation set.
From the annotation set, a stratified random sample of 600 papers was then sampled for
additional investigation such as conducting reproduction or replication studies, called the
evidence set. This sampling was done without regard to the feasibility of any particular empirical
attempt, with the understanding that not all claims will receive a completed empirical study
result. This design is intended to be adaptive to the resource-intensiveness of different activities
for assessing credibility while also maximizing the generalizability of the findings to the
social-behavioral sciences.
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Table 1. Journals comprising the Common Task Framework (CTF)

Discipline Journals

Criminology Law and Human Behavior
Criminology

Economics and Finance

Experimental Economics
Journal of Labor Economics
The Quarterly Journal of Economics
Journal of Political Economy
Econometrica
American Economic Review
The Journal of Finance
Journal of Financial Economics
American Economic Journal: Applied Economics
Review of Financial Studies

Education

American Educational Research Journal
Exceptional Children
Computers & Education
Contemporary Educational Psychology
Educational Researcher
Journal of Educational Psychology
Learning and Instruction

Health
Psychological Medicine
Health Psychology
Social Science & Medicine

Management

Journal of Business Research
The Leadership Quarterly
Academy of Management Journal
Management Science
Journal of Management
Organization Science

Marketing and
Organizational Behavior

Journal of Consumer Research
Journal of the Academy of Marketing Science
Journal of Organizational Behavior
Journal of Marketing
Journal of Marketing Research
Organizational Behavior and Human Decision Processes

Political Science

Journal of Experimental Political Science
American Journal of Political Science
American Political Science Review
World Politics
British Journal of Political Science
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Journal of Conflict Resolution
Comparative Political Studies
World Development

Psychology

Journal of Experimental Social Psychology
Journal of Applied Psychology
Journal of Environmental Psychology
Journal of Personality and Social Psychology
Journal of Experimental Psychology: General
Evolution and Human Behavior
Psychological Science
Cognition
European Journal of Personality
Child Development
Journal of Consulting and Clinical Psychology
Clinical Psychological Science

Public Administration Journal of Public Administration Research and Theory
Public Administration Review

Sociology

Journal of Marriage and Family
American Sociological Review
American Journal of Sociology
Demography
Social Forces
European Sociological Review

The purpose of the team structure and shared set of papers is to investigate the credibility of
claims from the social-behavioral sciences and test methods for efficiently assessing that
credibility. To do this, the project is organized in modular stages with specific responsibilities for
each team.

TA1, the Center for Open Science (COS), is responsible for enhancing the CTF database and
extracting claims for the annotation set to be evaluated by the other teams. In the completed
half of the program, this meant extracting 3,000 individual claims, one from each paper. TA2
teams from KeyW/Jacobs Corporation and University of Melbourne used human evaluators to
provide confidence scores predicting the reproducibility or replicability of the 3,000 research
claims in the annotation set. These teams competed with each other to provide the most
accurate scores. Three TA3 teams from Pennsylvania State University (PSU), TwoSix Labs,
LLC, and University of Southern California (USC) used machine learning methods to develop
algorithms that assign confidence scores just like the human evaluators.

While TA2 and TA3 teams generated scores for these 3,000 claims, TA1 privately created a
stratified random sample of 600 of those papers to create the evidence set. Some claims from
the evidence set were subjected to reproduction and replication studies. TA2 and TA3 teams
were left unaware of which claims were selected for the evidence set to avoid any complications
of altering strategy to focus on specific claims. The reproduction and replication outcomes
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provide a ground truth benchmark for evaluating accuracy of the confidence scores generated
by humans, a process managed by the Testing and Evaluation (T&E) teams. Algorithms are
evaluated primarily on their ability to predict the human credibility assessments across all 3,000
claims, and assessed for explainability of the generated confidence scores. Which claims were
selected for replication or reproduction studies, and the outcomes of those studies are held back
from TA2 and TA3 teams until their credibility scores are committed and completed.

Figure 1. Relationships between research teams comprising the three technical areas (TAs) of
the SCORE program.

Entering the second half of the program, the breadth and depth of the project is expanding with
TA1 sampling additional claims from the CTF, extracting a single claim per paper for another
900 papers, and systematically extracting a complete “bushel” of claims from 200 of the initial
600 papers in the evidence set. The complete set of bushel claims is meant to represent all of
the claims that could have been selected from the paper in the first half of the program, rather
than simply the one claim that was selected. The Melbourne TA2 team is expanding the task of
the human evaluators to evaluate all of the bushel claims and to assess those papers on
multiple indicators of credibility. TA3 teams are extending their strategies for improving algorithm
performance. And, finally, TA1 is expanding the scope of assessing reproduction, robustness,
and replicability for the evidence set of 600 papers.

