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Abstract 
Reproducible computational research (RCR) is the keystone of the scientific method for ​in silico 
analyses, packaging the transformation of raw data to published results. In addition to its role in 
research integrity, ​RCR has the capacity to significantly accelerate evaluation and reuse. This 
potential and wide-support for the FAIR principles have motivated interest in metadata 
standards supporting RCR. ​Metadata provides context and provenance to raw data and 
methods and is essential to both discovery and validation. Despite this shared connection with 
scientific data, few studies have explicitly described the relationship between metadata and 
RCR. This article employs a functional content analysis to identify metadata standards that 
support RCR functions across an analytic stack consisting of input data, tools, notebooks, 
pipelines, and publications. Our article provides background context, explores gaps, and 
discovers component trends of embeddedness and methodology weight from which we derive 
recommendations for future work. 
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Introduction 
Digital technology and computing have transformed the scientific enterprise. As evidence, many 
scientific workflows have become fully digital, from the problem scoping stage and data 
collection tasks to analyses, reporting, storage, and preservation. Another key factor includes 
federal ​1​ and institutional ​2,3​ recommendations and mandates to build a sustainable research 
infrastructure, to support FAIR principles ​4​, and ​reproducible computational research (RCR). 
Metadata has emerged as a crucial component, supporting these advances, with standards 
supporting the wide array of tasks and functions that form the research life-cycle. Reflective of 
change, there have been both many case studies on reproducibility, and many on metadata 
standards, although few have attempted to systematically study their relationship. Our aim in 
this work is to review metadata developments that are directly applicable to RCR, identify gaps, 
and recommend further steps involving metadata toward building a more robust RCR 
environment. To lay the groundwork for these recommendations, we first review the RCR and 
metadata, examine how they relate across different stages of an analysis, and discuss what 
common trends emerge from this approach. 

Reproducible Computational Research 
Reproducible Research​ is a​n umbrella term t​hat encompasses many forms of scientific quality - 
from generalizability of underlying scientific truth, exact replication of an experiment with or 
without communicating intent, to the open sharing of analysis for reuse. Specific to 
computational facets of scientific research, ​Reproducible Computational Research​ (RCR)​5 
encompasses all aspects of ​in silico​ analyses, from the propagation of raw data collected from 
the wet lab, field, or instrumentation, through intermediate data structures, to open code and 
statistical analysis, and finally publication. Reproducible research points to several underlying 
concepts of scientific validity – terms that should be unpacked to be understood. Stodden et al. ​6 
devised a five-level hierarchy of research, classifying it as – reviewable, replicable, confirmable, 
auditable, and open or reproducible. Whitaker ​7​ describes an analysis as "reproducible" in the 
narrow sense that a user can produce identical results provided the data and code from the 
original, and "generalisable" if it produces similar results when both data is swapped out for 
similar data ("replicability"), and if underlying code is swapped out with comparable 
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replacements ("robustness") (Figure 1). 

 
Figure 1: Whitaker's matrix of reproducibility ​8  
 
While these terms may confuse those new to reproducibility, a review by Barba disentangles the 
terminology while providing a historical context of the field ​9​.​ ​A wider perspective places 
reproducibility as a first-order benefit of applying FAIR principles: Findability, Accessibility, 
Interoperability, and Reusability. In the next sections, we will engage reproducibility in the 
general sense and will use "narrow-sense" to refer to the same data, same code condition. 
 

Reproducibility Crisis 
In recent years, the scientific community has been grappling with the problem of irreproducibility 
in research. Two events in the life sciences stand out as watershed moments in this crisis – the 
publication of manipulated and falsified predictive cancer therapeutic signatures by a biomedical 
researcher at Duke and subsequent forensic investigation by Keith Baggerly and David 
Coombes ​10​, and a review conducted by scientists at Amgen who could replicate the results of 
only 6 out of 53 cancer studies ​11​. These events involved different aspects - poor data structures 
and missing protocols, respectively, and related studies ​12​ have ​identified recurring 
reproducibility problems due to a lack of detailed methods, missing controls, and other failures 
in protocol. An inadequate understanding of statistics, which may include the application of 
inappropriate statistical tests and misinterpretation or abuse of statistical tests, is believed to 
play a recurring role in irreproducibility ​13​. It bears speculation whether the risk of these types of 
incidents is more likely to occur in novel statistical approaches than in conventional ones. 
Subsequent surveys of researchers ​14​ have identified selective reporting, while theory papers ​15 
have emphasized the insidious combination of underpowered designs and publication bias, 
essentially a multiple testing problem on a global scale. It is our contention that RCR metadata 
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has a role to play in addressing all of these issues and to shift the narrative from a crisis to 
opportunities ​16​. 
 
