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Abstract
Recent technological advancements in data acquisition tools allowed life scientists to acquire multimodal data from differ-
ent biological application domains. Categorized in three broad types (i.e. images, signals, and sequences), these data are 
huge in amount and complex in nature. Mining such enormous amount of data for pattern recognition is a big challenge and 
requires sophisticated data-intensive machine learning techniques. Artificial neural network-based learning systems are well 
known for their pattern recognition capabilities, and lately their deep architectures—known as deep learning (DL)—have 
been successfully applied to solve many complex pattern recognition problems. To investigate how DL—especially its dif-
ferent architectures—has contributed and been utilized in the mining of biological data pertaining to those three types, a 
meta-analysis has been performed and the resulting resources have been critically analysed. Focusing on the use of DL to 
analyse patterns in data from diverse biological domains, this work investigates different DL architectures’ applications to 
these data. This is followed by an exploration of available open access data sources pertaining to the three data types along 
with popular open-source DL tools applicable to these data. Also, comparative investigations of these tools from qualita-
tive, quantitative, and benchmarking perspectives are provided. Finally, some open research challenges in using DL to mine 
biological data are outlined and a number of possible future perspectives are put forward.

Keywords Brain–Machine Interfaces · Bioimaging · Deep learning performance comparison · Medical imaging · Omics · 
Open access data sources · Open-source tools

Introduction

The pursuit of understanding human behaviours, along with 
the various pathologies, their early diagnosis and finding 
cures, has driven the life sciences research in the last two 

centuries [1]. This accelerated the development of cutting 
edge tools and technologies that allow scientists to study 
holistically the biological systems as well as dig down, in an 
unprecedented manner, to the molecular details of the living 
organisms [2, 3]. Increasing technological sophistication has 
presented scientists with novel tools for DNA sequencing 
[4], gene expression [5], bioimaging [6], neuroimaging [7], 
and body/brain–machine interfaces [8].

These innovative approaches to study living organisms 
produce huge amount of data [9] and create a situation 
often referred as ‘Data Deluge’ [10]. Depending on the tar-
get application and experimentation, these biological big 
data can be characterized by their inherent characteristics 
of being hierarchical (i.e. data coming from different levels 
of a biological system—from molecules to cells to tissues 
to systems), heterogeneous (i.e. data acquired by different 
acquisition methods—from genetics to physiology to pathol-
ogy to imaging), dynamic (i.e. data changes as a function of 
time), and complex (i.e. data describing nonlinear biological 
processes) [11]. These intrinsic characteristics of biologi-
cal big data posed an enormous challenge to data scientists 
to identify patterns and analyse them to infer meaningful 
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conclusions from these data [12]. The challenges have trig-
gered the development of rational, reliable, reusable, rigor-
ous, and robust software tools [11] using machine learning 
(ML)-based methods to facilitate recognition, classification, 
and prediction of patterns in the biological big data [13].

Based on how a method learns from the data, the ML 
techniques can be broadly categorized into supervised 
and unsupervised approaches. In supervised learning, 
objects in a pool are classified using a set of known 
annotations or attributes or features, i.e. a supervised 
algorithm learns the pattern(s) from a limited number of 
annotated training data and then classifies the remaining 
testing data using the acquired knowledge. Instead, in the 
unsupervised learning, pattern(s) are first defined from 
a subset of the unknown data and then the remaining 
data are classified based on the defined patterns, i.e. an 
unsupervised algorithm first defines pattern(s) among 
the objects in a pool of data with unknown annotations or 
attributes or features, and then uses the acquired knowl-
edge to classify the remaining data. In addition, there 
is another category called reinforcement learning which 
is out of the scope of this work, but allows an agent to 
improve its experience and knowledge by learning itera-
tively through interacting with its environment.

Since the 1950s, many methods pertaining to both the 
learning paradigms (i.e. supervised and unsupervised) have 
been proposed. The popular methods in the supervised 
domain include: ANN [14] and its variants (e.g. Backpropa-
gation [15], Hopfield Networks [16], Boltzmann Machines 
[17], Restricted Boltzmann Machines [18], Spiking Neu-
ral Networks [19], etc.), Bayesian Statistics [20], Support 
Vector Machines [21] and other linear classifiers [22] (e.g. 
Fisher’s Linear Discriminant [23], Regressors [24], Naive 
Bayes Classifier [25], etc.), k-Nearest Neighbours [26], Hid-
den Markov Model [27], and Decision Trees [28]. Popular 
unsupervised methods include: Autoencoders [29], Expecta-
tion–Maximization [30], Information Bottleneck [31], Self-
Organizing Maps [32], Association Rules [33], Hierarchical 
Clustering [34], k-Means [35], Fuzzy Clustering [36], and 
Density-based Clustering [37, 38] (e.g. Ordering Points To 
Identify the Clustering Structure [39]). Many of these meth-
ods have been successfully applied to data coming from vari-
ous biological sources.

For the sake of simplicity, the vast amount of biologi-
cal data coming from the diverse application domains have 
been categorized to a few broad data types. These data types 
include Sequences (data generated by Omics technologies, 
e.g. [gen/transcript/epigen/prote/metabol]omics [40]), 
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Fig. 1  The ecosystem of modern data analytics using advanced 
machine learning methods with specific focus on application of DL 
to biological data mining. The biological data coming from various 
sources (e.g. sequence data from the Omics, various images from the 

[Medical/Bio]-Imaging, and signals from the [Brain/Body]–Machine 
Interfaces) are mined using DL with suitable architectures tailored for 
specific applications
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Images (data generated by [bio/medical/clinical/health] 
imaging techniques containing [sub-]cellular and diagnos-
tic images), and Signals (electrical signals generated by the 
brain and the muscles and acquired using appropriate sen-
sors at the [Brain/Body]–Machine Interfaces or BMI). Each 
of these data types originating at diverse biological applica-
tion domains have witnessed major contributions from the 
specified ML methods and their variants (see for Sequences 
[41], images [42–44], and signals [45–47]).

In recent years, DL methods are potentially reshaping 
the future of ML and AI [48]. It is worthy to mention here 
that, from a broader perspective, ML has been applied to 
a range of tasks including anomaly detection [49, 50, 278, 
283, 290], biological data mining [51, 52], detection of coro-
navirus [53, 54], disease detection and patient management 
[55–57, 277, 279–282, 284, 286, 287, 289, 291], education 
[58], natural language processing [59, 285, 288], and price 
prediction [60]. Despite notable popularity and applicability 
to diverse disciplines [61], there exists no comprehensive 
review which focuses on pattern recognition in biological 
data and provides pointers to the various biological data 
sources and DL tools, and the performances of those tools 
[51].

Also, considering the ecosystem of modern data analy-
sis using advanced ML techniques (such as DL), providing 
information about methods application only partially covers 

the components of this ecosystem (see the various compo-
nents of the ecosystem in Fig. 1). The remaining components 
of the ecosystem include open access data sources and open-
source toolboxes and libraries which are used in developing 
the individual methods. It is therefore of paramount impor-
tance to have a complete understanding of the availability of 
datasets and their characteristics, the capabilities and options 
offered by the libraries, and how they compare with each 
other in different execution environments such as central 
processing unit (CPU) and graphical processing unit (GPU). 
The current paper’s novelty lies in being first of its kind to 
cover comprehensively the complete ecosystem of modern 
data analysis using advanced ML technique, i.e., DL.

Therefore, with the above aim, this review provides—a 
brief overview on DL concepts and their applications to vari-
ous biological data types; a list of available open access data 
repositories offering data for method development; and a list 
of existing open-source libraries and frameworks which can 
be utilized to harness the power of these techniques along 
with their relative and performance comparison. Towards 
the end, some open issues are identified and some specula-
tive future perspectives are outlined.

The remainder of the article is organized as follows: 
Section  2 provides the conceptual overview and intro-
duces the reader to the underlying theory of DL; Section 3 
describes the applications; Section 4 lists the open-source 
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Fig. 2  Application of different DL models to biological data. a 
Wordcloud generated using author keywords extracted from research 
papers published between January 2011 and March 2020 which men-
tioned analysis of biological data (images, signals and sequences) 
using DL techniques and indexed in the Scopus database. The key-
words were pruned to highlight the analysis methods. b Distribution 
of published papers mentioning the usage of top 10 techniques. The 

colours of the individual pies match the colours in the wordcloud. 
Legend—CNN: Convolutional Neural Network, FCN: Fully Con-
nected Network, DA[E]: Deep Autoencoder, TRL: Transfer Learn-
ing, RNN: Recurrent Neural Network (including Long Short-Term 
Memory or LSTM), ANN: Artificial Neural Network, GAN: Genera-
tive Adversarial Network, DNN: Deep Neural Network, DBN: Deep 
Belief Network, DBM: Deep Boltzmann Machine
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data repositories; Section 5 presents the popular open-source 
DL tools; and Sections 6 and 7 compare the most popular 
tools from relative and performance perspectives. Section 8 
presents the reader with some of the open issues and hints on 
the future perspectives, and finally, the article is concluded 
in Section 9.

Overview of Deep Learning

In DL the data representations are learned with increasing 
abstraction levels, i.e., at each level more abstract represen-
tations are learned by defining them in terms of less abstract 
representations at lower levels [62]. Through this hierarchi-
cal learning process, a system can learn complex representa-
tions directly from the raw data [63].

Though many DL architectures have been proposed in 
the literature for various applications, there has been a con-
sistent preference to use particular variants for biological 
data. As shown in Fig. 2, the most popular models have been 
identified as—Deep Neural Network (DNN), Deep Boltz-
mann Machine (DBM) and Deep Belief Network (DBN), 
Deep Autoencoder (DA), Generative Adversarial Network 
(GAN), Recurrent Neural Network (RNN, including LSTM), 
and Convolutional Neural Network (CNN). Each of these 
models’ architectures and their respective pros and cons are 
listed in Table 1. The following subsections introduce each 
of these most frequently used DL architectures in mining 
biological data.

Deep Neural Network (DNN)

A DNN [64] is inspired by the brain’s multilevel visual 
processing mechanism starting with the cortical area ‘V1’ 
and then to area ‘V2’, and so on [65]. Mimicking this, the 
traditional artificial neural network or NN is extended with 
additional hidden layers containing nonlinear computational 
units in each of these hidden layers to learn a subset of the 
given representations. Despite its successful usage in a range 
of different applications, the main drawback has been the 
slow and cumbersome training process [66].

[Restricted] Boltzmann Machines ([R]BM)

[R]BM represents specific probability distributions through 
a undirected probabilistic generative model [67]. Considered 
as a nonlinear feature detector, [R]BM is trained based on 
optimizing its parameters for a set of given observations 
to obtain the best possible fit of the probability distribu-
tion through a Markov chain Monte Carlo method known 
as Gibbs sampling [68, 69]. With symmetrical connections 
among subsequent units in multiple hidden layers, BM has 
only one visible layer. The main drawback of the standard 

BM is that, the learning process is computationally expen-
sive and quite slow. Due to this, a BM requires a long period 
to reach equilibrium statistics [62]. However, this learning 
inefficiency can be solved by forming a bipartite graph (i.e. 
restricting to have one hidden layer and one visible layer) 
[67]. To extend this shallow architecture to a deep one, mul-
tiple RBMs as unitary learning elements are stacked together 
and this yields the following two DL architectures.