What Makes SCORE Unique

SCORE draws inspiration from prior research on systematic replications and reproductions
(Camerer et al., 2016, 2018; Chang & Li, 2015; Cova et al., 2018; Ebersole et al., 2016, 2020;
Errington et al., 2014; Klein et al., 2014, 2018; McCullough et al., 2008; Open Science
Collaboration, 2015; Wood et al., 2018) and replicability predictions by humans (Camerer et al.,
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2018; Dreber et al., 2015; Forsell et al., 2019) and machines (Altmejd et al., 2019; Pawel &
Held, 2020; Y. Yang et al., 2020). SCORE extends these efforts in both its unprecedented scale
and its disciplinary scope. The sampling strategy is inclusive of a substantial portion of the
social-behavioral sciences to facilitate generalizability and investigation of heterogeneity in
credibility and replicability across subdisciplines and methodologies. Also, with a standard
identification process of discrete claims across papers, the SCORE program facilitates broad
inclusion of outcome types, comparison of those outcomes across papers, and a variety of
verification attempts including reproduction, robustness, and replication tests.

Another virtue of the SCORE program is that it includes many distinct efforts on the same large
dataset, facilitating the opportunity for comparative analysis. For example, the most enriched
papers from the evidence set will have structured claim extraction from the paper, metadata
about the paper from external databases (e.g., citation rates, presence of open data), human
credibility scores from multiple sources, machine credibility scores from multiple sources, and
evidence on reproducibility, robustness, and replicability of one or multiple claims. This
accumulated data will facilitate many investigations beyond the primary objective of SCORE.

Finally, like prior large-scale replication projects, at the conclusion of the program, SCORE data
will be accessible to others for research. Additional users of SCORE data may themselves
enhance the dataset and other artifacts creating a generative, virtuous cycle of data enrichment
fostering new investigations that provide further enrichment.

Defining and Extracting Scientific Claims
The TA1 team is responsible for annotating the papers randomly sampled into the annotation
set. In the completed first half of the project, this meant identifying a single relevant claim from
each paper, by tagging related information from the pdf of an article. In SCORE terminology, this
claim represents a specific, concrete finding that is supported by a statistically significant test
result, or at least by evidence that would be amenable to a statistical hypothesis test even if the
authors did not adopt significance testing. This is not the only way to identify a claim, but this
working definition provides clarity between teams, sufficient flexibility to cover a wide range of
research applications, and is sufficient constraint to define criteria for evaluating confidence and
assessing replicability and reproducibility. Table 2 shows a glossary of working definitions used
in SCORE.

Table 2: A glossary of key terms as they are used for the SCORE program

Paper A single academic article that makes quantitative claims based on specific
social scientific data. SCORE does not address papers that are exclusively
based on qualitative research, simulations, theory, or commentary.

Common Task
Framework (CTF)

The set of approximately 30,000 papers that constitutes the sampling frame for
SCORE. It includes papers from 62 social science journals published between
2009 and 2018.

Annotation Set A stratified random sample from the CTF of approximately 3,000 papers that
are annotated to identify at least one claim trace per paper.
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Evidence Set A stratified random sample of approximately 600 papers from the annotation
set. These papers could be selected for an empirical attempt to find further
evidence for or against a claim.

Claim A specific assertion reported as a finding in a paper. Most papers make more
than one claim, and claims in a paper can be related or independent of one
another.

Claim Trace A claim in a paper is identified by annotating and labeling short excerpts from
the main text or tables/graphs from the paper. Together these annotations let a
reader ‘trace’ from a general statement in the abstract to a more specific claim
to the quantitative information such as a specific inferential test or estimate that
is given as evidence for that claim.

Confidence Score A prediction about the replicability of a claim, expressed as a numerical value
on a scale from “not confident” to “very confident.” Confidence scores are about
a single claim which may or may not generalize to confidence in other claims
from the same paper.

Inferential Test A statistical calculation that supports an inference about a single effect and
provides information about both the spread and central tendency of that effect.
When testing statistical significance, a single inferential test is associated with a
single p value.  Additionally, with regression modeling, inferential tests may be
associated with a single parameter, or with an entire model if model comparison
tests are conducted.

Bushel Claim A set of claim traces from a single paper representing as many of the
independent claim traces that the authors present as possible. Each claim trace
must be linked to a finding reported in the abstract, and must be supported by
quantitative evidence presented in the main text.

Empirical Study A single empirical attempt conducted by a research team to provide additional
evidence about a claim. These attempts can include conducting a replication,
reproduction, or other empirical activity that speaks to the credibility of that
claim.

Replication Testing the reliability of a prior finding with new data expected to be theoretically
equivalent by comparing the outcome of an inferential test as reported in a
paper with the equivalent inferential test as calculated in the new dataset.

Reproduction Testing the reliability of a prior finding with the same data and same analysis
strategy by comparing the outcome of an inferential test as reported in a paper
with a re-calculation of that inferential test from the original data.

Robustness Testing the reliability of a prior finding with the same data and different analysis
strategy by conducting alternative tests on the original data.

Generalizability Testing the reliability of a prior finding in a new dataset in a way that differs from
the original study but is expected to produce similar results.
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Table 3: A single claim trace of a paper is composed of four levels.

Claim 1 The title of the paper--the most general statement of a topic or finding.