In the wake of this newfound interest in reproducibility, both the variety and volume of related 
case studies has exploded since 2015 (Figure 2). Likert-style surveys and high-level 
publication-based censuses (see Figure 3) in which authors tabulate data or code availability 
are most prevalent. Additionally, low-level reproductions, in which code is executed, replications 
in which new data is collected and used, tests of robustness in which new tools or methods are 
used, and refactors to best practices are also becoming more popular. While the life sciences 
have generated more than half of these case studies, areas of the social and physical sciences 
are increasingly the subjects of important reproduction and replication efforts. These case 
studies have provided the best source of empirical data for understanding reproducibility and 
will likely continue to be valuable for evaluating the solutions we review in the next sections.

  
Figure 2: Case studies in reproducible research ​17​. The term "case studies" is used here in a 
general sense to describe any study of reproducibility. A reproduction is an attempt to arrive at 
comparable results with identical data using computational methods described in a paper. A 
refactor involves refactoring existing code into frameworks and other reproducibility best 
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practices while preserving the original data. A replication involves generating new data and 
applying existing methods to achieve comparable results. A test of robustness applies various 
protocols, workflows, statistical models or parameters to a given data set to study their effect on 
results, either as a follow-up to an existing study or as a "bake-off". A census is a high-level 
tabulation conducted by a third party. A survey is a questionnaire sent to practitioners. A case 
narrative is an in-depth first-person account. An independent discussion utilizes a secondary 
independent author to interpret the results of a study as a means to improve inferential 
reproducibility. 
 

Big Data, Big Science, and Open Data 
The inability of third parties to reproduce results is not new to science ​18​ but the scale of 
scientific endeavor and the level of data and method reuse suggest replication failures may 
actually damage the sustainability of certain disciplines, hence the term "reproducibility crisis." 
The problem of irreproducibility is compounded by the rise of "big data," in which very large, 
new, and often unique, disparate or unformatted sources of data have been made accessible for 
analysis by third parties, and "big science," in which terabyte-scale data sets are generated and 
analyzed by multi-institutional collaborative research projects. Metadata aspects of big data 
have been quantitatively studied with regard to reuse ​19,20​, but not reproducibility, despite some 
evidence big data may play a role in spurious results associated with reporting bias ​21​. Big data 
and big science have increased the demand for high-performance computing, specialized tools, 
and complex statistics, with attention to the growing popularity and application of machine 
learning and deep learning (ML/DL) techniques to these data sources. Such techniques typically 
train models on specific data subsets, and the models, as the end product of these methods, 
are often "black boxes," i.e. their internal predictors are not explainable (unlike older techniques 
such as regression) though they provide a good fit for the test data. Properly evaluating and 
reproducing studies that rely on such algorithms presents new challenges not previously 
encountered with inferential statistics ​22,23​. RCR is typically focused on the last analytic steps of 
what is often a labor-intensive scientific process that often originates from wet-lab protocols, 
fieldwork, or instrumentation and these last ​in silico​ steps present some of the more difficult 
problems both from technical and behavioral standpoints, because of the amount of entropy 
introduced by the sheer number of decisions made by an analyst. Developing solutions to make 
ML/DL workflows transparent, interpretable, and explorable to outsiders, such as peer 
reviewers, is an active area of research ​24​. 
 
The ability of third parties to reproduce studies relies on access to the raw data and methods 
employed by authors. Much to the exasperation of scientists, statisticians, and scientific 
software developers, the rise of "open data" has not been matched by "open analysis" as 
evidenced by several case studies ​25–28​. 
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Figure 3. Censuses like this one by Obels et al. measure reproducibility with respect to data and 
code availability, in this case over a corpus of 118 studies ​25​. 
 
Missing data and code can obstruct the peer review process, where proper review requires the 
authors to put forth the effort necessary to share a reproducible analysis. Software development 
practices, such as documentation and testing, are not a standard requirement of the doctoral 
curriculum, the peer-review process, or the funding structure – and as a result, the scientific 
community suffers from diminished reuse and reproducibility ​29​. Sandve et al. ​30​ identified the 
most common sources of these oversights in "Ten Simple Rules for Reproducible 
Computational Research" – lack of workflow frameworks, missing platform and software 
dependencies, manual data manipulation or forays into web-based steps, lack of versioning, 
lack of intermediates and plot data, and lack of literate programming or context can derail a 
reproducible analysis. 
 
An issue distinct from the availability of source code and raw data is the lack of metadata to 
support reproducible research. We have observed many of the findings from case studies in 
reproducibility point to missing methods details in an analysis, which can include 
software-specific elements such as software versions and parameters ​31​, but also steps along 
the entire scientific process including data collection and selection strategies, data processing 
provenance, statistical methods and linking these elements to publication. We find the key 
concept connecting all of these issues is metadata. 
 