Deep Boltzmann Machine (DBM)

DBM [70] is a stack of undirected RBMs which supports 
a feedback mechanism among the layers to facilitate infer-
ence from higher-level units to propagate to lower-level 
units. This allows an input to be alternatively interpreted 
through concurrent competition at all levels of the model. 
Despite this powerful inference mechanism, estimating 
model parameters from data remains a challenge and can-
not be solved using traditional gradient-based methods 
(e.g., persistent contrastive divergence [71]) [70]. Though 
this learning problem is overcome by pretraining each RBM 
in a layerwise greedy fashion, with outputs of the hidden 
variables from lower layers as input to upper layers [67], the 
time complexity remains high and the approach may not be 
suitable for large training datasets [72].

Deep Belief Network (DBN)

DBN [73], in contrast to the DBM, is formed by stacking 
several RBMs together in a way that one RBM’s latent layer 
is linked to the next RBM’s visible layer. As the top two 
layers of DBN are undirected, the connections are down-
ward directed to its immediate lower layer [73, 74]. Thus, the 
DBN is a hybrid model with the first two layers as a undi-
rected graphical model and the rest being directed generative 
model. The different layers are learned in a layerwise greedy 
fashion and fine-tuned based on required output [75]; how-
ever, the training procedure is computationally demanding.

Deep Autoencoder (DA)

DA is a DL architecture [76] obtained by stacking a num-
ber of data-driven Autoencoders which are unsupervised 
elements. DA is also known as DAE and is designed to 
reduce data dimension by automatically projecting incom-
ing representations to a lower-dimensional space than that 
of the input. In an Autoencoder, equal amounts of units 
are used in the input/output layers and less units in the 
hidden layers. (Non)linear transformations are embodied 
in the hidden layer units to encode the given input into 
smaller dimensions [77]. Despite the fact that it requires 
a pretraining stage and suffers from a vanishing error, this 
architecture is popular for its data compression capability 
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Table 1  Keypoints and applications of different deep learning architectures

Architecture Pros. Cons.

DNN

Hidden OutputInput

- DNN can learn high-level feature 
representation and apply transfer 
learning.

- It can be used for healthcare and 
visual recognition.

- It requires substantial volume of train-
ing data.

- Significant computational power is 
required.

- The learning process is slow.

DBM

Hidden Visible

- Graphical model, undirected links 
across a set of visible nodes and a 
set of hidden nodes.

- Used mainly for dimensionality 
reduction and classification.

- High time complexity for interference 
than DBN. ↵ - Learning information 
does not reach to the lower layer.

- Tends to overfit.

DBN

Hidden Visible

- Easy to code and works sufficiently 
well for just a few layers.

- High performance gain by add-
ing layers compared to multilayer 
perceptron.

- Robust in classification.

- It can be trained greedily, one layer 
at a time.

- Hard to deduce posterior distribution 
for configurations of hidden causes.

DA

OutputHiddenInput

- Learn data encoding, reconstruction 
and generation at same time.

- Training is stable without label data.
- Variant: sparse, denoising and con-

tractive DA.

- Requires pretraining stage due to the 
chances of vanishing error.

- Each application requires redesigned 
and retrained the model.

- The DA is sensitive to input errors.

Input-OutputHiddenBackfed Input

GAN - The main benefit is data augmenta-
tion.

- GAN performs unsupervised learn-
ing. 

- GAN learns density distributions of 
data.

- Difficult to train as optimizing loss 
function is hard and requires a lot of 
trial and error.

OutputHiddenInput

RNN - It can process inputs of any length.
- RNN can use internal memory and 

performs well for stream time series 
data.

- Computation is slow and training can 
be difficult.

- Processing long sequences is difficult.
- Prone to problems such as exploding 

and gradient vanishing.
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and has many variants, e.g. Denoising Autoencoder [76], 
Sparse Autoencoder [78], Variational Autoencoder [79], 
and Contractive Autoencoder [80].

Generative Adversarial Network (GAN)

GAN [81] is an effective generative model. Generative 
models perform an unsupervised learning task, where they 
automatically discover and learn existing patterns in data 
and then use that knowledge to generate new examples of 
the learnt pattern as if they were drawn from the original 
dataset. Using GAN, the problem is seen as a supervised 
learning problem with two strands: (i) the generator, which 
generates new examples as trained, and (ii) the discrimi-
nator, which classifies generated examples to two classes 
(real or fake). These generator and discriminator models 
are trained together in a zero-sum game (i.e. in an adver-
sarial fashion) such that the examples generated by the 
generator model maximize the loss of the discriminator 
model [82, 83].

Recurrent Neural Network (RNN)

The RNN architecture [84] is designed to detect spatio-
temporal alignments in streams of data [85]. Unlike feed-
forward NN which performs computations unidirectionally 
from input to output, an RNN computes the current state’s 
output depending on the outputs of the previous states. Due 
to this ‘memory’-like property, despite learning problems 
related to vanishing and exploding gradients, RNN has 
gained popularity in many fields involving streaming data 
(e.g. text mining, time series, genomes, financial, etc.). In 
recent years, two main variants, bidirectional RNN (BRNN) 
[86] and Long Short-Term Memory (LSTM) [87], have also 
been applied [48, 88, 89].

Convolutional Neural Network (CNN)

CNN [90] is a multilayer NN model [91] which has gained 
popularity in analysing image-based data. Inspired by the 
neurobiology of the visual cortex, the CNN consists of con-
volutional layer(s) containing a set of learnable filter banks 
and followed by fully connected layer(s). These filter banks 
convolve with the input data and pass the results to activa-
tion functions (e.g. ReLU, Sigmoid, and Tanh). There also 
exist subsampling steps in between these layers. The CNN 
outperforms DNNs, which as they do not scale well with 
multidimensional locally correlated input data. To address 
the scaling problem of DNNs, the CNN approach has been 
quite successful in analysing datasets with a high number 
of nodes and parameters (e.g. images). As the images are 
‘stationary,’ convolution filters (CF) can easily learn data-
driven kernels. Applying such CF along with a suitable 
pooling function reduces the features that are supplied to 
the fully connected network to classify. However, in case of 
large datasets even this can be daunting and can be solved 
using sparsely connected networks. Some of the popular 
CNN configurations include AlexNet [92], VGGNet [93] 
GoogLeNet [94], etc. (see Table 2 for a complete list of 
CNN’s variations with relevant details).

Deep Learning and Biological Data

Many studies have been reported in the literature which 
employ diverse DL architectures with related and varied 
parameter sets (see section 2) to analyse patterns in bio-
logical data. For most of the DL architectures, as shown in 
Fig. 3, the number of publications is increasing steadily over 
the years. A set of randomly selected representative studies 
from the large amount of reported literature are described 
below and summarized in Table 3. These studies belong to 

Table 1  (continued)

Architecture Pros. Cons.

Convolution and Pooling Fully connected

Output
Hidden

Input
Conv/PoolKernel

CNN - CNN can capture hierarchical infor-
mation.

- CNN can share pretrained weight 
which is required for transfer learn-
ing.

- Requires less connection compared 
to DNN.

- Large labelled dataset is required for 
training.

- The working mechanism of CNN is 
not clear.

Legend: DA Deep Autoencoder, DBN Deep Belief Network, RNN Recurrent Neural Network, DNN Deep Neural Network, DBM Deep Boltz-
mann Machine, CNN Convolutional Neural Network.
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Table 2  Keypoints of different deep CNN architectures

Architecture Network Design Parameters Key points

LeNet (1998) LeNet-5 is the first CNN architecture with 2 convolu-
tional and 3 fully connected layers. 

0.06 million - Feedforward NN.
- Connection between layers is sparse to reduce 

computational complexity. 
AlexNet (2012) AlexNet has 8 layers and consists of 5 convolutional 

and 3 fully connected layers.
60 million - Deeper than the LeNet and aliasing artifacts in the 

learned feature maps due to large filter size.
VGG-16 (2014) VGG-16 has 13 convolutional layers (and max pool-

ing layers) and 2 fully connected layers followed by 
1 output layer with softmax activation. 

138 million - Roughly twice deeper network can be designed 
compared to the AlexNet.

- A deeper variant of VGG-16 is VGG-19.
- Computationally expensive and cannot be used 

with low resource systems.
Inception-v1 (2014)  Also known as GoogleNet, it has 22 layers with 

parameters (or 27 when pooling layers are 
included). Towards the end, it employs an average 
pooling. 

5 million - It uses sparse connections to overcome redundant 
information problem and omits irrelevant feature 
maps.

- High accuracy with a reduced computational cost.
- It’s heterogeneous topology requires customization. 

Inception-v3 (2015) Inception-v3 has 48 layers with a number of incep-
tion modules (each consisting of pooling layers and 
convolutional filters with activation functions), 
concatenation layers and fully connected layer(s) 
along with dropout and softmax.

23 million - It increases accuracy and reduces computational 
complexity in comparison to Inception-v1.

- Reduces representational bottleneck.
- Replaces large size filters with smaller ones.
- It’s architecture is complex and lacks homogeneity.

ResNet-50 (2015) ResNet-50 has 50 layers with initial convolutional 
and max-pooling layers, and final average pooling 
and fully connected layers. In between, there are 3, 
4, 6 and 3 residual blocks separated in 4 stages 
where each block contains 3 convolutional layers.

 25.5 mil-
lion

- It provides an accelerated training speed.↵ 
-Reduces the effect of Vanishing Gradient Prob-
lem.

- Classifies images with high accuracy.

Xception (2016) The Xception architecture has 36 convolutional 
layers forming the feature extraction base of the 
network. The 36 convolutional layers are structured 
into 14 modules, all of which have linear residual 
connections around them, except for the first and 
last modules.

22.8 million - Xception shows small gains in classification per-
formance on the ImageNet dataset and large gains 
on the JFT dataset when compared to Inception-
v3.

Inception-v4 (2016) Inception-v4 consists of two main sections: a feature 
extractor and a fully connected layer. The feature 
extractor includes various convolutional blocks 
such as 1 stem block, 14 inception blocks, 2 reduc-
tion blocks and a pooling layer. The inception 
blocks are divided in three categories, namely, A, 
B, and C with 4, 7, and 3 blocks, respectively.

43 million - Deep hierarchies of features, multilevel feature 
representation.↵ - Learning speed is slow.

Inception-ResNet-v2 
(2016)

Inception-ResNet-v2 consists of 164 layers with 
several convolutional blocks which include 1 stem 
block, 20 residual inception blocks, 2 reduction 
blocks and a pooling layer. The residual inception 
blocks are divided in three categories, namely, A, 
B, and C with 5, 10, and 5 blocks, respectively.

56 million - It improves training speed.↵ - Deep hierarchies of 
features, multilevel feature representation.

ResNeXt-50 (2016) ResNeXt-50 has initial convolutional and max-
pooling layers, and final average pooling and fully 
connected layers. In between, there are 3, 4, 6 
and 3 residual blocks separated in 4 stages where 
each block contains 3 convolutional layers. In 
comparison to ResNet-50, it scales up the number 
of parallel towers (cardinality=32) within each 
residual block.

25 millions - Has homogeneous topology. ↵ - Performs grouped 
convolution.

DenseNet-121 
(2016)

DenseNet architecture includes 4 dense blocks. Each 
layer in a dense block is connected to every other 
layer. The dense blocks, consisting of convolution, 
pooling, batch normalization and activation, are 
separated by transition layers.

 8 millions - Introduces depth or cross-layer dimension.↵ - 
Ensures maximum data flow between the layers in 
the network. ↵ - Avoids relearning of redundant 
feature maps.
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the three data types we have considered within the context 
of this paper, that is, images, signals, and sequences.