Claim 2 A statement from the paper’s abstract that reflects an empirical research finding.

Claim 3 A hypothesis, prediction, or finding statement presented somewhere in the main
text of the paper, relating to the finding reported in Claim 2.

Claim 4 A result supported by specific statistical information in the article that supports
Claim 3, alongside the authors’ interpretation of that information.

The output of the annotation process is a “claim trace” that maps a finding reported in the
abstract to a specific hypothesis or finding statement from the main text, to a particular set of
quantitative evidence that supports the reported finding. When only one claim trace is identified
in a paper, the process does not guarantee that the claim trace selected necessarily includes
the paper’s “most important” or “most central” claim. This kind of decision is neither objective
nor obvious for many papers. Pretesting revealed that such a standard is difficult to define.
Instead, as a proxy for a lower bound on importance, a claim must be directly related to a
statement made in the paper’s abstract. This criterion avoids selecting tangential findings that
are not related to the summarized purpose of the paper. The claim trace indicates a series of
levels leading down to the specific focal result as described in Table 3.

Figure 2. Model of a bushel claim set for a single paper. Each line represents a distinct bushel
claim trace. Two examples of single-trace claims that could have been extracted are in blue and
red.

Selecting a single finding creates a tractable and comparable way for independent teams to
work with a paper, and it has clear limitations for interpreting the results. Papers often include
more than one finding in the abstract, and research findings are often supported by multiple
pieces of evidence. In the current phase of work, we have expanded claim extraction for some
papers in the evidence set by adding a second bushel approach that relaxes these
requirements. In the bushel approach, we identify as many unique claims as possible by tracing
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from a finding in the abstract to statistical evidence in the paper. In addition, we relax the
definitions of evidence to allow tagging of multiple inferential tests and other types of
quantitative evidence. Figure 2 illustrates a bushel of claims from a paper and two single-trace
claims that could be extracted.

Expert Assessment
The second major technical area (TA2) elicits predictions, called confidence scores, from human
readers about replicability of extracted claims. TA2 included two independent teams, repliCATS
and Replication Markets, to examine the viability and accuracy of distinct forecasting strategies.

repliCATS - Structured elicitations

The repliCATS (Collaborative Assessments for Trustworthy Science) project uses a structured
elicitation process--the IDEA protocol--to complete group evaluations of research claims. IDEA
stands for: Investigate, Discuss, Estimate, and Aggregate (Figure 3). IDEA is a modified form of
the Delphi protocol, with the major differences being that the IDEA protocol encourages
interaction between participants and does not require consensus. Interaction between
participants takes the form of either face to face discussion or online comments, following
evidence that feedback and sharing information improves accuracy of experts' judgments (Kerr
& Tindale, 2004), and it sets the IDEA protocol apart from the surveys and prediction markets
that have previously been used to predict replicability. In the first half of the program, repliCATS
assessments focused on the replicability of research claims. In the remainder of the program,
the scope of assessments is expanding to other judgements such as robustness, validity and
generalizability. Here we focus on the work from the first half, predicting likely replicability.

Figure 3. Overview of the IDEA protocol, as adopted in the repliCATS project

In repliCATS, experts work in small groups of 4 to 6 people using a custom built cloud-based
elicitation platform (Fraser et al., 2021; Pearson et al., 2021). Each group is provided with a
paper to read and a specific claim from the paper to assess. Individual experts within the group
first make their own estimate of whether or not the claim will replicate and document the



14

reasons for their judgement (Investigate). After lodging their initial estimates, individuals receive
feedback about their group members’ judgements and reasoning, and they are encouraged to
interrogate these and share information (Discuss). Following discussion, each individual
provides a second private assessment (Estimate). A mathematical aggregation of the individual
estimates is taken as the final assessment (Aggregate). Mathematical aggregation removes the
need for group members to reach a consensus.

Mathematical aggregation can take many forms and the repliCATS project has several
preregistered aggregation models (https://osf.io/m6gdp/). Described in detail by Hanea and
colleagues (2021), the aggregation models being tested in the repliCATS project fall into three
broad categories: (1) linear combinations of best estimates, transformed best estimates
(Satopää et al., 2014) and distributions (Cooke et al., 2021); (2) Bayesian approaches, one of
which incorporates characteristics of a claim directly from the paper, such as sample size and
effect size; and (3) weighted linear combinations of best estimates, mainly by potential proxies
for good forecasting performance, such as demonstrated breadth of reasoning, engagement in
the task, openness to changing opinion and informativeness of judgments (Mellers, Stone,
Atanasov, et al., 2015; Mellers, Stone, Murray, et al., 2015). The third category of models is the
largest.

The structured elicitation protocol and deliberate inclusion of text responses on the repliCATS
platform is fostering an unprecedented qualitative database, with experts documenting the
reasoning behind their predictions and judgements. This typically includes justifications for
assessments of replicability, and judgements about the papers’ importance, clarity and logical
structure. The database could increase understanding of how experts evaluate a claim’s
replicability.