An ensemble of dependency management and containerization tools already exist to 
accomplish narrow-sense reproducibility ​32​ – the ability to execute a packaged analysis with little 
effort from third-party. But context to allow for robustness and replicability, "broad-sense 
reproducibility," is limited without endorsement and integration of necessary metadata standards 
that support discovery, execution, and evaluation. Despite the growing availability of 
open-source tools, training, and better executable notebooks, reproducibility is still challenging 
33​. In the following sections, we address these issues, first defining metadata, defining an 
"analytic stack" to abstract the steps of an in silico analysis, and then identifying and 
categorizing standards both established and in development to foster reproducibility. 
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Metadata 
Over the last twenty-five years, metadata has gained acceptance as a key component of 
research infrastructure design. This trend is defined by numerous initiatives supporting the 
development and sustainability of hundreds of metadata standards, each with varying 
characteristics ​34,35​. Across these developments, there is a general high-level consensus 
regarding the following three types of metadata standards ​36,37​: 

1. Descriptive metadata​, supporting the discovery and general assessment of a resource 
(e.g., the format, content, and creator of the resource). 

2. Administrative metadata​, supporting technical and other operational aspects affiliate with 
resource use. Administrative metadata includes technical, preservation, and rights 
metadata. 

3. Structural metadata​, supporting the linking among the component parts of a resource, so 
it can be fully understood. 

 
There is also general agreement that metadata is a key aspect in supporting FAIR, as 
demonstrated by the FAIRsharing project (https://fairsharing.org), which divides standards types 
into "reporting standards" (checklists or templates e.g. MIAME ​38​), "terminology artifacts or 
semantics" (formal taxonomies or ontologies to disambiguate concepts e.g. Gene Ontology ​39​), 
"models and formats" (e.g. FASTA ​40​), "metrics" (e.g. FAIRMetrics ​41​) and "identifier schemata" 
(e.g. DOI ​42​) ​43​. (See Table Y). 
 
Table 1: Types of FAIRsharing Data and Metadata Standards 

Type of standard Purpose 

Reporting standards Ensure adequate metadata for reproduction 

Terminology artifacts or semantics Concept disambiguation and semantic 
relationships 

Models and formats Interoperability 

Identifier schemata Discovery 

 
Metadata is by definition structured. However, structured intermediates and results that are 
used as part of scientific analyses and employ encoding languages such as JSON or XML are 
recognized as primary data, not metadata. While an exhaustive distinction is beyond the scope 
of this paper, we define RCR metadata broadly as ​any structured data that aids 
reproducibility and that can conform to a standard​. While this definition may seem liberal, it 
is our contention that metadata is the "glue" of RCR, and best identified by its function rather 
than its origins. This general understanding of metadata as a necessary component for research 
and data management and growing interest in RCR, together with the fact that there are few 
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studies targeting metadata specifically along the analytic stack that motivated the research 
presented in this paper. 

Goals and Methods 
Our overall goal of this work is to review existing metadata standards and new developments 
that are directly applicable to RCR, identify gaps, discuss common threads among these efforts, 
and recommend next steps toward building a more robust RCR environment further work. 

 
Figure 4: Terms enriched in the review corpus 
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Our method is framed as a state of the art review based on literature (Figure 4) and ongoing 
software development in the scientific community. Review steps included:​ 1)​ defining key 
components of the RCR analytic stack, and function that metadata can support,​ 2)​ selecting 
exemplary metadata standards that address aspects of the identified functions, ​3)​ assessing the 
applicability of these standards for supporting RCR functions, and ​4)​ designing the RCR 
metadata hierarchy. Our approach was informed, in part, by the Qin LIGO case study ​44​, 
catalogs of metadata standards such as FAIRSharing, and comprehensive projects to bind 
semantic science such as Research Objects ​45​. Compilation of core materials was accomplished 
mainly through literature searches but also perusal of code repositories, ontology catalogs, 
presentations, and Twitter posts. A "word cloud" of the most used abstract terms in the cited 
papers reveals most general terms. 

The RCR metadata stack 
To define the key aspects of RCR, we have found it useful to break down the typical scientific 
computational analysis workflow, or "analytic stack," into five levels - 1. input, 2. tools, 3. reports, 
4. pipelines, and 5. publication. These levels correspond loosely to the data science (Data 
understand, prep, modeling, evaluation, deployment), scientific method (formulation, hypothesis, 
prediction, testing, analysis), and various research lifecycles as proposed by data curation 
communities (data search, data management, collection, description, analysis, archival, and 
publication)  ​46​ and software development communities (Plan, Collect, Quality Control, 
Document, Preserve, Use). However, unlike the steps in lifecycle we do not emphasize a strong 
temporal order to these layers, but instead consider them simply interactive components of any 
scientific output. 

Synthesis Review 
In the course of our research, we found most ​standards, projects, and organizations​ were 
intended to address reproducibility issues that corresponded to specific activities in the analytic 
stack. However, metadata standards were unevenly distributed among the levels. Further 
blurring the lines, some standards could arguably be classified into two to more areas. For 
example, because manuscripts are the "final" product of scientific research, standards that 
attempt to bind all products of a scientific analysis could logically be associated with 
publications, but binding solutions (e.g. RO-Crate) are ostensibly associated with pipelines. 
Similarly, some solutions are flexible enough to be repurposed - script-based pipelines can be 
extended to notebooks and more flexible input metadata such (e.g. EML) can be used for 
publication-level annotation of results. In these cases, we tried to assign standards to their 
original intent. 
 