Images

CNN was used by on histology images of the breast to find 
mitosis [108, 142] and to segment neuronal structures in Elec-
tron Microscope Images (EMI) [103]. Havaei et al. used CNN 
to segment brain tumour from Magnetic Resonance Imag-
ing (MRI) [100] and Hosseini et al. used it for the diagnosis 
of Alzheimer’s disease (AD) from MRI [56, 97]. DBM [98] 
and RBM [99] were used in detecting AD and mild cognitive 
impairment (MCI) from MRI and Positron Emission Tomog-
raphy (PET) scans. Again, CNN was used on MRI to detect 

neuroendocrine carcinoma [55, 74, 105]. CNN’s dual pathway 
version was used by Kamnitsas et al. to segment lesions related 
to tumours, traumatic injuries, and ischemic strokes [109]. CNN 
was also used by Fritscher et al. for volume segmentation [101] 
and by Cho et al. to find anatomical structures (Lung nodule to 
classify malignancy) [106] from Computed Tomography (CT) 
scans. DBN was applied on MRIs to detect Attention Deficit 
Hyperactivity Disorder [96] and on cardiac MRIs to segment 
the heart’s left ventricle [107]. GANs have gained popularity 
in image synthesis and data augmentation to reduce overfitting. 
GAN’s application in data augmentation and image translation 
has been reviewed in [143] and data augmentation in the CT 
segmentation tasks was done using CycleGAN [144]. GAN-
based framework called MedGAN was proposed for medical 
image-to-image translation [145]. GAN was used as survival 
prediction model for chest CT scan images of patients suffer-
ing from idiopathic pulmonary fibrosis [146, 147]. GAN was 
also used by Halicek for synthesizing hyperspectral images from 
digitized histology of breast cancer cells [148].

Signals

A stacked DA was employed to detect emotion from Electroen-
cephalography (EEG) signals after extracting relevant features 
using Principal Component Analysis (PCA) and reducing non-
stationary effect using covariate shift adaptation [119]. DBN was 
applied to decode motor imagery through classifying EEG sig-
nal [110]. For a similar purpose, CNN was used with augmented 
common spatial pattern features [111]. EEG signals were also 
classified using DA after features such as location, time, and 
frequency were extracted using CNN [112]. Li et al. used DBN 
to extract low-dimensional latent features, and select critical 
channels to classify affective state using EEG signals [114]. 
Also, Jia et al. used an active learning to train DBN and genera-
tive RBMs for the classification [115]. Tripathi et al. utilized 
DNN- and CNN-based model for emotion classification [116]. 
CNN was employed to predict seizures through synchroniza-
tion patterns classification [118]. DBN [123] and CNN [122] 
were used to decode motion action from NinaPro database. The 
later approach was also used on MIT-BIH, INCART, and SVDB 
repositories [122]. Moreover, the Electrocardiogram (ECG) 
Arrhythmias were classified using DBN [120, 121] from the 
data supplied by MIT-BIH arrhythmia database. Zhu et al. used 
a GAN model with LSTM and CNN to generate ECG signals 
with high morphological similarity [149]. Another GAN model, 
RPSeqGAN, trained with SeqGAN [150] generated arrhythmic 
ECG data with five periods and showed high stability and data 
quality [151]. GAN is also used by Luo and Lu for EEG data 
augmentation [152]. You et al. [153] and Jiao et al. [154] utilized 
GAN-based model for detecting seizure using EEG signal and 
Driver sleepiness using EEG and Electrooculography (EOG) 
signals, respectively. Singh et al. proposed a new GAN frame-
work for denoising ECG [155].
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Fig. 3  Trends in publication involving different DL architectures 
from 2015 to 2019 in three major types of data—images a, signals b, 
and sequences c. The numbers of papers have been normalized within 
each data type. However, it is noteworthy that the ratio of number of 
publications involving DL techniques applied to different data types 
(images, signals, and sequences) are approximately—1:1
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Sequences

The stacked denoising DA has been used to extract fea-
tures for cancer diagnosis and classification along with the 
identification of related genes from Gene Expression (GE) 
data [138]. GAN was also used for identifying expression 
patterns from GE data [156]. A template-based DA learn-
ing model was used in reconstructing the protein structures 

[135]. Lee et al. applied a DBN-based unsupervised method 
to perform autoprediction of splicing junction at Deoxyri-
bonucleic Acid (DNA) level [131]. Combining DBN with 
active learning, Ibrahim et al. devised a method to select fea-
ture groups from genes or micro-Ribonucleic Acids (miR-
NAs) based on expression profiles [136]. For translational 
research, bimodal DBNs were used by Chen et al. to predict 
responses of human cells using model organisms [137]. Pan 

Table 3  Deep learning applied to biological data

Type Data [base/set] DL architecture Task

Images ABIDE DNN [95] Autism disorder identification
ADHD-200 dataset DBN [96] ADHD detection
ADNI dataset CNN [97], DBM [98], DBN [99] AD/MCI diagnosis
BRATS Dataset CNN [100] Brain pathology segmentation
CT dataset CNN [101] Fast segmentation of 3D medical images
DRIVE, STARE datasets GAN [102] Retinal blood vessel segmentation
EM segmentation challenge dataset CNN [103] Segment neuronal membranes

LSTM [104] Biomedical volumetric image segmentation
IBSR, LPBA40, and OASIS dataset CNN [105] Skull stripping
LIDC-IDRI dataset CNN [106] Lung nodule malignancy classification
MICCAI 2009 LV dataset DBN [107] Heart LV segmentation
MITOS dataset CNN [108] Mitosis detection in breast cancer
PACS dataset CNN [106] Medical image classification
TBI dataset CNN [109] Brain lesion segmentation

Signals BCI competition IV DBN [110], CNN [111–113] Motion action decoding
DEAP dataset DBN [114, 115] Affective state recognition

CNN [116] Emotion classification
DECAF GAN [117]
Freiburg dataset CNN [118] Seizure prediction
MAHNOB-HCI DA [119] Emotion recognition
MIT-BIH arrhythmia database DBN [120, 121] ECG arrhythmia classification
MIT-BIH, INCART, and SVDB CNN [122] Movement decoding
NinaPro database DBN [123], CNN [122] Motion action decoding

Sequences CullPDB, CB513, CASP datasets, CAMEO CNN [124] 2ps prediction
DREAM CNN [125] DNA/RNA sequence prediction

DNN [126] Predict effective drug combination
ENCODE database CNN [127, 128] Gene expression identification
ENCODE DGF dataset CNN [129] Predict noncoding variant of gene
GEO database GAN [130] Gene expression data augmentation
GWH and UCSC datasets DBN [131] Splice junctions prediction
JASPAR database and ENCODE CNN [132] Predicting DNA-binding protein
miRBoost RNN [133] micro-RNA Prediction
miRNA-mRNA pairing data repository LSTM [134] micro-RNA target prediction
Protein Data Bank (PDB) DA [135] Protein structure reconstruction
SRBCT, prostate tumour, and MLL GE DBN [136] Gene/MiRNA feature selection
sbv IMPROVER DBN [137] Human diseases and drug development
TCGA database DA [138] Cancer detection and gene identification

DBM [139]
DNN [140] Drug combination estimation

UCSC, CGHV Data, SPIDEX database CNN [141] Genetic variants identification
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et al. applied a hybrid CNN-DBN model on RNAs for the 
prediction of RNA-binding protein (RBP) interaction sites 
and motifs [157], and Alipanahi et al. used CNN to predict 
sequence specificities of [D/R]BPs [125]. Denas and Tay-
lor used CNN to preprocess data generated from Chromatin 
Immunoprecipitation followed by sequencing (ChIP-seq) 
and created gene transcription factor activity profiles [127]. 
CNN was used by Kelley et al. to predict DNA sequence 
accessibility [128], by Zeng et al. to predict the DBP [132], 
by Zhou et al. [129] and Huang et al.[141] to find non-coding 
gene variation, and by Wang et al. to predict secondary pro-
tein structure (2ps) [124]. Park et al. used LSTM to predict 
miRNA precursor [133] and Lee et al. [134] used it to pre-
dict miRNA precursors’ targets. GAN was used by Marouf 
et al. for the realistic generation of single-cell RNA-seq data 
[130], by Jiang et al. to predict disease gene from RNA-seq 
data [158], by Zhao et al. as a semi-supervised procedure for 
predicting drug target binding [159], and by Wang et al. for 
identifying expression patterns from GE data [156].

Open Access Biological Data Sources

Reproducing scientific results, reported as statistically pro-
cessed quantitative data or carefully selected representative 
qualitative data, has been facilitated greatly by data shar-
ing initiatives [160]. In the last few decades, many open 
access data repositories have been made available for this 
purpose [161]. Indeed, many research funders and journals 
now require data used for studies to be made openly avail-
able for verification. To facilitate method development, here 
we list the leading and popular open access data repositories 
pertaining to the Sequences, Images, and Signals data which 
are summarized in Tables 4, 5, and 6, respectively.

Images

Table 4 lists the leading open access data sources including 
databases and individual datasets that provide access to data 
pertaining to biological image research. For the sake of sim-
plicity, these sources have been grouped to four broad appli-
cation areas—[bio/medical] image processing and analysis, 
disease detection and diagnosis, neuroimage processing and 
analysis, and segmentation—and these are briefly described 
below.

Bio/Medical Image Processing and Analysis

The Cell Centered Database (CCDB) [162] collection 
provides high-resolution 3-D light and electron micro-
scopic reconstructions of cells and subcellular structures. 
It also contains [2/3/4]-D protein distribution and structural 

information from a number of different microscopic image 
acquisition systems.

Another image library, called the Cell Image Library 
(CIL) [163], presents more than 10,000 unique datasets and 
20 TB of images, videos, and animations data. These data 
belong to a wide diversity of organisms, cell types, and cel-
lular processes.

The Euro Bioimaging [164] database provides biological 
and biomedical imaging data aiming to provide collabora-
tion among different stakeholders including scientists, indus-
try, national and European authorities. Its mission is to give 
access and services to state-of-the-art imaging techniques 
and bioimaging data for scientists in Europe and beyond. 
Euro Bioimaging also includes image analysis tools.

The HAPS is a histology image database [165] contains 
medium-/high-resolution photograph of microscopic image 
of human cells and tissues which are free of any copy-
right. Another image database, the Image Data Resource 
(IDR) [166], contains individual datasets of cellular and 
tissue images. Various categories of images include time-
lapse imaging, protein localization studies, digital pathology 
imaging, yeast study, human high-content screening, etc. It 
is also public API which facilitates viewing, analysis, and 
sharing of multi-D image data for cell biology.

The SICAS Medical Image Repository (SMIR) is an 
image repository for medical research purpose. Two of their 
featured collections include post-mortem full-body CT [167] 
scan of 50 anonymized subjects of different age groups and 
gender, and CT, micro-CT, segmentation, and shape models 
of the cochlea [183].

The Cancer Imaging Archive (TCIA) [168] contains CT, 
MRI, and nuclear medicine (e.g. PET) images for clinical 
diagnostic, biomarker, and cross-disciplinary investiga-
tion. The Stanford Tissue Microarray Database (TMA) 
[169] is a source for annotated microscopic tissue images 
and associated expression data. The data can be used for 
studying cell biology. The UCSB bio-segmentation bench-
mark dataset [170] contains 2/3-D cellular, subcellular, and 
tissue images. These datasets can be used for segmentation 
and classification task.