Replication markets

The Replication Markets team’s approach is motivated by evidence that creative assembly of
experts through markets can accurately estimate the replicability of findings in the social and
behavioral sciences (Camerer et al., 2016, 2018; Dreber et al., 2015; Ebersole et al., 2020;
Forsell et al., 2018; Klein et al., 2018; Gordon et al., 2021). This approach and evidence build
on the well-established ability of markets to aggregate information efficiently (Arrow et al., 2008;
Malkiel & Fama, 1970; Plott et al., 2003; Plott & Sunder, 1988; Radner, 1979). In a number of
contexts (K.-Y. Chen et al., 2003; Forsythe et al., 1992, 1999), markets appear to provide better
estimates than any one individual can, especially in complex combinatorial prediction markets
(Y. Chen & Pennock, 2010) where individuals make systematic errors (Wang et al., 2011).

SCORE created two unique challenges for the application of markets: scale and non-resolution.
Instead of forecasting replicability of 18-40 similar claims at a time, all of which would be tested,
as has been done in previous replication markets, SCORE required forecasting 3,000 highly
diverse claims in about a year, with only a small fraction to be resolved by conducting a
replication. We elicited forecasts in 10 monthly rounds of ~300 claims, using a decision market
mechanism to preserve proper incentives given the low resolution rate (Figure 4).
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Each round of forecasting included replication markets on a set of ~300 claims open for two
weeks and a survey for the same set of claims. In replication markets, forecasters traded ‘Yes’
and ‘No’ shares on binary replication questions. ‘Yes’ shares pay 1 point if the replication yields
a statistically significant finding in the direction of the original claim. Otherwise ‘No’ shares pay 1
point. The survey directly solicits probabilistic forecasts on replications. A total prize pool was
split into one part dedicated to the prediction markets (~⅔), and one part dedicated to the
survey (~⅓). While the market prizes are paid when replication outcomes become available, the
survey prizes were paid each round after the markets closed, using surrogate scores (Liu et al.,
2020) to evaluate each forecaster’s accuracy a month after the round closed when replication
outcomes were not yet available. The surrogate scoring method generates a score for a
forecast based solely on reported forecasts across claims made by other forecasters. It exploits
the unknown statistical correlation of forecasts. Under certain conditions and with enough
number of claims and forecasts, it has been theoretically shown that a forecaster’s expected
surrogate score reflects their forecast accuracy with respect to the (unavailable) ground truth,
and surrogate scoring incentivizes truthful forecasting. For instance, if the Brier score is used to
evaluate forecast accuracy against the ground truth, then the surrogate score of a forecaster
(without accessing to the ground truth) in expectation equals their Brier score evaluated using
the ground truth. Thus, surrogate scoring allows us to provide immediate, potentially noisy,
feedback on forecast accuracy before replication outcomes become available. Once the
claim-level replication outcomes are available, we can evaluate forecasting performance in
greater detail, similar to the analyses in previous projects. Preregistered tests (Pfeiffer et al.,
2020) include the effects of forecaster traits, study features, and aggregation methods on
forecast accuracy and outcome. Replication markets and surrogate scoring were also used to
forecast the overall replication rate in SCORE and how it depends on research fields and
publication year (Gordon et al., 2020).

Figure 4. Overview of the Replication Markets workflow.

Machine Assessment
The third technical area (TA3) uses the same dataset of extracted claims to generate confidence
scores using machine learning and other algorithmic approaches. The three teams -- PSU,
TwoSix, USC -- use different approaches for generating confidence scores.
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PSU

Researchers at Pennsylvania State University, in collaboration with others at Texas A&M
University, Old Dominion University, and Rutgers University use synthetic prediction markets for
scoring the replicability of claims. As with the human Replication Market team, a research claim
is treated as a binary option in which the price of the option of a claim at market close can be
interpreted as an indicator of confidence in its replicability. Within this framework, artificial
agents, or trader-bots, are endowed with initial cash and may choose to purchase options of a
given claim, and are trained using an evolutionary algorithm and data from existing replication
studies (e.g., Open Science Collaboration, 2015).

Prediction markets require the coordinated, sustained effort of collections of human experts
limiting their feasibility to scale. Most prediction markets rely on availability of some
measurement of ground truth. That is, participants trade on well-defined and verifiable outcomes
which are determined after market close. Synthetic prediction markets can overcome these
limitations. They can be deployed rapidly and at scale. They can be updated continuously as
new information becomes available with periodic, offline human input. Agents can have
comprehensive access to prior scholarship far beyond the capacities of an individual researcher.
Given the novelty of this approach, the group has dedicated effort to developing a comparable
baseline (“Red Team”) led by Texas A&M University and leveraging state of the art approaches
for interpretable representation learning developed within DARPA’s XAI program (Du et al.,
2021, 2018; F. Yang et al., 2018).  Any machine learning (ML) system that can support
understanding of the complex factors that contribute to credibility of research claims in practice
must explain its outputs. To this end, the complete record of trades, across bots and findings,
can offer quantitative understanding of success and failure and provide the basis for learning
over time.