The synthesis below first presents a high-level summary table, followed by a more detailed 
description of each of five levels, specific examples, and a forecast of future directions.  
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Metadata 
Level 

Description Examples of 
Metacontent 

Examples of 
Standards 

Projects and 
Organizations 

1. Input Metadata related to 
raw data and 
intermediates 

Sequencing 
parameters, 
instrumentation, 
spatiotemporal 
extent 

MIAME​,  
EML​, ​DICOM 
GBIF 
CIF, 
ThermoML, CellML, 
DATS, FAANG, 
ISO/TC 276, NetCDF, 
OGC, GO 

OBO, NCBO, 
FAIRsharing, 
Allotrope 

2.Tools Metadata related to 
executable and 
script tools 

Version, 
dependencies, 
license, scientific 
domain 

CRAN 
DESCRIPTION file, 
Conda 
meta.yaml/environm
ent.yml​, ​pip 
requirements.txt​, 
pipenv 
Pipfile/Pipfile.lock, 
Poetry 
pyproject.toml/poetry.l
ock, ​EDAM​, 
CodeMeta​, 
Biotoolsxsd, 
DOAP, ontosoft, SWO 

Dockstore, 
Biocontainers 

3.Statistical 
reports and 
Notebooks 

Literate statistical 
analysis 
documents in 
Jupyter or knitr, 
Overall statistical 
approach or 
rationale 

Session 
variables, ML 
parameters, 
inline statistical 
concepts 

OBCS, ​STATO 
SDMX 
DDI, ​MEX​, 
MLSchema, ​MLFlow, 
Rmd YAML 

Neural 
Information 
Processing 
Systems 
Foundation 

4.Pipelines, 
Preservation, 
and Binding 

Dependencies and 
deliverables of the 
pipeline, 
provenance 

File 
intermediates, 
tool versions, 
deliverables 

CWL, CWLProv, 
RO-Crate,​ RO, 
WICUS, 
OPM, PROV-O, 
ReproZip Config, 
ProvOne, WES, 
BagIt, BCO, ERC 

GA4GH, 
ResearchObje
cts, WholeTale, 
ReproZip 

5.Publication Research domain, 
keywords, 

Bibliographic, 
Scientific field, 

BEL​, Dublin Core, 
JATS, ONIX, MeSH, 

NeuroLibre, 
JOSS, 
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attribution Scientific 
approach (e.g. 
"GWAS") 

LCSH, MP, Open 
PHACTS, SWAN, 
SPAR, PWO, PAV 

ReScience, 
Manubot  

Table 2: Metadata standards including: MIAME ​38​, EML ​47​, DICOM​48​, GBIF ​49​, CIF ​50​, ThermoML ​51​, CellML ​52​, DATS 
53​, FAANG ​54​, ISO/TC 276 ​55​, GO ​39​, Biotoolsxsd ​56​, meta.yaml ​57​, DOAP ​58​, ontosoft ​59​, EDAM ​60​, SWO ​61​, OBCS ​62​, 
STATO ​63​, SDMX ​64​, DDI ​65​), ​MEX ​66​, MLSchema ​67​, CWL ​68​, WICUS ​69​, OPM ​70​, PROV-O ​71​, CWLProv ​72​, ProvOne ​73​, 
PAV ​74​, BagIt ​75​, RO ​45​, RO-Crate ​76​, BCO ​77​, Dublin Core ​78​, JATS ​79​, ONIX ​80​, MeSH ​81​, LCSH ​82​, MP ​83​, Open 
PHACTS ​84​, BEL ​85​, SWAN ​86​, SPAR ​87​, PWO ​88​. Standards in ​bold​ are featured within this article. 
Examples of all standards can be found at ​https://github.com/leipzig/metadata-in-rcr 
  

1. Input 
Input refers to raw data from wet lab, field, instrumentation, or public repositories, intermediate 
processed files, and results from manuscripts. Compared to other layers of the analytic stack, 
input data garners the majority of metadata standards. Descriptive standards (metadata) enable 
the documentation, discoverability, and interoperability of scientific research and make it 
possible to execute and repeat experiments.  Descriptive metadata, along with provenance 
metadata also provides context and history regarding the source, authenticity, and life-cycle of 
the raw data. These basic standards are usually embodied in the scientific output of tables, lists, 
and trees which take form in files of innumerable file and database formats as input to 
reproducible computational analyses, filtering down to visualizations and statistics in published 
journal articles. Metadata about raw data, such as variable labels and data definition tables, is 
among the oldest forms of metadata, but it plays important, and often unanticipated, roles in 
RCR. Most instrumentation, field measurements, and wet lab protocols are communicated 
through metadata and are useful for detecting anomalies such as batch effects and sample 
mix-ups. 
 
While metadata is often recorded from firsthand knowledge of the technician performing an 
experiment or the operator of an instrument, many forms of input metadata are in fact metrics 
that can be derived with some level of inconvenience from the underlying data. This fact does 
not undermine the value of "derivable" metadata in terms of its importance for discovery, 
evaluation, and reproducibility. 
 