Disease Detection and Diagnosis

A large amount of imaging data has been acquired from 
patients with neurological disorders. The Autism Brain 
Imaging Data Exchange (ABIDE) [171] database includes 
autism brain imaging datasets for studying the autism spec-
trum disorder. The other dataset pertains to the Attention 
Deficit Hyperactivity Disorder (ADHD) [172] and includes 
776 resting-state fMRI and anatomical datasets which are 
fused over the 8 independent imaging sites. The phenotypic 
information includes age, sex, diagnostic status, measured 
ADHD symptom, intelligence quotient, and medication 
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status. Imaging-based diagnostic classification is the main 
aim of the ADHD 200 dataset. The ADNI (Alzheimer’s 
Disease Neuroimaging Initiative [173]) is a popular data-
base and contains neuroimaging datasets from neurodegen-
erative diseases, in particular, AD, MCI, early and late AD 
and elderly control subjects. The datasets offered by this 
repository are mainly dedicated for development of novel 
methods for diseases related to AD. Another dataset focus-
ing on AD is the Open Access Series of Imaging Studies 
(OASIS) [181] dataset. This contains MRI datasets and 
open-source data management platform (XNAT) to study 
and analyse AD. Neurosynth [179] is yet another database 
which includes fMRI literature (with some datasets) and 
synthesis platform to study brain structure, functions, and 

disease. On the other hand, the Open Neuroimaging (Open 
NI) [182] dataset contains imaging modalities and brain 
diseases data which can be used to study decision support 
system for disease identification.

The recent novel coronavirus disease or COVID-19 pan-
demic has attracted a number of researchers to focus their 
attention on the detection of the novel coronavirus disease. 
The NIH [180]

nCOV chest X-ray database [178] contains COVID-19 
cases with chest X-ray/CT images. The data can be used 
for identifying bacterial vs viral vs COVID-19 pneumo-
nia. Similar chest X-ray datasets [175] are hosted by Kag-
gle which include chest X-ray scans data for detecting 
traditional viral and bacterial pneumonia.

Table 4  Application-wise categorization of open access data repositories and datasets pertaining to [bio/medical/health/clinical] images

Legend: CXRayP Chest X-ray Pneumonia, JHDTI Johns Hopkins Diffusion Tensor Imaging

Application Name Description Ref.

Bio/medical image processing and analysis CCDB High-resolution 2/3/4-D light and electron microscope images [162]
CIL Cell image datasets and cell library app. [163]
Euro Bioimaging Biological and biomedical imaging data [164]
HAPS Microscopic image of human cells and tissues [165]
IDR Viewing, analysis, and sharing of multi-D image data [166]
SMIR Post-mortem CT scans of the whole body [167]
TCIA CT, MRI, and PET images of cancer patients [168]
TMA Microscopic tissue images of human [169]
UCSB BioSeg 2D/3D cellular, subcellular and tissue images [170]

Disease detection and diagnosis ABIDE Autism brain imaging datasets [171]
ADHD-200 fMRI/anatomical datasets fused over the 8 imaging sites [172]
ADNI MCI, early AD and elderly control subjects’ diagnosis data [173]
BCDR Multimodal mammography and ultrasound scan data [174]
Kaggle CXRayP Chest X-ray scans for pneumonia [175]
MITOS Breast cancer histological images [176]
NAMIC Lupus, brain, prostate MRI scans [177]
nCOV-CXray COVID-19 cases with chest X-ray/CT images [178]
Neurosynth fMRI datasets and synthesis platform [179]
NIH Labelled chest X-ray images with diagnoses [180]
OASIS MRI datasets and XNAT data management platform [181]
Open NI Imaging modalities and brain diseases data [182]
SMIR CT of human temporal bones [183]

Neuroimage processing and analysis IXI It provides neuroimaging data and toolkit software [184]
LPBA40 Maps of brain regions and a set of whole-head MRI [185]
NeuroVault.org API for collecting and sharing statistical maps of brain [186]
NITRC MRI, PET, SPECT, CT, MEG/EEG and optical imaging [187]
OpenfMRI Multimodal MRI and EEG datasets [188]
UK data service fMRI dataset [189]

Segmentation DRIVE Digital Retinal Images diabetic patient [190]
IBSR Segmentation results of MRI data [191]
STARE The dataset contains raw/labelled retinal images [192]
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Breast cancer is also another important disease which 
can be addressed through imaging and this has attracted a 
number of databased hosting breast cancer images.

The Breast Cancer Digital Repository (BCDR) [174] 
database contains multimodal mammography and ultra-
sound scan and patient history data collected from 1734 
anonymized patients. The data can be used for disease 
detection and diagnosis methods. Another dataset, MITOS 
[176], contains breast cancer histological images (haema-
toxylin and eosin stained slides). The detection of mitosis 
and evaluation of nuclear atypia are key uses.

Neuroimage Processing and Analysis

The Information eXtraction from Images (IXI) dataset [184] 
provides 600 MRI images from healthy subjects to study 
brain functions. These images saved in NIFTI file format 
and were acquired using protocol—T1, T2, proton-density 
weighted images; magnetic resonance angiography images; 

and diffusion weighted images. These images have been 
collected from three different hospitals in London, UK. 
Another database, called the Loni Probabilistic Brain Atlas 
(LPBA40) [185], contains maps of brain anatomic regions 
of 40 human volunteers. Each map generates a set of whole-
head MRI, whereas each MRI describes to identify 56 struc-
tures of brain, most of them lies in the cortex. The study of 
skull-stripped MRI volumes, and classification of the native-
space MRI, probabilistic maps are key uses of LPBA40. The 
NeuroVault.org [186] is a web-based repository (API) for 
collecting and sharing statistical maps of the human brain to 
study human brain regions. The Neuroimaging Informatics 
Tools and Resources Clearing house (NITRC) [187] pro-
vides range of imaging data from MRI to PET, SPECT, CT, 
MEG/EEG, and optical imaging for analysing functional 
and structural neuroimages. The Open fMRI [188] dataset 
contains MRI images acquired using different modalities 
including diffusion-weighted, T1-weighted magnetization 
prepared rapid acquisition with gradient echo (MPRAGE) 

Table 5  Application-wise categorization of open access data repositories and datasets pertaining to biological signals

Legend: MI Motor Imagery, MMI Motor Movement/Imagery, ERP Event-Related Potentials, SADmc-EEG Sustained-Attention Driving multi-
channel EEG, V-P300 Visual P300, SP Single Player, MP Multiplayer, BCI-SSVEP Steady State Visual Evoked Potentials, EMG DataRep EMG 
Dataset Repository, ARH Arrhythmia, D-ECG Diagnostic ECG

Application Name Description Ref.

Anomaly detection SAD mc-EEG Multichannel EEG data for sustained-attention driving task [193]
TUH EEG Corpus Repository for EEG datasets, tools and documents [194]
MIT-BIH-ARH ECG database containing 48 recordings [195]
PTB D-ECG ECG database containing 549 recordings [196]
TELE ECG 250 ECG recordings with annotated QRS and artifact masks [197]

Human–Machine Interfacing BNCI Various BMI signal datasets [198]
EMG DataRep Various EMG datasets [199]
Facial sEMG Contains EMG data from 15 participants [200]
NinaPro database Kinematic as well as the sEMG data of 27 subjects [201]

Emotion/affective state detection DEAP Simultaneously recorded EMG/EEG data [202]
DECAF MEG, hEOG, ECG, trapezius muscle EMG, face video data [203]
Imagine EEG datasets of 31 subjects while listening voice [204]
MAHNOB-HCI EMG, ECG, and respiration and skin temperature data [205]
SEED EEG dataset for emotion and vigilance [206]

Motor imagery classification EEG-BCI-MI EEG signals from 13 subjects with 60,000 MI examples [207]
EEG-MI-BCI EEG data from BCI for MI tasks [208]
EEG-MMI EEG data from PhysioNet for MI task [209]

Neurological condition evaluation V-P300 BCI 16-electrode dry EEG from 71 subjects (SP mode) [210]
32-electrode wet EEG from 50 subjects (SP mode) [211]
32-electrode wet EEG from 38 subjects (MPC mode) [212]
32-electrode wet EEG from 44 subjects (MPCC mode) [213]

Signal processing and classification BCI competition EEG, ECoG, and MEG data from a range of BCI applications [214]
BCI-NER challenge 56 channel EEG dataset decoded by a P300 speller [215]
DRYAD EEG datasets of 13 subjects recorded under various conditions [216]
PhysioNet Various EEG, ECG, EMG and sEMG datasets [217]
UCI ML Various ECG, EMG, sEMG datasets [218]
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MRI, and multiecho fast low-angle shot (FLASH) MRI. It 
also contains biosignal datasets to study brain regions and its 
functions. These can be used as a benchmark dataset in order 
to differentiate outcome from various neuroimaging analysis 
tools. The UK data service [189] contains T1/2, diffusion 
tensor imaging, and fMRI datasets from 22 patients suffering 
from brain tumours which can be useful for studying brain 
tumour surgical planning.

Segmentation

Segmentation is an important step in any image processing 
pipeline. Many datasets mentioned above can be used for 
segmentation purposes.

Focusing on eye diseases, the Digital Retinal Images 
for Vessel Extraction (DRIVE) contains JPEG Com-
pressed retinal images of 400 diabetic patients between 
25-90 years old. This dataset can be used to understand 
segmentation of blood vessels in retinal images and 
identify diabetic retinopathy.  Another dataset called 

STructured Analysis of the Retina (STARE) was initi-
ated in 1975. The project contains datasets of 400 raw 
retinal images, 10 labelled images of artery/vein, and 
80 images with ground truth. Each image is annotated 
and features are shown in image by the expert. The data-
set can be used for blood vessel segmentation and optic 
nerve detection.

The Internet Brain Segmentation Repository (IBSR) 
gives segmentation results of MRI data. Development of 
segmentation methods is the main application of this IBSR.

Signals

Table 5 lists leading open access data repositories and 
datasets (also referred as data sources) pertaining to bio-
logical signals. These sources are broadly mapped to six 
application areas—anomaly detection, human–machine 
interfacing which includes brain–machine interfacing as 
well as rehabilitation research, emotion/affective state detec-
tion, motor imagery classification, neurological condition 

Table 6  Application-wise categorization of open access data repositories and datasets pertaining to Omics data

Application Name Description Ref.

Bioassay analysis and drug design COVID-19 Gene sequence, pathway, and bioassay datasets of COVID-19 [220]
PubChem Contains compound structures, molecular datasets, and tool [221]

Genetic disorder analysis Cancer GeEx Different cancer genome datasets [222]
IGDD Mutation data on common genetic diseases [223]
TCGA Contains cancer genome data [224]
BDTNP 3D Gene expression, DNA-binding data and ChAcD [225]

Nucleic acid research ENCODE Human genome dataset [226]
ESP Contains sequencing data [227]
GEO Contains high-throughput gene expression and functional genomics 

datasets
[228]

gnomAD Large-scale exomes and genomes sequencing data [229]
GTEx Gene expression datasets [230]
Harmonizome Collection of genes and proteins datasets [231]
INSDC Contains nucleotide sequence data [232]
IGSR Genome data of various ethnicities, age and sex [233]
JASPAR Transcription factor DNA-binding preferences dataset [234]
NIHREM Human genome datasets [235]
NSD Includes omics and health science data [236]
SysGenSim Bioinformatics tools and gene sequence dataset [237]

Protein structure analysis PDB Proteins, nucleic acids, and complex assemblies data [238]
SCOP2 Contains structural classification of proteins [239]
SCOPe [240]
UCI MB 2ps and splice–junction gene sequences [241]

Signal transduction pathway study NCI Nature Molecular interactions and reactions of cells [242]
NetPath Signal transduction pathways in humans [243]
Reactome Database for reactions, pathways and biological processes [244]

Single-cell omics miRBoost The genomes of eukaryotes containing at least 100 miRNAs [245]
SGD Provides biological data for budding yeast and analysis tool [246]
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evaluation, and signal processing and classification—which 
are described in the following subsections.