In the current functional prototype, asset prices for claims are determined by a logarithmic
scoring market rule. Artificial agents are endowed with purchase logic defined using a sigmoid
transformation of a convex semi-algebraic set defined in feature space (Nakshatri et al., 2021).
The team’s feature extraction and representation (FEXRep) framework extracts bibliometric,
bibliographic, statistical and semantic features from scientific papers (Lanka et al., 2021;
Modukuri et al., 2021; Wu et al., 2021, 2020).  So far, 42 distinct features are extracted and
provided to bot-traders. To evaluate the bushel claims, the team is expanding feature extraction
capabilities, shifting from focusing on paper-level features to incorporate more detailed
claim-level features and information about the relationships amongst multiple claims in a single
paper. Motivated by a survey of subject matter experts, these features include identifying the
theoretical footing of assertions and indicators of rigor in study design.

TwoSix

The A+ system developed by Two Six Technologies is a method for understanding replicability
given only a journal article in the form of a PDF while encapsulating a wider, more robust set of
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factors than prior art. The A+ system contains three major computational components: semantic
parsing, feature extraction, and replication prediction.

Semantic parsing. The first major step in the A+ system after extracting text from the PDF
using Automator is to represent the overall semantic context of each section of text.  This is
similar to prior annotation work (K.-Y. Chen et al., 2003; Dasigi et al., 2017; Huber & Carenini,
2019). Here though, we modify the annotation scheme to better match the problem of
information extraction for replication prediction (see Table 4). We infer the discourse class for
each sentence and perform an averaging of outputs to obtain the final class.

Table 4: Discourse classes used in semantic parsing for the A+ method (TwoSix)

Classification Definition

Introduction Problem statement and paper structure

Methodology Specifics of the study, including participants, materials, and models

Results Experimental results and statistical tests

Discussion Author's interpretation of results and implications for the findings

Research Practice Conflicts of interest, funding sources, and acknowledgements

Reference Citations

Feature extraction. The unstructured prose of scientific documents includes key features for
assessing replicability, such as sample sizes, populations, conditions, experimental variables,
methods, materials, exclusion criteria, and participant compensation. Much of this information is
available as concise spans of text in the document: “twenty-four” may be a sample size;
“undergraduates” may be a population description; “reaction time” may be a dependent variable;
and so on. Consequently, we are not interested in extracting and classifying relations at this
phase of analyses; rather, we optimize our information extractor to classify individual spans
within the text with context-sensitive labels (e.g., sample count and characteristics, experimental
variables, methods), to create a dataset of 620 examples that are annotated with these labels.

Our model next processes the resulting classified spans -- as shown in Figures 5, 6, and 7-- to
opportunistically extract domain-specific numerical and Boolean features. For example, the
sample count and exclusion count are both expected to be integers, so it attempts to coerce
“one hundred and ninety - seven” (Figure 5) and “Eight” (Figure 6) to integers and populate
corresponding integer features. Similarly, the model uses a lexicon-based approach over the
sample descriptor spans to populate Boolean features indicating whether participants' genders,
age, race, religion, and community are specified, what the recruitment pool is (e.g., AMT,
universities, etc.), and how they are compensated (e.g., course credit, monetary, etc.). Because
statistical tests are much more structured than each of these features, we use specific Python
regular expressions to identify 25 different statistical tests and values including p, R, R2, d,
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F-tests, T-tests, mean, median, standard deviation, confidence intervals, odds ratios, and
non-significance.

Figure 5: Labeling spans for sample size, sample details, and subject compensation

Figure 6: Labeling spans for sample elements excluded and the reason they were excluded

Figure 7: Labeling the sample, experimental methods employed, and factors under study

After extracting individual spans and subgraphs from the unstructured prose of a paper, we
assemble the extracted information into a global graph called the argument structure of the
paper. As implied by its name, the argument structure expresses the premises, evidence, and
observations in a scientific article, ultimately in support of its conclusions.

The system generates the argument structure by iterating over the sequence of text segments
and associated semantic tags to create a structured set of nodes representing the article. For
instance, upon encountering a transition in semantic tags, such as a new Methodology section
after a Discussion section, the system instantiates a new Study node and adds the appropriate
features.

Replication prediction. The graph-based layout of the argument structure allows the system to
assess independent replicability concerns in a context-sensitive, explainable fashion. For
example, a sample size of 24 for a study node may impact the judgment of that study's
replicability, but it does not necessarily impact the replicability judgment of the study, in the
same paper. Each node in the directed argument structure graph is connected directly or
indirectly to the node representing the scientific article itself. The argument structure is a
fully-connected graph that supports graph and pattern matching, confidence propagation, and
feature extraction to judge and explain replicability.