Formal semantic ontologies represent one facet of metadata. The OBO Foundry ​89​ and NCBI 
BioPortal serve as catalogues of life science ontologies. The usage of these ontologies appear 
to follow a steep Pareto distribution, with "Gene Ontology" garnering more than 20,000 term 
mentions in PubMed, the vast majority of NCBO's 843 ontologies have never been cited or 
mentioned. 
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Examples 
In addition to being the oldest, and arguably most visible of RCR metadata standards, input 
metadata standards serve as a watershed for downstream reproducibility. In order to 
understand what input means for RCR, we will examine three well-established examples of 
metadata standards from different scientific fields. Considering each of these standards reflects 
different goals and practical constraints of their respective fields, their longevity merits 
investigating what characteristics they have in common. 

DICOM - An embedded file header 
Digital Imaging and Communications in Medicine (DICOM) is a medical imaging standard 
introduced in 1985 ​90​. DICOM images require extensive technical metadata to support image 
rendering, and descriptive metadata to support clinical and research needs. These metadata 
coexist in the DICOM file header, which uses a group/element namespace to designate public 
restricted standard DICOM tags from private metadata. Extensive standardization of data types, 
called value representations (VRs) in DICOM, also follow this public/private scheme ​91​. The 
public tags, standardized by the National Electrical Manufacturers Association (NEMA), have 
served the technical needs of both 2 and 3-dimensional images, as well as multiple frames, and 
multiple associated DICOM files or "series." Conversely, descriptive metadata has suffered from 
"tag entropy" in the form of missing, incorrectly filled, non-standard, or misused tags by 
technicians manually entering in metadata ​92​. This can pose problems both for clinical workflows 
as well as efforts to aggregate imaging data for the purposes of data mining and machine 
learning. The data structures imposed by the DICOM header format also hamper the level of 
granularity required to embed advanced annotations supporting image segmentation and 
quantitative analysis. This has made it necessary for programs such as 3DSlicer ​93​ and its 
associated plugins, such as dcqmi ​94​ to develop solutions such as serializations to 
accommodate complex or hierarchical metadata. 

EML - Flexible user-centric data documentation 
Ecological Metadata Language (EML) is a common language for sharing ecological data ​47​. 
EML was developed in 1997 by the ecology research community and is used for describing data 
in notable databases, such as the Knowledge Network for Biocomplexity (KNB) repository 
(​https://knb.ecoinformatics.org/​) and the Long Term Ecological Network (​https://lternet.edu/​). 
The standard enables documentation of important information about who collected the research 
data, when, and how – describing the methodology down to specific details and providing 
detailed taxonomic information about the scientific specimen being studied (Figure 5). 
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Figure 5: Geographic and temporal EML metadata and the associated display on Knowledge 
Network for Biocomplexity (KNB) from Halpern et al. ​95 
 

MIAME - A submission-centric minimal standard 
Minimum Information About a Microarray Experiment (​MIAME) ​38​ is a set of guidelines 
developed by the Microarray Gene Expression Data (MGED) society that has been adopted by 
many journals to support an independent evaluation of results. Introduced in 2001, MIAME 
allows public access to crucial metadata supporting gene expression data (i.e. quantitative 
measures of RNA transcripts) via the Gene Expression Omnibus (GEO) database at the 
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National Center for Biotechnology Information and European Bioinformatics Institute (EBI) 
ArrayExpress. The standard allows microarray experiments encoded in this format to be 
reanalyzed, supporting a fundamental goal of RCR: to support structured and computable 
experimental features ​96​.

 
Figure 6: An example of MIAME in MINiML format 
(​https://www.ncbi.nlm.nih.gov/geo/info/MINiML_Affy_example.txt​) 
 
MIAME (Figure 6) has been a boon to the practice of meta-analyses and harmonization of 
microarrays, offering essential array probeset, normalization, and sample metadata that make 
the over 2 million samples in GEO meaningful and reusable ​97​. However, it should be noted that 
among MIAME and other ISA-based standards that have followed suit ​98​, none offer a controlled 
vocabulary for describing downstream computational workflows aside from slots to name the 
normalization procedure applied to what are essentially unitless intensity values. 
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Future directions - encoding, findability, granularity 
Metadata for input is developing along descriptive, administrative, and structural axes. Scientific 
computing has continuously and selectively adopted a number of technologies and standards 
developed for the larger technology sector. Perhaps most salient from a development 
standpoint is the shift from extensible markup language (XML) to more succinct Javascript 
Object Notation (JSON) and Yet Another Markup Language (YAML) as preferred formats, along 
with requisite validation schema standards ​99​. 
 