Anomaly Detection

Anomaly detection is one of the major application areas in 
which scientists have devoted much efforts. In this process, a 
number of open access data sources, largely containing EEG 
and ECG data, have been frequently used.

Starting with the EEG signals, the SAD mc-EEG [193] 
dataset contains 32 channel EEG signals from 27 subjects 
recorded while they were test-driving. That is, signals were 
acquired when each subject attended two 90-minute virtual 
reality session for sustained-attention driving.

The TUH EEG corpus [194] is also an open-source clin-
ical EEG data repository for clinical EEG data, tool and 
documentation. The major datasets include seizure detec-
tion, abnormal EEG, EEG with artifacts (introduced by eye 
movement, chewing, shivering, electrode pop, electrode 
static, and lead artifacts, and muscle artifacts), EEG for epi-
lepsy, etc.

Regarding the ECG signals, the MIT-BIH arrhythmia 
[195] arrhythmia database includes 2-channel ambulatory 
ECG recording taken from 47 subjects for studying arrhyth-
mia. There are 48 complete ECG recordings and about 24 
recordings are freely available. The PTB diagnostic ECG 
database [196] comprises 549 ECG recordings taken from 
290 subjects of age ranged from 17 to 87 years using con-
ventional 12 leads and 3 Frank lead ECG recorder. Each 
recording includes 15 signals coming from these leads and 
each subject was represented in 1 to 5 records. Both the data-
sets can be used for anomaly detection. Another ECG data-
set, the TELE-ECG dataset [197] includes 250 ECG records 
with annotated QRS and artifact masks. It also includes QRS 
and artifact detection algorithms to study QRS and detect 
artifacts from ECG signals.

Human–Machine Interfacing

The application area of Human–Machine Interfacing focuses 
on [body and brain]–machine interfacing and rehabilitation. 
This is done largely through Electromyography (EMG) and 
sometimes with EEG signals.

The BNCI Horizon 2020 database contains more than 25 
datasets such as stimulated EEG datasets, Electrocorticog-
raphy (ECoG)-based BCI datasets, Event Related Potential 
(ERP)-based BCI datasets, mental arithmetic, motor imagery 
(extracted from EEG, EOG, fNIRS, EMG) datasets, EEG/
EOG datasets of neuroprosthetic control, speller datasets. 
Modelling and designing of BMI devices are the key appli-
cation of this database. While the BNCI contains a variety of 
signals, the EMG Datasets Repository [199] includes single/

multifinger movements datasets of 2 channels, 10 classes 
and 8 channels, 15 classes; single-/multifinger pressure on a 
steering wheel; EMG controlled multifunctional upper-limb 
prostheses and EMG pattern recognition datasets.

For surface EMG (sEMG), the facial sEMG dataset 
contains facial sEMG signals from the muscles corrugator 
supercilii, zygomaticus major, orbicularis oris, orbicularis 
oculi, and masseter. Archived data are from 15 participants 
(8 females and 7 males) aged between 26 and 57 years (mean 
age 40.7 ± 9.6 years). These data can be used for rehabilita-
tion research. Also, the NinaPro database includes kinematic 
as well as sEMG data of 27 subjects, while these subjects 
were moving finger, hand, and wrist. These data can be 
employed to study biorobotics and activity detection.

Emotion/Affective State Detection

Emotion and affective state detection has been a very active 
research field over the years. A combination of different 
signals has been utilized in detecting emotion and affective 
states, and a number of data sources providing these signals 
are described below.

A Database for Emotion Analysis using Physiological 
Signals (DEAP) provides various datasets for analysing the 
human affective states. It provides EEG and sEMG signals 
of 32 volunteers, while they were watching music videos 
to analyse the affective states. These volunteers also rated 
the video, and the front face was also recorded for 22 vol-
unteers. DECAF is a multimodal dataset for decoding user 
physiological responses to affective multimedia content. It 
contains magnetoencephalogram (MEG), horizontal elec-
trooculogram (hEOG), ECG, trapezius muscle EMG, and 
near-infrared face video data to study physiological and 
mental states. Another multimodal dataset is the MAH-
NOB-HCI [205] dataset which includes ECG, respiration, 
and skin temperature data in addition to 32-channel EEG 
signals from 30 subjects, while they were watching movie 
clips and photos. The different sensors were synchronized 
to record a synchronized multimodal dataset. The subjects 
were asked to label their own emotion state.

On the other hand, the Imagined Emotion [204] dataset 
provides EEG signals recorded when subjects were listen-
ing to voice recording. The SJTU Emotion EEG Dataset 
[206] contains three individual datasets (SEED, SEED-IV 
and SEED-VIG) of EEG signals. In the SEED dataset EEG 
signals were recorded, while the subjects were watching 
movie clips and annotated their emotional state as positive, 
negative and neural. In case of SEED-IV, four emotional 
states such as happy, sad, fear, and neutral were anno-
tated, whereas the SEED-VIG dataset contains EEG sig-
nals related to vigilance when the subjects were driving.
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Motor Imagery Classification

Motor imagery (MI) is yet another very active area of 
research. As an outcome of a large number of community 
contributors, many datasets have been developed from 
which the popular ones are described below.

The electroencephalographic brain–computer interface 
mental imagery (EEG-BCI-MI) [207] dataset contains 60 
hours of EEG recording from 13 subjects and 75 experi-
ments. This contains around 60,000 mental imagery exam-
ples which is approximately 4.8 hours of EEG recordings 
(with 4600 MI examples) per participant. The datasets can 
be used for the rehabilitation of patients having move-
ment disorders. Another EEG dataset for MI brain–com-
puter interface (EEG-MI-BCI) [208] contains EEG signals 
with 3-D electrode location and EEG for non-task-related 
states as well. The dataset was recorded from 52 partici-
pants which also contains [physio/psyco]logical data and 
EMG signals in addition to the EEG. The dataset can be 
employed to find the human factors which influence MI 
BCI performances. Yet another EEG signal centric data-
set is called EEG motor movement/imagery (EEG-MMI) 
dataset [209] and incorporates 1500 (1–2 minutes) EEG 
recordings taken from 109 volunteers. The dataset can be 
used in designing BCI systems for rehabilitation purposes.

Neurological Condition Evaluation

A number of visual P300-based datasets are available with 
open-access attributes to perform a range of neurological 
condition evaluation. These datasets, V-P300 BCI, are com-
posed of data recorded using dry or wet electrode with 16 
or 32 channels while the subjects were playing the Brain 
Invaders game [219]. These datasets were recorded using 
different playing modalities such as single player (16 dry 
electrodes [210] from 71 subjects and 32 wet electrodes 
[211] from 50 subjects), multiplayer in collaborative mode 
(32 wet electrodes from 38 subjects [212]), and multiplayer 
cooperation and competition mode (32 wet electrodes from 
44 subjects [213]).

Signal Processing and Classification

To solve various signal processing and classification prob-
lems, a number of datasets have been made available under 
open-access. Most of these problems are released to the 
community in the form of challenges with relevant datasets 
to solve them. The competitions during the BCI meetings 
have served this purpose for several years and have released 
datasets (the BCI competition datasets [214]) which are still 
available with relevant problem statements and sample codes 
for others to use. The challenge dataset provided by the IEEE 
Neural Engineering Conference (NER2015) is known as 

BCI-NER dataset [215]. This dataset was mainly intended 
for methodological development of an error detection algo-
rithm suitable for the P300-based BCI systems. The BCI 
competition datasets include EEG datasets (e.g., cortical 
negativity or positivity, feedback test trials, self-paced key 
typing, P300 speller paradigm, motor/mental imagery data, 
continuous EEG, EEG with eye movement), ECoG datasets 
(e.g., finger movement, motor/mental imagery signals in the 
form of EEG/ECoG), and MEG dataset (e.g., wrist move-
ment). These datasets can be used for signal processing and 
classification methods for BMI. Similarly, the BCI-NER 
Challenge [215] dataset provides 56-channel EEG signals 
from 26 subjects using a P300 speller.

In addition to the datasets released for challenges and 
competitions, there are repositories which provide rich data-
sets for this application area. The DRYAD [216] is a versa-
tile repository which has been recently unveiled. It contains 
a range of EEG recorded datasets when 19 subjects listen to 
natural speech time-reversed speech, cocktail party atten-
tion, and noisy audiovisual speech. The PhysioNet reposi-
tory [217] contains a large number of neuroelectric and 
myoelectric datasets. As the name suggests, it is mainly for 
physiological data. These datasets mainly pertain to signals 
such as EEG, ECoG, EMG, and ECG and are acquired from 
many diverse experimental settings. The UCI ML repository 
[218] contains a large number of diverse datasets with direct 
application to machine learning methods. Some relevant 
biosignal datasets include ECG, EEG, and (s)EMG signals 
from diverse experimental and physiological conditions.

Sequences

Table 6 lists the leading popular open access data sources 
pertaining to the various omics-related researches which 
include genomics, proteomics, and metabolomics. Grouped 
to six broad application areas, namely, bioassay analysis and 
drug design, genetic disorder analysis, nucleic acid research, 
protein structure analysis, signal transduction pathway study, 
and single-cell omics, the following subsections provide 
brief discussions about the leading open access omics data 
sources.

Bioassay Analysis and Drug Design

Since December 2019, the world has experienced a pan-
demic caused by the SARS-CoV-2 (COVID-19) virus. Trig-
gered by the necessity to facilitate the ongoing researches, 
the SARS-CoV-2 [220] dataset provides gene sequence, pro-
teins, pathway, and bioassay for SARS-CoV-2 along with 
compounds used in clinical trials. This dataset can be used 
for studying biological/chemical process and drug design.
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The PubChem database [221] contains millions of com-
pound structures and descriptive datasets of chemical mol-
ecules and their activities against biological assays. Main-
tained by the National Center for Biotechnology Information 
of the United States National Institutes of Health, it can be 
freely accessed through a web user interface and down-
loaded via FTP. It also contains software services (such as 
plotting and clustering). It can be used for [gen/prote]-omics 
study and drug design.

Genetic Disorder Analysis

The cancer gene expression (GE) [222] serves as a small 
repository containing several cancer GE datasets which can 
be employed for designing tool/algorithm for cancer detec-
tion. The cancer genome atlas (TCGA) [224] repository 
contains more than 2.5 petabytes of genomic, epigenomic, 
transcriptomic, and proteomic data. It contains data about 
33 different cancer types and over 20,000 samples. These 
data are generated by the National Cancer Institute and the 
National Human Genome Research Institute. This reposi-
tory is used in facilitating genomic study for improving the 
prevention, diagnosis, and treatment of cancer. To analyse 
region-specific diseases, the Indian Genetic Disease Data-
base (IGDD) [223] tracks mutations in the normal genes for 
genetic diseases reported in India.

Nucleic Acid Research

The Berkeley Drosophila Transcription Network Project 
(BDTNP) [225] database contains datasets pertaining to 3D 
Gene expression data, in vivo and in vitro DNA-binding data 
as well as Chromatin Accessibility data (ChAcD). Research 
on GE and anomaly detection is the key application of the 
datasets provided by this database.