University of Southern California

The MACROSCORE system developed by the University of Southern California is a knowledge
fusion system that captures a holistic view of the factors important for reproducible and
replicable research. The approach mimics the complex judgments that human reviewers make
when assessing research. Here, we describe the complex factors and associated techniques for
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extracting them, the structure and content of the knowledge graph, and the predictive algorithms
used in the system.The first pipeline relies on "micro"-features: those that are based on
information extracted from papers pertaining to the parameters of the study (e.g., study type and
design, sample population as well as indicators of open science, including preregistration, open
data, open materials, and open code). Potential detractors to scientific validity, such as conflicts
of interest or funding sources are also extracted. To extract these features from papers,
MACROSCORE uses an adaptation of SciBERT, a pre-trained language model created using
millions of scientific papers, to identify entities such as experimental parameters, open science
indicators, and claim information. Together, these provide a core set of document-specific
features.

The second pipeline in MACROSCORE is the "macro"-feature pipeline that captures the
broader scientific context of a paper. Determining the impact and contributions of a scientific
work is a difficult and subjective task. MACROSCORE addresses these challenges by applying
network science approaches to the bibliometric structure of scientific disciplines. Specifically,
MACROSCORE collects the citations and references within a particular scientific discipline,
forming a network connecting the scientific articles and their authors. Metrics of network
structure, including in-degree (incoming citations to the work), out-degree (references to other
works), authority score (citations by important works), and hub score (citing important work)
provide core features to assess the scientific work.

The heart of the MACROSCORE system is a knowledge graph that represents the features
distilled from both micro and macro pipelines. The knowledge graph represents the core
concepts of the scientific discipline: scholarly works, scientific claims, scholars, organizations,
and publication venues. MACROSCORE uses an ontology derived from the popular, public, and
widely-used knowledge graph Wikidata to include each scientific article, the journal where it was
published, its authors and editors, and the affiliations of each, and all citations and references to
the article. Beyond the classes and properties defined in Wikidata, MACROSCORE has
extended the ontology on Wikidata to incorporate claim information described earlier, as well as
derived features from four high-level classes: validity of inference, study design, reporting and
transparency, and scientific network. Together, these features create a comprehensive profile of
the scientific work and its connection to other works.

The final component of the MACROSCORE system is a suite of predictive algorithms that
operate on the features from each pipeline and the knowledge graph. Among other methods,
MACROSCORE uses a probabilistic graphical model using the probabilistic soft logic (PSL)
framework. This model includes dependencies between different features defined in the
knowledge graph specified as logical rules, such as "Small sample sizes and small effect sizes
indicate poor replicability." Using training data, the PSL framework can learn the importance of
each rule and its associated features. For a given judgment made by the MACROSCORE
system, the PSL model will provide a set of explanatory statements, and an analysis of the top
features contributing to the assessment. As the system evolves, MACROSCORE will
incorporate more features from both the article and scientific network, and create an
increasingly comprehensive knowledge graph.
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Empirical evidence for credibility assessment
Independent empirical assessments provide the basis for evaluating the confidence scores
generated by humans and algorithms to predict credibility of claims. Table 5 presents
approaches to empirical assessment of credibility roughly ordered from the bottom being the
least effortful but providing the least information about credibility to the top being the most
effortful and providing the most information about credibility. “Roughly” is an important qualifier
because there are many exceptions based on particular cases for which amount of effort and
amount of information may not correspond cleanly with this depiction. In general, lower
categories in Table 5 correspond with assessments of the original design and original data for a
narrow test of whether the original report found what it reported to have found, and higher
categories correspond with more laborious assessments involving obtaining new designs and
data for a broader test of whether the original claim is supported by new evidence. These are
not the only ways to assess credibility. For example, a finding could be reproducible, robust,
replicable, generalizable, and invalid. Nevertheless, these assessments are tractable and
verifiable indicators that are related to other aspects of credibility.

As TA1, COS bears responsibility for coordinating a large network of social-behavioral
researchers to contribute empirical evidence assessing the credibility of claims. The team draws
on the stratified random sample of 600 claims comprising the evidence set and matches their
topics and methodologies to researchers with appropriate resources and expertise to conduct
an empirical assessment. The focus of the first half of the SCORE program was on conducting
replication and reproduction studies. The remainder of the program expands the scope of
empirical evidence to include all of the forms presented in Table 5.

Table 5. Forms of empirical credibility assessment

Generalizable Original claim supported across diverse samples,
treatments, outcomes, and settings

Replicable Original claim supported with independent evidence

Robust Original claim supported with diverse treatments of
original data

Outcome Reproducible Original claim supported with original analysis of
original data

Process Reproducible Possible to assess outcome reproducibility of
original claim

Internally consistent Reporting of original claim does not have
detectable errors

A reproduction refers to applying the original analysis strategy to the original data to test
whether the same result recurs. A reproduction could fail due to process reproducibility
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because, for example, the original data are not available, making it impossible to conduct the
analysis again. This does not disconfirm the original finding, but it is a credibility risk in that the
original finding cannot be confirmed or disconfirmed. A reproduction could also fail due to
outcome reproducibility because, for example, applying the analysis described in the original
paper does not produce the finding associated with it. This can occur because of errors in
reporting, ambiguity in description of analyses, or factors in the data analysis pipeline.