The term "semantic web" describes an early vision of the internet based on machine-readable 
contextual markup and semantically linked data using Uniform Resource Identifier (URI) ​100​. 
While not fully realized, this vision continues to evolve and encompass scientific data. 
Schema.org, a consortium of e-commerce companies developing tags for markup and 
discovery, such as those respected by Google Dataset Search ​101​, has coalesced a stable set of 
tags that is expanding into scientific domains. The potential for semantic markup of documents 
and scientific terms inline has huge potential for findability. In terms of reproducibility, 
Schema.org can be used to identify and distinguish in inputs and outputs of analyses in a 
disambiguated and machine-readable fashion. Another metadata-centric effort toward improving 
the findability of datasets is DATS ​53​, a Schema.org-compatible tag-suite to describe 
fundamental metadata for datasets akin to that used for journal articles. 
 
Finally, the growing scope for input metadata describing and defining unambiguous lab 
operations and protocols is important for reproducibility. One example of such an input 
metadata framework is the Allotrope Data Format, an HDF5 data structure, and accompanying 
ontology for chemistry protocols used in the pharmaceutical industry ​102​. Allotrope uses the W3C 
Shapes Constraint Language (SHACL) to describe which RDF relationships are valid to 
describe lab operations. 

2. Tools 
Tool metadata refers to administrative metadata associated with computing environments, 
compiled executable software, and source code. In scientific workflows, executable and 
script-based tools are typically used to transform raw data into intermediates that can be 
analyzed by statistical packages and visualized as, e.g., plots or maps. Scientific software is 
written for a variety of platforms and operating systems; although Unix/Linux based software is 
especially common, it is by no means a homogenous landscape. In terms of reproducing and 
replicating studies, the specification of tools, tool versions, and parameters is paramount. In 
terms of tests of robustness (same data/different tools) and generalizations (new data/different 
tools), communicating the function and intent of a tool choice is also important and presents 
opportunities for metadata. Scientific software is scattered across many repositories in both 
source and compiled forms. Consistently specifying the location of software using URLs is 
neither trivial nor sustainable. To this end, a Software Discovery Index was proposed as part of 
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the NIH Big Data To Knowledge (B2DK) initiative ​1​. Subsequent work in the area cited the need 
for unique identifiers, supported by journals, and backed by extensive metadata ​103​. 

Examples 
The landscape of metadata standards in tools is best organized into efforts to describe tools, 
dependencies, and containers. 

CRAN, EDAM, & CodeMeta - Tool description and citation 
Source code spans both tools and literate statistical reports, although for convenience we 
classify code as a subcategory of tools. Metadata standards do not exist for loose code, but a 
number of packaging manifests with excellent metadata standards exist for several languages, 
such as R's Comprehensive R Archive Network (CRAN) DESCRIPTION files (Figure 7).  

 
Figure 7. An R package DESCRIPTION file from DESeq2 ​104 
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Recent developments in tools metadata have focused on tool description, citation, dependency 
management, and containerization. The last two advances, exemplified by the Conda and 
Docker projects (described below), have largely made computational reproducibility possible, at 
least in the narrow sense of being able to reliably version and install software and related 
dependencies on other people's machines. Often small changes in software and reference data 
can have significant effects of an analysis ​105​. Tools like Docker and Conda respectively make 
the computing environment and version pinning software tenable, thereby producing portable 
and stable environments for reproducible computational research. 
 
The EMBRACE Data And Methods (EDAM) ontology provides high-level descriptions of tools, 
processes, and biological file formats ​60​. It has been used extensively in tool recommenders ​106​, 
tool registries ​107​, and within pipeline frameworks and workflow languages ​108,109​. In the context 
of workflows, certain tool combinations tend to be chained in predictable usage patterns driven 
by application; these patterns can be mined for tool recommender software used in 
workbenches ​110​. For better or worse, this reduces the need for workbench developers to 
manually annotate tools with ontologies, replacing them with a machine learning black box. 
 
CodeMeta ​111​ prescribes JSON-LD (JSON for Linked Data) standards for code metadata 
markup. While CodeMeta is not itself an ontology, it leverages Schema.org ontologies to 
provide language-agnostic means of describing software as well as "crosswalks" to translate 
manifests from various software repositories, registries, and archives into CodeMeta (Figure 8). 

 
Figure 8: A snippet of CodeMeta JSON file from Price et al. ​112​ using Schema.org contextual 
tags 
 