The Encyclopedia of DNA Elements (ENCODE) [226] 
is a whole-genome database curated by the ENCODE Con-
sortium. It contains a large number of datasets pertaining 
to functional genomics and characterization data including 
meta-data of human, worm, mouse, and fly. Another data-
base, called the Exome Sequencing Project (ESP) [227], 
includes genome datasets which can be used to find lung and 
blood disorders and their management and treatment. The 
Gene Expression Omnibus (GEO) [228] is an open-access 
functional genomics (microarray and sequence) data reposi-
tory. This database can be used for functional genomic and 
epigenomic studies such as genome methylation, chromatin 
structure, and genome–protein interactions. It is supported 
by the National Center for Biotechnology Information at 
the National Library of Medicine of the USA [228]. The 
Genome Aggregation Database (gnomAD) [229] database 
contains large-scale exome and genome sequencing data 

from different sequencing projects. The dataset can be used 
for disease diagnosis and genetic studies. The Genotype-
Tissue Expression (GTEx) [230] database contains GE data-
sets of 54 healthy tissue sites collected from 1000 subjects 
and histology images. It also includes samples from GTEx 
biobank.

The Harmonizome [231] database provides details about 
genes and proteins from 114 datasets provided by 66 online 
resources with 71927784 associations between 295496 
attributes and 56720 genes. The International Nucleotide 
Sequence Database [232], popularly known as INSDC, cor-
roborates biological data from three major sources: i) DNA 
Databank of Japan [247], ii) European Nucleotide Archive 
[248], and iii) GenBank [249]. These sources provide the 
spectrum of data raw reads, though alignments, and assem-
blies to functional annotation, enriched with contextual 
information relating to samples and experimental configu-
rations. Similar to this, the International Genome Sample 
Resource (IGSR) [233] includes genome sequencing data 
from 1000 genomes project. The genome data was taken 
from people of various ethnicities, age, and sex with the final 
dataset contains gene sequencing data from 2,504 individu-
als from 26 populations. These data can be used for disease 
diagnosis and genetic studies. Also, the SysGenSim [237] 
database includes bioinformatics tool, and Pula-Magdeburg 
single-gene knockout, StatSeq, and DREAM 5 benchmark 
datasets for studying Gene Sequence.

JASPAR [234] is a database for transcription factor 
DNA-binding profile. The data spans through six different 
taxonomic groups covering Vertebrata, Nematoda, Insecta, 
Plantae, Fungi, and Urochordata. The database can be used 
for translational genomics research.

The NIH Roadmap Epigenomics Mapping repository 
(NIHREM) [235] includes 2,804 datasets, i.e., 1,821 his-
tone modification, 360 DNase, 277 DNA methylation, 
and 166 RNA-Seq datasets. The repository provides 
3,174-fold 150.21 billion mapped sequencing the human 
and tools for analysing these datasets. It can be used 
for stem cell mapping and selection of tissues that are 
responsible for human disease. Also, the database known 
as Nature scientific data (NSD) [236] includes datasets 
pertaining to omics, taxonomy and species diversity, 
mathematical and modelling resources, cytometry, organ-
ism-focused resources, and health science data. This can 
be used for studying and modelling different aspects of 
genomics.

Protein Structure Analysis

The Protein Data Bank (PDB) [238] contains 3D structural 
data proteins and nucleic acids. These data are obtained tools 
such as X-ray crystallography, NMR spectroscopy, and cryo-
electron microscopy. It includes more than 135 thousand 
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data of proteins, nucleic acids, and complex assemblies. 
These can be used to understand all aspects of biomedicine 
and agriculture.

Structural classification of proteins (SCOP) is a reposi-
tory which hosts manually classified protein structure 
datasets. The classification was done based on amino acid 
sequences and their structural similarity. The main objec-
tive is to find the evolutionary relationship between the 
proteins. Currently two versions of SCOP are maintained. 
The SCOP Version 2 (SCOP2) [239] is the up-to-date SCOP 
database released at the first quarter of 2020. In contrast, 
the SCOP-extended (SCOPe) [240] is an extended version 
of the original SCOP maintained by UC Berkeley. SCOPe 
includes many new classified protein structures via a fusion 
of manual and automation curation.

Molecular Biology Databases at the UCI (UCI MB) contain 
three individual databases: i) Secondary Protein Structure [241], 
which is a bench repository that classifies secondary structure of 
certain globular proteins; ii) Splice–Junction Gene Sequences 
[250], which contain primate splice–junction gene sequences 
(DNA) with associated imperfect domain theory; and iii) Pro-
moter Gene Sequences [251], which contain E. coli promoter 
gene sequences (DNA) with partial domain theory. Objectives 
include i) sequencing and predicting the secondary structure 
of certain proteins; ii) studying primate splice–junction gene 
sequences (DNA) with associated imperfect domain theory; iii) 
studying E. Coli promoter gene sequences (DNA) with partial 
domain theory.

Signal Transduction Pathway Study

The NCI–Nature Pathway Interaction Database [242] hosts 
cellular signalling (molecular interactions/reactions) pathways 
in humans. The database can be employed for cancer research. 
The database was created by the U.S. National Cancer Institute, 
NIH, with the collaboration of Nature Publishing Group and 
published in the last quarter of 2006. Another database, NetPath 
[243], also contains signal transduction pathways in humans. 
Created jointly by Johns Hopkins University and the Institute 
of Bioinformatics (IOB) in India; it includes 45 signalling path-
way ranging from protein–protein interactions to enzyme–pro-
tein substrate reactions including 10 major pathway of immune 
system and 10 pathway relevant to cancer regulation. The other 
one, Reactome [244], is an open access database hosting biologi-
cal pathways of metabolic processes to hormonal signalling in 
humans. Created through a collaboration between North Amer-
ica and Europe, it can be used for cancer research and treatment.

Single‑cell Omics

The miRBoost dataset [245] contains the genomes of eukar-
yotes containing at least 100 miRNAs. This dataset is used 
for studying post-transcriptional gene regulation (PTGeR) 

and miRNA-related pathology. Saccharomyces Genome 
Database (SGD) [246] also provides complete biological 
information for the budding yeast Saccharomyces cerevi-
siae. They also give an open-source tool for searching and 
analysing these data and thereby enable the discovery of 
functional relationships between sequence and gene products 
in fungi and higher organisms. The study of genome expres-
sion, transcriptome, and computational biology is the main 
function of the SGD.

Open‑Source Deep Learning Tools

Due to surging interest and concurrent multidiscipli-
nary efforts towards DL in the recent years, several 
open-source libraries, frameworks, and platforms have 
been made available to the community. However, for 
a new user of these tools to mine biological data, it is 
not always straightforward to know their characteris-
tics, advantages, and disadvantages. In this process, one 
of the main hurdles for a new analyst is to select the 
appropriate DL architecture/model and relevant library 
providing suitable implementations of the selected archi-
tecture. Towards introducing a beginner to the field of 
biological data analysis using these open-source tools, 
this section describes the tools in a tutorial style indi-
cating their characteristics, pros, and cons. The focus 
of the section has been to review and summarize the 
most popular open-source tools, which aim to facilitate 
the technological developments for the community. This 
comprehensive collection contains tools (also developed 
by individuals) which are well maintained with a rea-
sonable amount of implemented algorithms (i.e., deep 
learning architectures). For the sake of brevity, the indi-
vidual publication references of the tools are omitted and 
interested readers may consult them at their respective 
websites from the provided URLs.

Table 7 summarizes the main features and differences of 
the various tools. To measure the impact and acceptability of 
a tool in the community, we provide GitHub-based measures 
such as numbers of Stars, Forks, and Contributors. These 
numbers are indicative of the popularity, maturity, and dif-
fusion of a tool in the community.

Caffe

Caffe (http://caffe .berke leyvi sion.org/) is scalable, written in 
C++ and provides bindings for Python as well as MATLAB. 
Dedicated for experiment, training, and deploying gen-
eral purpose DL models, this framework allows switching 
between development and deployment platforms. Targeting 
computer vision applications, it is considered as the fastest 
implementation of the CNN.
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Pros.

– Easy to deploy;
– Pretrained models are available;
– Faster training speed;
– Used for feedforward networks.

Cons.

– Requires writing code for generating new layers;
– Less support for recurrent networks;
– No support for distributed training.

Chainer

Chainer (http://chain er.org/) is a DL framework provided as 
Python library. Besides the availability of popular optimiza-
tion techniques and NN related computations (e.g., convo-
lution, loss, and activation functions), dynamic creation of 
graphs makes Chainer powerful. It supports a wide range 
of DL architectures including CNN, GAN, RNN, and DA.
Pros.

– One of the tools for leading dynamic computation graphs/
networks;

– Notably faster than other Python-oriented frameworks.

Cons.

– Open Computing Language framework/Open Multi-
Processing API is not supported.

DeepLearning4j

DeepLearning4j (DL4J, https ://deepl earni ng4j.org/), written 
in Java with core libraries in C/C++, is a distributed frame-
work for quick prototyping that targets mainly non-research-
ers. Compatible with JVM supported languages (e.g., Scala/
Clojure), it works on distributed processing frameworks 
(e.g., Hadoop and Spark). Through Keras (see section 5.6) as 
a Python API, it allows importing existing DL models from 
other frameworks. It allows creation of NN architectures by 
combining available shallow NN architectures.
Pros.

– Supports integration with Big Data frameworks Apache 
Spark and Hadoop;

– Supports distributed GPU and CPU platforms and capa-
ble to work with tensor.

Cons.

– Open Computing Language framework is not supported;

Table 7  Summary of Open-Source Deep Learning Tools (* as of July 2020)

L Linux/Unix, M MacOSX, W Windows, A Android, I iOS, CP Cross-platform, Py Python, Ja Java, Lu Lua, Ma Matlab
*GitHub parameters (as of 1 April. 2020)
a Apache2 License
b BSD License
c MIT License

Tool Platform Language(s) Stars* Forks* Contrib.* Supported DL Architecture

Caffeb L, M, W, A Py, C++, Ma 30100 18200 266 CNN, RNN, GAN
Chainerc L Py 5300 1400 251 DA, CNN, RNN, GAN
DL4ja L, M, W Ja 11500 4800 32 DA, CNN, RNN, RBM, LSTM, GAN
DyNeta L C++ 3000 687 117 CNN, RNN, LSTM
H2Oa L, M, W Ja, Py, R 4700 1700 132 CNN, RNN
Kerasc L, M, W Py 47500 18000 816 CNN, RNN, DBN, GAN
Lasagnea L, M Py 3700 980 68 CNN, RNN, LSTM, GAN
MCTc   W C++ 16720 4400 197 CNN, DBN, RNN, LSTM
MXNeta L, M, W, A, I C++ 18500 6600 780 DA, CNN, RNN, LSTM, GAN
Neona   L, M Py 3800 846 78 DA, CNN, RNN, LSTM, GAN
PyTorchb L, M Py 37400 9500 1345 CNN, RNN, LSTM, GAN
Singhaa  L, M, W Py, C++, Ja 2000 499 46 CNN, RNN, RBM, DBM
TensorFlowa L, M, W Py, C++ 14300 80600 2450 CNN, RNN, RBM, LSTM, GAN
TF.Learnc L, M Py, C++ 9400 2400 120 CNN, BRNN, RNN, LSTM, GAN
Theanob L, M, W Py 9103 2500 332 CNN, RNN, RBM, LSTM, GAN
Torchb  L, M, W, A, I Lu, C, C++ 8495 2400 130 CNN, RNN, RBM, LSTM, GAN
Velesa L, M, W, A Py 891 185 10 DA, CNN, RNN, LSTM, RBM
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– GUI is supported for workflow and visualization.

DyNet

The DyNet library (https ://dynet .readt hedoc s.io/), writ-
ten in C++ with Python bindings, is the successor of 
the ‘C++ neural network library’. In DyNet, computa-
tional graphs are dynamically created for each training 
example; thus, it is computationally efficient and flex-
ible. Targeting NLP applications, its specialty is in CNN, 
RNN, and LSTM.
Pros.