A replication refers to testing the original claim with different data. That data could be
pre-existing, such as re-testing the relationship between variables in a subsequent wave of a
panel study, or could be newly generated with a study design to test the same research
question. Whether based on existing or new data, the determination of whether a new test is a
replication of a prior claim is a theoretical commitment that the inevitable differences between
the original and replication study are irrelevant for testing the original claim (Nosek & Errington,
2020).

To provide evidence that is both appropriate to testing individual claims and standard enough to
evaluate SCORE teams’ prediction methods across disciplines, we designed a process that
balances specific requirements that all projects must adhere to with ongoing evaluation and
feedback by subject area experts. For example, all replications are prepared using a standard
template that is reviewed by 2-3 independent researchers, and the resolution of design changes
suggested by reviewers is managed by an editor. Authors of the original finding are invited to
participate in the review process or to submit a commentary on the design. The review process
is intended to improve the quality of the replication designs so that they are effective, good-faith
tests of the original claim. The template and review process also provide an occasion to
explicitly document differences between original and replication studies and assessments of any
heterogeneity in beliefs about whether they are consequential for the replication design.
Following approval, the design and analysis plan is preregistered on the Open Science
Framework (OSF). Research teams conduct their studies and then report outcomes following a
standard protocol and provide all research materials, data, and code so that the replication
studies are themselves reproducible and, eventually, accessible to others to the extent ethically
possible. The reproduction workflow has a similar emphasis on documentation and
transparency with a lighter review process emphasizing adherence to the standardized protocol
for reproducing original findings.

As singular attempts to reproduce or replicate original claims, these empirical efforts do not
provide definitive evidence about their credibility (Open Science Collaboration, 2015) -- they add
to the body of evidence about that claim which includes the original paper and any other
evidence for the claim in the literature. However, prior evidence that both humans and
algorithms can predict the outcomes of these reproductions and replications provides a basis for
treating them as ground truth for the purposes of the program. More importantly, the generated
dataset of original and novel statistical evidence, reproduction and replication outcomes, along
with the expanded set of empirical credibility indicators from internal consistency (e.g.,
statcheck), robustness (e.g., multiverse or many-analyst investigations), or generalizability tests
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will provide a rich network of evidence to investigate convergence and heterogeneity of these
credibility indicators.

Evaluating Expert and Machine Success
There is no definitive criterion for deciding whether a finding is successfully replicated or
reproduced (Nosek et al., 2021), but pragmatic, defensible, and widely applicable benchmarks
are needed to evaluate the outcomes of the SCORE program. The role of the MITRE Testing &
Evaluation (T&E) team in SCORE is to evaluate the relative match between predicted and
actual confidence in each claim using the outcomes from the TA1 empirical results and the
human-generated confidence scores from TA2. T&E focuses on evaluating the accuracy of
human-generated confidence scores relative to replication outcomes and the accuracy of
algorithm-generated confidence scores relative to the most accurate human-generated scores.

Evaluation of human confidence score accuracy against binary replication outcomes focuses on
discrimination or “signal detection” (Yaniv et al., 1991) – that is, the ability to prospectively
distinguish claims with higher and lower chances of successful replication on the basis of
reliably diagnostic indicators. In addition to a modified version of the Wilcoxon Mann-Whitney U
statistic (Gibbons & Fielden, 1993), we use an area under the curve (AUC) interpretation which
can be understood as the “meta-probability” that the forecast system assigns a higher
probability to a “positive” case than to a “negative” case for any randomly sampled pairing of two
such cases (Pepe, 2003; Steyvers et al., 2014).

The analysis of replication p-values are used as a supplementary continuous measure of a
claim’s degree or amount of replication success, where smaller replication p-values indicate
higher levels of replication study support for the original study claim. Additional supplementary
metrics include: stand-alone reporting of proper scoring rule values (Brier, 1950), measures of
calibration (Arkes et al., 1995), and various “confusion matrix”-style measures of classification
performance (e.g., sensitivity, specificity, proportionate reduction in error vs. base rate; Pepe,
2003). Using metrics based on the p-value to assess replication outcomes have known
limitations (Open Science Collaboration, 2015). However, they also have the virtues of easy
application, straightforward interpretability, broad applicability across research methodologies,
and demonstrated validity in prior human and machine prediction contexts (Altmejd et al., 2019;
Camerer et al., 2018; Dreber et al., 2015; Forsell et al., 2019; Y. Yang et al., 2020).

To evaluate algorithm accuracy in predicting human confidence scores, the root mean squared
error (RMSE) is used as one of two primary outcome metrics. Additionally, Kendall’s tau-b, a
nonparametric measure of monotonic association (Gibbons & Fielden, 1993) is used to assess
accuracy in discriminating among claims with greater or lesser amounts of replication support.
Finally, we use measures of calibration as a supplementary metric (e.g., regression of TA2
scores on TA3 scores, where intercept and slope deviating from 0 and 1, respectively, would be
evidence of miscalibration).