Considerable strides have been made in improving software citation standards ​113​, which should 
improve the provenance of methods sections that cite those tools that do not already have 
accompanying manuscripts. Related to this in terms of code attribution is the compelling 
application of large-scale data mining and computer language processing in code repositories 
such as Github is the generation of dependency networks ​114​, measures of impact ​115​, and 
reproducibility censuses ​116​. 
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Dependency and package management metadata 
Compiled software often depends on libraries that are shared by many programs on an 
operating system. Conflicts between versions of these libraries, and software that demands 
obscure or outdated versions of these libraries, is a common source of frustration for users who 
install scientific software and a major hurdle to distributing reproducible code. Until recently, 
installation woes and "dependency hell" were largely considered the primary stumbling block to 
reproducible research ​117​. Software written in high-level languages such as Python and R has 
traditionally relied on language-specific package management systems and repositories, e.g., 
pip and PyPI for Python, and the install.packages() function and CRAN for R. The complexity 
yet unavoidability of controlling dependencies led to a number of competing and evolving tools, 
such as pip, Pipenv, Conda, and Poetry in the Python community, and even different conceptual 
approaches, such as the CRAN time machine. In R, the default installation method does not 
support installing a specific version, but instead, all packages are rigorously tested to not break 
dependent packages for any given point in time. To free a specific state, users define the date 
from when packages should be installed from MRAN/CRAN time machine. In recent years, a 
growing number of scientific software projects utilize combinations of Python and compiled 
software, which is outside the scope of pip. The Conda project (​https://conda.io​) was developed 
to provide a universal solution for software dependencies written in any language. Both 
compiled executables and script dependencies, even across programming languages and the 
versions of the languages themselves can be interspersed with versioned Conda requirements 
specifications files, which serve as a single configuration for an entire project. The elegance of 
providing a single requirements file has contributed to Conda's rapid adoption for 
domain-specific library collections such as Bioconda ​118​, which are maintained in "channels" 
which can be subscribed and prioritized by users. 

Fledgling standards for containers 
For software that requires a particular environment and dependencies that may conflict with an 
existing setup, a lightweight containerization layer provides a means of isolating processes from 
the underlying operating system, basically providing each program with its own miniature 
operating system. The ENCODE project ​119​ provided a virtual machine for a reproducible 
analysis that produced many figures featured in the article and serves as one of the earliest 
examples of an embedded virtual environment. While originally designed for deploying and 
testing e-commerce web applications, the Docker containerization system has become useful 
for cloud-based workbenches and other scientific environments where dependencies and 
permissions become unruly. A number of papers have demonstrated the usefulness of Docker 
for reproducible workflows ​117,120​ and as a central unit of tool distribution ​121,122​.  
 
There are a number of projects that now allow Conda programs to be automatically Dockerized, 
notably every BioConda package gets a corresponding BioContainer ​123​ image built for Docker 
and Singularity. Because Dockerfiles are similar to shell scripts, Docker metadata is an 
underutilized resource and one that may need to be further leveraged for reproducibility. Docker 
does allow for arbitrary custom key-value metadata (labels) to be embedded in containers 
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(Figure 9). The Open Container Initiative’s Image Format Specification 
(​https://github.com/opencontainers/image-spec/​) defines a number of pre-defined keys, e.g., for 
authorship, links, and licenses.  In practice, the now deprecated Label Schema 
(​http://label-schema.org/rc1/​) labels are still pervasive, and users may add arbitrary labels with 
prepended namespaces. It should be noted that containerization is not a panacea and 
Dockerfiles can introduce irreproducibility and decay if contained software is not sufficiently 
pinned (e.g., by using so-called lockfiles) and installed from sources that are available in the 
future. There are also licensing and security concerns when using and extending a ​base image 
with binaries of unknown origins. Unless storage space is an issue, storing both a Dockerfile 
and the Docker image, which contains the same metadata in a JSON format, can be an option 
to increase the chances of preservation. 
 

 
Figure 9: Excerpt from a Dockerfile: LABEL instruction with image metadata, source: 
https://github.com/nuest/ten-simple-rules-dockerfiles/blob/master/examples/text-analysis-wordcl
ouds_R-Binder/Dockerfile 

Future directions 

Automated repository metadata 
Source code repositories such as Github and Bitbucket are designed for collaborative 
development, version control, and distribution and as such do not enforce any reproducible 
research standards that would be useful for evaluating scientific code submissions. As a 
corresponding example to the NLP above, there are now efforts to mine source code 
repositories for discovery and reuse ​124​. 

Data as a dependency 
Data libraries​, which pair data sources with common programmatic methods for querying them 
are very popular in centralized open source repositories such as Bioconductor ​125​, and 
scikit-learn ​126​, despite often being large downloads. Tierney and Ram provide a best practices 
guide to the organization and necessary metadata for data libraries and independent data sets 
127​. Ideally, users and data providers should be able to distribute data recipes in a decentralized 
fashion, for instance, by broadcasting data libraries in user channels. Most raw data includes a 
limited number of formats, but ideally, data should be distributed in packages bound to a variety 
of tested formatters. One solution, Gogetdata (​https://gogetdata.github.io/​), is a project that can 
be used to specify versioned ​data​ prerequisites to coexist with software within the Conda 
requirements specification file. A private company called Quilt is developing similar 
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data-as-a-dependency solutions bound to a cloud computing model. A similar effort, Frictionless 
Data, focuses on JSON-encoded schemas for tabular data and data packages featuring a 
manifest to describe constitutive elements. From a Docker-centric perspective, the Open 
Container Initiative ​128​ is working to standardize "filesystem bundles" - the collection of files in a 
container and their metadata. In particular, container metadata is critical for relating the contents 
of a container to its source code and version, its relationship with other containers, and how to 
use the container. 
 