– Designed to be efficient for running on CPU or GPU.
– Dynamic computation graph like PyTorch and Chainer.

Cons.

– In terms of TensorFlow, limited functions are available.

H
2
O

H
2
 O (http://www.h2o.ai) is an ML software that includes 

DL and data analysis. It provides a unified interface to 
other DL frameworks like TensorFlow, MXNet, and 
Caffe. It also supports training of DL models (CNN and 
RNN) designed in R, Python, Java, and Scala.
Pros.

– Due to its in-memory distributed parallel processing 
capacities, it can be used for real-time data;

– GUI is supported (called Flow) for workflow and visu-
alization;

– GPU support for Deep Water and NVIDIA;
– Fast training, memory-efficient DataFrame manipulation;
– Easy-to-use algorithms and well documented;

Cons.

– Lacks the data manipulation capabilities of R and Pandas 
DataFrames;

– Slow in learning and supports limited model running at 
a time.

Keras

The Python-based Keras (https ://keras .io/) library is 
used on top of Theano or TensorFlow. Its models can be 
imported to DL4J (see section 5.3). It was developed as 
a user friendly tool enabling fast experimentation, and 
easy and fast prototyping. Keras supports CNN, GAN, 
RNN, and DBN [252].

Pros.

– Rich documentation;
– A high-level API for neural networks;
– Ability to run on top of state-of-the-art deep learning 

libraries/frameworks such as TensorFlow, CNTK, or 
Theano.

Cons.

– Cannot utilize multi-GPU directly;
– Requires Theano as backend for OpenMP support and 

Theano/TensorFlow/PlaidML as backend for OpenCL.

Lasagne

Lasagne (http://lasag ne.readt hedoc s.io) DL library is built on 
top of Theano. It allows multiple input, output, and auxiliary 
classifiers. It supports user-defined cost functions and provides 
many optimization functions. Lasagne supports CNN, GAN, 
RNN, and LSTM.
Pros.

– Lasagne is a lightweight library to build and train DL 
algorithms in Theano;

– Layers, regularizers, and optimizers can be used indepen-
dently;

– Clear documentation is available;
– Supports training the network on a GPU.

Cons.

– Small community than TensorFlow.

Microsoft Cognitive Toolkit

Replacing CNTK, the Microsoft Cognitive Toolkit (MCT, https 
://cntk.ai/) is mainly coded in C++. It provides implementations 
of various learning rules and supports different DL architectures 
including DNN, CNN, RNN, and LSTM.

Pros.

– It is a framework for feedforward DNNs, CNN and RNN;
– Can train production systems very fast;
– Can achieve state-of-the-art performance on benchmark 

tasks;
– Allow directed graph visualization.

Cons.

– Less community support;
– Difficult to install;
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– Draw lass interest among the research community.

MXNet

MXNet (https ://mxnet .io/) framework allows defining, train-
ing, and deploying deep NN (DA, CNN, GAN, RNN and 
LSTM) on a wide range of devices—from cloud infrastruc-
ture to mobile or even embedded devices (e.g. Raspberry 
Pi). Written in C++, it is memory efficient and supports 
Go, JavaScript, Julia, MATLAB, Perl, Python, R, and Scala.
Pros.

– A DL framework which has a high-performance impera-
tive API;

– Rich Language support;
– MXNet features advanced GPU support;
– Highly scalable.

Cons.

– Small community than TensorFlow;
– Poor API documentation;
– Less popular with the research community.

Neon

Neon (www.nerva nasys .com/techn ology /neon/) is a DL 
framework written in Python. It provides implementations 
of various learning rules, along with functions for optimiza-
tion and activation. Its support for DL architecture includes 
CNN, GAN, RNN, LSTM, and DA.
Pros.

– Better visualization properties than other frameworks;
– Apply optimization at data loading level,

Cons.

– Small community than TensorFlow;
– Less popular with the research community.

PyTorch

PyTorch (http://pytor ch.org/) provides Torch modules in 
Python. More than a wrapper, its deep integration allows 
exploiting the powerful features of Python. Inspired by 
Chainer, it allows dynamic network creation for variable 
workload and supports CNN, GAN, RNN and LSTM.
Pros.

– Pretrained models are available;
– OpenCL support via separately maintained package.
– Easily combine modular pieces;

– Easy to create a layer and run on GPU.

Cons.

– Requires writing training code;
– Limited documentation.

Singa

Singa (https ://singa .incub ator.apach e.org/), it is a distributed 
DL platform written in C++, Java, and Python.

Its flexible architecture allows synchronous, asynchro-
nous, and hybrid training frameworks to run. It supports a 
wide range of DL architectures including CNN, RNN, RBM, 
and DBM.
Pros. 

– Pretrained models are available;
– Supports model/data or hybrid partitioning, and synchro-

nous/asynchronous/hybrid training;
– Distributed deep learning system and handle Big data.
– Widely used for healthcare data analytics.

Cons.

– No Open Multi-Processing support.

TensorFlow

TensorFlow (www.tenso rflow .org), written in C++ and 
Python, was developed by Google and supports very large-
scale deep NN. Amended recently as ‘TensorFlow Fold’, its 
capability to dynamically create graphs made the architec-
ture flexible, allowing deployment to a wide range of devices 
(e.g., multi-CPU/GPU desktop, server, mobile devices, etc.) 
without code rewriting [253, 254]. Also it contains a data 
visualization tool named TensorBoard and supports many 
DL architectures including CNN, GAN, RNN, LSTM, and 
RBMs [255].
Pros.

– Handles large-scale data and operate in heterogeneous 
environments;

– Faster compile time than Theano;
– Computational graph abstraction;
– Supports parallelism.
– TensorBoard is used for workflow and visualization.

Cons.

– Large memory footprint;
– Less number of pretrained models are available;
– Computational graph can be slow;
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– No support for matrix operations;
– Difficulties in debugging.

TF.Learn

TF.Learn (www.tflea rn.org) is a TensorFlow (see  sec-
tion 5.13)-based high-level Python API. It supports fast 
prototyping with modular NN layers and multiple optimiz-
ers, inputs, and outputs. Supported DL architectures include 
CNN, GAN, BRNN, and LSTM.
Pros.

– Modular and transparent DL library built on the top of 
TensorFlow;

– Provides a higher-level API to TensorFlow.

Cons.

– Slower compared to its competitors.

Theano

Theano (www.deepl earni ng.net/softw are/thean o/) is a 
Python library that builds on core packages like NumPy and 
SymPy. It defines, optimizes, and evaluates mathematical 
expressions with tensors and served as foundation for many 
DL libraries.
Pros.

– High flexibility;
– High computational stability;
– Well suited for tensor-based mathematical expressions;
– Open-source libraries such as Keras, Lasagne and Blocks 

built on the top of Theano;
– Able to visualize convolutional filters, images, and 

graphs;
– High-level wrappers like Keras and Lasagne increases 

usability.

Cons.

– Difficult to learn;
– Difficult to deploy;
– Deployed on single GPU;
– Slower compilation time than TensorFlow.

Torch

Started in 2000, Torch (http://torch .ch/), a ML library and 
scientific computing framework, has evolved as a powerful 
DL library. Core functions are implemented in C and the rest 
via LuaJIT scripting language made Torch superfast. Soft-
ware giants like Facebook and Google use Torch extensively. 

Recently, Facebook’s DL modules (fbcunn) focusing on 
CNN have been open-sourced as a plug-in to Torch.
Pros.

– User friendly;
– Convenient for employ with GPUs;
– Pretrained models are available;
– Highly modular;
– Easy to create a layer and run on GPU.

Cons.

– Special data format and requires conversion;
– Require to write training code;
– Less documentation available.

Veles

Veles (https ://githu b.com/Samsu ng/veles ) is a Python-based 
distributed platform for rapid DL application development. It 
provides machine learning and data processing services and 
supports IPython notebooks. Developed by Samsung, one of 
its advantages is that it supports OpenCL for cross-platform 
parallel programming, and allows execution across heter-
ogenous platforms (e.g. servers, PC, mobile, and embedded 
devices). The supported DL architectures include DA, CNN, 
RNN, LSTM, and RBM.
Pros.

– Distributed platform support;
– Supports Jupyter Notebook;
– Supports OpenCL for cross-platform parallel program-

ming.

Cons.

– Less community support;
– Draws lass interest from the research community.

Relative Comparison of DL Tools

To perform relative comparison among the available open-
source DL tools, we selected four metrics which are detailed 
below: trend in their usage, community participation in their 
development, interoperability among themselves, and their 
scalability (Fig. 4).

Trend

To assess the popularity and trend of the various DL 
tools among the DL consumers, we looked into two dif-
ferent sources to assess the utilization of the tools. 
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Firstly, we extracted globally generated search data 
from Google Trends1 for five years (January 2015 to 
December 2019) related to search terms consisting of 
⟨[toolname] + DeepLearning⟩. The data showed a progres-
sive increase of search about TensorFlow since its release 
followed by Keras (Fig. 4a). Secondly, mining the content of 
around 2,000 papers submitted to arXiv’s cs.[CV | CL | LG 
| AI | NE], and stat.ML categories, during the first quarter 
of 2020 (i.e. January to March), for the presence of the tool 
names [256]. As seen in Fig. 4b which shows the percentage 
of each individual tool’s mention in the papers, the top six 
tools were identified as: PyTorch, TensorFlow, Keras, Caffe, 
MXNet, and Theano.

Community

The community-based development score for each tool dis-
cussed in Section 5 was calculated from repository popu-
larity parameters of GitHub (https ://githu b.com/) (i.e., star, 
fork, and contributors). The bubble plot shown in Fig. 4c 
depicts community involvement in the development of the 
tools indicating the year of initial stable release. Each bubble 
size in the figure, pertaining to a tool, represents the normal-
ized combined effect of fork and contributors of that tool. It 
is clearly seen that a very large part of the community effort 
is concentrated on TensorFlow, followed by Keras and Caffe.

Interoperability

In today’s cross-platform development environments, an 
important measure to judge a tool’s flexibility is its interop-
erability with other tools. In this respect, Keras is the most 
flexible one whose high-level neural networks are capable 
of running on top of either Tensor or Theano. Alternatively, 
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(data courtesy: Google Trend). b  Mention in articles submitted to 
arXiv preprint server during the first quarter of 2020. c The effect of 
community’s participation on individual tools is shown by the bub-
ble size, which is product of normalized number of GitHub forks and 

contributors. d As for the interoperability among the DL tools, Keras 
allows model importing from Caffe, MCT (CNTK), Theano, and Ten-
sorFlow and lets DL4j to import. e Regarding hardware-based scal-
ability of the DL tools, most of the tools provide CPU and GPU sup-
port, whereas FPGA and ASIC can mainly execute pretrained models

1 https ://trend s.googl e.com
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DL4j model imports neural network models originally con-
figured and trained using Keras that provides abstraction 
layers on top of TensorFlow, Theano, Caffe, and CNTK 
backends (Fig. 4d).

Scalability

Hardware-based scalability is an important feature of the 
individual tools (Fig. 4e). Today’s hardware for comput-
ing devices are dominated by graphics processing units 
(GPUs) and central processing units (CPUs). But consid-
ering increased computing capacity and energy efficiency, 
the coming years are expected to witness expanded role 
for other chipset types including application-specific inte-
grated circuits (ASICs) and field-programmable gate arrays 
(FPGAs). So far DL has been predominantly used through 
software. The requirement for hardware acceleration, energy 
efficiency, and higher performance has driven the develop-
ment of chipset-based DL systems.