Finally, toward the end of the SCORE program, RAND researchers will pilot the use of TA3 tools
to assess their applicability with users in the policy community. While few studies have an
explicit emphasis on the reproducibility of scientific claims, matters of generalization and
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reliability weigh heavily on the development and assessment of policy interventions. Two
applications of particular interest include the ability to characterize findings from large bodies of
literature that form the initial basis of information from which further studies are drawn, and in
the role of adjudicating load-bearing claims that may be sources of contention among policy
making stakeholders.

Potential Outcomes, Findings, and Artifacts
The primary research objective for SCORE is to create accurate, scalable, automated
algorithms to signal confidence in research claims. There are a variety of potential use cases.
Researchers might use scores to identify potential weaknesses in their claims and provide more
detail or support. Journal editors and conference organizers might use the scores to prioritize
selection of reviewers with expertise in areas that the algorithm flagged as low confidence.
Funders and researchers designing proposals might use the scores to identify potentially
important findings that have not yet achieved high confidence. The scores could guide
policymakers’ information search and allocation of effort to obtain additional evidence or expert
judgment when the algorithm flags uncertainty.

Across use cases, such a technology would provide a heuristic “first pass” to help direct
attention to areas of risk and opportunity. To be clear, even the most optimistic assessments of
the potential of such scores would not defer reasoning, decision-making, judgment, and action
to machines. As in other applications, uncritical use of algorithms can perpetuate biases in how
we evaluate claims, or reflect inappropriate generalizations about what signals indicate that a
paper is credible (Buolamwini & Gebru, 2018; Caliskan et al., 2017; Larson et al., 2016).
Effective automated technologies can be a tool to complement these human and social
processes in the assessment, prioritization, and application of research. They can also provide
researchers with tools for rapid and iterative assessments of credibility. At scale, as an iterative
feedback mechanism, they may help foster culture and behavioral changes that increase the
overall credibility of research.

SCORE represents a unique opportunity to explore a challenge that is paramount to modern
AI--How can we combine the best of both human and machine reasoning? The nuance inherent
in scientific expression beyond the obvious reporting of statistical information makes this
program both challenging and exciting. Explainability of results in machine learning is always
challenging, but made more so by the complex environment of human writing. With multiple
algorithm strategies using enriched extracted information from papers and human judgment and
replication outcomes as validation measures, SCORE may facilitate significant progress on this
problem.

Beyond the primary objectives, SCORE will advance a variety of research questions about the
credibility and assessment of scholarly research, and generate research artifacts that can
support dozens or hundreds of investigations. These artifacts include:

1. Annotation Set: A stratified random sample of 3,000 papers with a claim trace from the
abstract to a statistical inference in the paper from a stratified random sample of about
30,000 papers from >60 journals from the social-behavioral sciences from 2009 to 2018
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with metadata enhancements such as open science badges, links to open access
versions of articles, and code availability statements;

2. Confidence scores: Expert and machine ratings of the confidence in Annotation Set
claims along with substantial metadata and qualitative assessments about the papers
and basis for confidence ratings;

3. Evidence set: A stratified random sample of 600 papers from the Annotation set that
additionally assess statistical errors in the papers, process and outcome reproducibility,
robustness, and/or replicability;

4. Enhanced bushel set: After 200 of the 600 papers undergo further enhancement by
extracting a full bushel of claims tracing from the abstract to statistical inferences in the
paper, experts and machines will provide scores and other assessments of all claims,
and some additional reproduction, robustness, and replication evidence will be
accumulated for multiple claims in those papers;

5. Process data and artifacts from project execution: Substantial data and documentation
about the process of conducting this work and the many additional artifacts that are
created along the way, sufficient to extend the artifacts and make it a living body of
research. Cumulatively, SCORE is the most in-depth examination of credibility of
research claims in the social and behavioral sciences ever conducted.

All of the data and materials from SCORE that can be shared without violating publisher
intellectual property rights or human participant protections will be made publicly accessible
after the program is completed. There are many possible research questions that will be
possible to advance with these data by any interested researchers. For example, some of the
questions that the SCORE team is already investigating with these data include: What is the
strength of evidence in original claims? How do experts and machines evaluate the credibility of
claims and how does this vary by discipline, time, topic, and methodology? What are observed
reproducibility, robustness, and replicability rates in the sample and how do they likewise vary?
How well do humans and machines predict replicability, robustness, and reproducibility? How
are credibility indicators related to one another?

Conclusion
SCORE has aspirational objectives to advance scalable tools for credibility assessment, and will
generate substantial research artifacts to support scholarly research on human and machine
judgment, replicability and reproducibility, and the nature of research claims. This is made
possible by SCORE’s greatest asset -- the participation of hundreds of researchers across the
social and behavioral sciences that are contributing to claim extraction, credibility assessment,
and reproducibility, robustness, and replication studies. This large-scale team science project is
generating data that would not otherwise be possible (Uhlmann et al., 2019), and will open
doors to many novel investigations to assess and enhance research credibility. If nothing else,
the program may provide a case example of the potential for team science in tackling many of
the most important challenges in social and behavioral research.
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