Performance of Tools and Benchmark

The power of DL methods lies in their capability to rec-
ognize patterns for which they are trained. Despite the 
availability of several accelerating hardware (e.g., multi-
core [C/G]PUs/FPGAs), this training phase is very time-
consuming, cumbersome, and computationally challeng-
ing. Moreover, as each tool provides implementations of 
several DL architectures and often emphasizing separate 
components of them on different hardware platforms, 
selecting an appropriate tool suitable for an application is 
getting increasingly difficult. Besides, different DL tools 
have different targets, e.g., Caffe targets applications, 
whereas Torch and Theano are more for DL research. 
To facilitate scientists in picking the right tool for their 
application, scientists benchmarked the performances of 
the popular tools concerning their training times [257, 
258]. Moreover, to the best of our knowledge, there exist 
two main efforts that provide the benchmarking details 
of the various DL tools and frameworks publicly [259, 
260]. Summarizing those seminal works, below we pro-
vide the time required to complete the training process as 
a performance measure of four different DL architectures 
(e.g., FCN, CNN, RNN, and DA) among the popular 
tools (e.g., Caffe, CNTK, MXNET, Theano, TensorFlow, 
and Torch) on multicore [C/G]PU platforms.

Table 8 lists the experimental setups used in bench-
marking the specified tools. Mainly three different set-
ups, each with Intel Xeon E5 CPU, were utilized during 
the process. Though the CPU was similar, the GPU hard-
ware was different: GeForce GTX Titan X, GTX 980, 
GTX 1080, Tesla K80, M40, and P100.

Stacked autoencoders or DA were benchmarked using the 
experimental setup number 1 in Table 8. To estimate the 
performance of the various tools on implementing DA, three 
autoencoders (number of hidden layers: 400, 200, and 100, 
respectively) were stacked with tied weights and sigmoid 
activation functions. A two-step network training was per-
formed on the MNIST dataset [261]. As reported in Fig. 5 
(a, b), the performances of various DL tools are evaluated 
using forward runtime and training time. The forward runt-
ime refers to the required time for evaluating the information 
flow through the full network to produce the intended out-
put for an input batch, dataset, and network. In contrast, the 
gradient computation time measures the time that required 
to train DL tools. The results suggest that, regardless of the 
number of CPU threads used or GPU, Theano and Torch 
outperform TensorFlow in both gradient and forward times 
(Fig. 5 a, b).

Experimental setup number 2 (Table 8) was used in 
benchmarking RNN. The adapted LSTM network [262] 
was designed with 10000 input and output units with two 
layers and ∼ 13 millions parameters. As the performance of 
RNN depends on the input length, an input length of 32 was 
used for the experiment. As the results indicate (Fig. 5 c-f), 
MCT outperforms other tools on both CPU and all three 
GPU platforms. On CPUs, TensorFlow performs little better 
than Torch (Fig. 5 c). On GPUs, Torch is the slowest with 
TensorFlow and MXNet performing similarly (Fig. 5 d-f).

Table 8  Hardware configuration of the evaluating setup

ESN Experimental Setup Numbers
a Intel Xeon CPU v2
b 3072 cores, 1000 MHz base clock, 12 GB memory
c Intel Xeon CPU v4
d 2048 cores, 1126 MHz base clock, 4 GB memory
e 2560 cores, 1607 MHz base clock, 8 GB memory
f Tesla K80 accelerator has two Tesla GK210 GPUs with 2496 cores, 
560 MHz base clock, 12 GB memory
g 3584 cores, 1189 MHz base clock, 16 GB memory
h 3072 cores, 948 MHz base clock, 12 GB memory

ESN Processor Memory

1 CPU: E5-1650a @ 3.50 GHz 32 GB
GPU: Nvidia GeForce GTX Titan  Xb  

2 CPU: E5-2630c @ 2.20 GHz 128 GB
GPU: Nvidia GeForce GTX  980d  
GPU: Nvidia GeForce GTX  1080e  
GPU: Tesla K80 accelerator with GK210  GPUsf

3 CPU: E5-2690c @ 2.60 GHz 256 GB
GPU: Tesla P100  acceleratorg  
GPU: Tesla M40  acceleratorh  
GPU: Tesla K80 accelerator with GK210  GPUsf  
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Still a large portion of the pattern analysis is done using 
CNN; therefore, we further focused on CNN and investi-
gated how the leading tools performed and scaled in training 
different CNN networks in different GPU platforms. Time 
speedup of GPU over CPU is considered as a metric for 
this purpose. The individual values are calculated using the 
benchmark scripts of DeepMark [259] on experimental setup 
number 3 (Table 8) for one training iteration per batch. The 
time needed to execute a training iteration per batch equals 
the time taken to complete a forward propagation operation 
followed by a backpropagation operation. Figure 6 summa-
rizes the training time per iteration per batch for both CPU 
and GPUs (left y-axis) and the corresponding GPU speedup 
over CPU (right y-axis).

These findings for four different CNN network models 
(i.e. Alexnet [92], GoogLeNet [94], Overfeat [263], and 
VGG [93]) available in four tools (i.e. Caffe, TensorFlow, 

Theano, and Torch) [264] clearly suggest that network 
training process is much accelerated in GPUs in com-
parison to CPUs. Moreover, another important message 
is that, all GPUs are not the same and all tools don’t 
scale up at the same rate. The time required to train a 
neural network strongly depends on which DL frame-
work is being used. As for the hardware platform, the 
Tesla P100 accelerator provides the best speedup with 
Tesla M40 being the second and Tesla K80 being the last 
among the three. In CPUs, TensorFlow achieves the least 
training time indicating a quicker training of the network. 
In GPUs, Caffe usually provides the best speedup over 
CPU but TensorFlow and Torch perform faster training 
than Caffe. Though TensorFlow and Torch have simi-
lar performances (indicated by the height of the lines), 
Torch slightly outperforming TensorFlow in most of the 
networks. Finally, most of the tools outperform Theano.
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Open Issues and Future Perspectives

The brain has the capability to recognize and understand pat-
terns almost instantaneously. Over several decades, scientists 
have been trying decode the biological mechanism of natural 
pattern recognition that takes place in the brain and translate 
those principles into AI systems. The increasing knowledge 
about the brain’s information processing policies enabled 
this analogy to be adopted and implemented in computing 
systems. Recent technological breakthroughs, seamless 
integration of diverse techniques, better understanding of 
the learning systems, declination of computing costs, and 
expansion of computational power empowered computing 
systems to reach human-level computation in certain sce-
narios [265]. Nonetheless, many of these methods require 
improvements. Though admittedly, there are distinctions on 
how a DL-based method can be used and applied on biologi-
cal data, however, the common open issues and challenges 
are equally applicable and important for biological data. We 

identify below shortcomings and bottlenecks of the popu-
lar methods, open research questions, and challenges and 
outline possible directions which requires attention in the 
near future.

First of all, DL methods usually require large datasets. 
Though the computing cost is declining with increas-
ing computational power and speed, it is not worthwhile 
to apply DL methods in cases of small to moderate sized 
datasets. This is particularly so as considering that many of 
the DL methods perform continuous geometric transforma-
tions of one data manifold to another with an assumption 
that there exist learnable transfer functions which can per-
form the mapping [266]. However, in cases when the rela-
tionships among the data are causal or very complex to be 
learned by the geometric transformations, the DL methods 
fail regardless the size of the dataset [267]. Also, interpret-
ing high-level outcomes of DL methods is difficult due to 
inadequate in-depth understanding of the DL theories which 
causes many of such models to be considered as ‘Black box’ 
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[268]. Moreover, like many other ML techniques, DL is also 
susceptible to misclassification [269] and overclassification 
[270].

Additionally, the ability to exploit the full benefits offered 
by open access data repositories, in terms of data sharing 
and reuse, is often hampered by the lack of unified reporting 
data standards and non-uniformity of reported information 
[271]. Data provenance, curation, and annotation of these 
biological big data are huge challenges too [272].

Furthermore, except for very few large enterprises, the 
power of distributed and parallel computation through 
cloud computing remains largely unexplored for the DL 
techniques. Due to the fact that the DL techniques require 
retraining for different datasets, repeated training becomes 
a bottleneck for cloud computing environments. Also, in 
such distributed environments, data privacy and security 
concerns are still prevailing [273], and real-time process-
ing capability of experimental data is underdeveloped 
[274].

To mitigate the shortcomings and address the open issues, 
the existing theoretical foundations of the DL methods need 
to be improved. The DL models are required not only to be 
able to describe specific data but also generalize them on 
the basis of experimental data which is crucial to quantify 
the performances of individual NN models [275]. These 
improvements should take place in several directions and 
address issues like quantitative assessment of individual 
model’s learning efficiency and associated computational 
complexity in relation to well-defined parameter tuning 
strategies, the ability to generalize and topologically self-
organize based on data-driven properties. Also, to facilitate 
intuitive and less cumbersome interpretation of the analysis 
results, novel tools for data visualization should be incorpo-
rated in the DL frameworks.

Recent developments in combined methods pertaining 
to deep reinforcement learning (deep RL) have been popu-
larly applied to many application domains (for a review on 
deep RL, see [276]). However, deep RL methods have not 
yet been applied to biological pattern recognition problems. 
For example, analysing and aggregating dynamically chang-
ing patterns in biological data coming from multiple levels 
could help to remove data redundancy and discover novel 
biomarkers for disease detection and prevention. Also, novel 
deep RL methods are needed to reduce the currently required 
large set of labelled training data.

Renewing efforts are required for standardization, anno-
tation, curation, and provenance of data and their sources 
along with ensuring uniformity of information among the 
different repositories. Additionally, to keep up with the rap-
idly growing big data, powerful and secure computational 
infrastructures in terms of distributed, cloud, and parallel 
computing tailored to such well-understood learning mecha-
nisms are badly needed. Lastly, there are many other popular 

DL tools (e.g., Keras, Chainer, Lasagne) and architectures 
(e.g., DBN) which need to be benchmarked providing the 
users with a more comprehensive list to choose. Also, the 
currently available benchmarks are mostly performed on 
non-biological data, and their scalability to biological data 
is poor; thus, specialized benchmarking on biological data 
are needed.

In order to derive insights from an image, a sequence or 
a signal analysis problem, a selected DL algorithm using a 
library or a tool (e.g., TensorFlow, Keras, PyTorch, etc.) may 
need to integrate with a big data framework (e.g., Hadoop, 
Spark, etc.). In such cases, troubleshooting in the model and 
debugging the code may be very challenging for the system 
designer due to the parallel execution of multiple threads 
which may not always execute in an orderly fashion. The 
lack of documentation and model transparency of these 
libraries may make it impossible for the project manager 
to estimate efforts required in successful completion of a 
project.

Conclusion

The diverse biological data coming from different applica-
tion domains are multimodal, multidimensional, and com-
plex in nature. At present, a huge amount of such data is 
publicly available. The affordable access to these data came 
with a huge challenge to analyse and recognize patterns in 
them which require sophisticated ML tools to do the job. As 
a result, many ML-based analytical tools have been devel-
oped and reported over the last decades and this process has 
been facilitated greatly by the decrease of computational 
costs, increase of computing power, and availability of 
cheap storage. With the help of these learning techniques, 
machines have been trained to understand and decipher 
complex patterns and interactions of variables in biological 
data. To facilitate a wider dissemination of DL techniques 
applied to biological data and serve as a reference point, 
this article provides a comprehensive survey of the literature 
on those techniques’ application on biological data and the 
relevant open-access data repositories. It also lists existing 
open-source tools and frameworks implementing various 
DL methods and compares these tools for their popularity 
and performance. Finally, it concludes by pointing out some 
open issues and proposing some future perspectives.
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