Neither Conda nor Docker is explicitly designed to describe software with fixed metadata 
standards or controlled vocabularies. This suggests that a centralized database should serve as 
a primary metadata repository for tool information - rather than a source code repository, 
package manager, or container store. An example of such a database is the GA4GH Dockstore 
129​, a hub and associated website that allows for a standardized means of describing and 
invoking Dockerized tools as well as sharing workflows based on them. 
 

3. Statistical reports & Notebooks 
Statistical reports and notebooks serve as an annotated session of an analysis. Though they 
typically use input data that has been processed by scripts and workflows (layer 4 below), they 
can be characterized as a step in the workflow rather than apart from it, and for some smaller 
analyses all processing can be done within these notebooks. Statistical reports and notebooks 
occupy an elevated reputation as being an exemplar of reproducible best practices, but they are 
not a reproducibility panacea and can actually introduce additional challenges - one reason 
being the metadata supporting them is surprisingly sparse. 
 
Statistical reports which utilize ​literate programming​, combining statistical code with descriptive 
text, markup, and visualizations have been a standard for statistical communication since the 
advent of Sweave ​130​. Sweave allowed R and LaTeX markup to be mixed in chunks, allowing 
adjacent contextual description of statistical code to serve as guideposts for anyone reading a 
Sweave report, typically rendered as PDF. An evolution of Sweave, knitr ​131​, extended choices 
of both markup (allowing Markdown) and output (html) while enabling tighter integration with 
integrated development environments such as RStudio ​132​. A related project which started in the 
Python ecosystem but now supports a number of kernels, Jupyter ​133​, combined the concept of 
literate programming with a REPL (read-eval-print loop) in a web-based interactive session in 
which each block of code is kept stateful and can be re-evaluated. These live documents are 
known as "notebooks." Notebooks provide a means of allowing users to directly analyze data 
programmatically using common scripting languages, and access more advanced data science 
environments such as Spark, without requiring data downloads or localized tool installation if run 
on cloud infrastructures. Using preloaded libraries, cloud-based notebooks can alleviate 
time-consuming permissions recertification, downloading of data, and dependency resolution, 
while still allowing persistent analysis sessions. Data-set specific Jupyter notebooks "spawned" 
for thousands of individuals on a temporary basis have been enabled as companions for Nature 
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articles ​134​ and are commonly used in education. Cloud-based notebooks have not yet been 
extensively used in data portals, but they represent the analytical keystone to the decade-long 
goal of "bringing the tools to the data." Notebooks offer possibilities over siloed installations in 
terms of eliminating the data science bottlenecks common to data analyses - cloud-based 
analytic stacks, cookbooks, and shared notebooks. 
 
Collaborative notebook sharing has been used to accelerate the analysis cycle by allowing 
users to leverage existing code. The predictive analytics platform Kaggle 
(​https://www.kaggle.com/​) employs an open implementation of this strategy to host data 
exploration events. This approach is especially useful for sharing data cleaning tasks - removing 
missing values, miscategorizations, and phenotypic standardization which can represent 80% of 
effort in an analysis ​135​. Sharing capabilities in existing open source notebook platforms are at a 
nascent stage, but this presents significant possibilities for reproducible research environments 
to flourish. One promising project in this area is Binder, which allows users to instantiate live 
Jupyter notebooks and associated Dockerfiles stored on Github within a Kubernetes-backed 
service ​136,137​. 
 
At face value, reports and notebooks resemble source code or scripts, but as the vast majority 
of statistical analysis and machine learning education and research is conducted in notebooks, 
therefore they represent an important area for reproducibility. 

Examples 

RMarkdown headers 
As we mentioned, statistical reports and notebooks have not yet received a great deal of 
attention with respect to reproducibility through structured metadata. R Markdown based 
reports, such as those processed by knitr, do have a YAML-based header (Figure 10). These 
are used for a wide variety of technical parameters for controlling display options, for providing 
metadata on authors, e.g., when used for scientific publications with the ​rticles​ package ​138​, or 
for parameterizing the included workflow 
(​https://rmarkdown.rstudio.com/developer_parameterized_reports.html%23parameter_types%2
F​). However, no schema or standards exist for their validation. 
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Figure 10: A YAML-based RMarkdown header from 
https://github.com/jmonlong/MonBUG18_RMarkdown 
 
 
 

Statistical and Machine Learning Metadata Standards 
The intense interest paired with the competitive nature of machine learning and deep learning 
conferences such as Neurips demands high reproducibility standards ​139​. Given the 
predominance of notebooks for disseminating machine learning workflow, we focused our 
attention on finding statistical and machine learning metadata standards that would apply to 
content found with notebooks. The opacity, rapid proliferation, and multifaceted nature of 
machine learning and data mining statistical methods to non-experts suggest it is necessary to 
begin cataloguing and describing them at a more refined level than crude categories (e.g. 
clustering, classification, regression, dimension reduction, feature selection). So far, the closest 
attempt to decompose statistics in this manner is the STATO statistical ontology 
(​http://stato-ontology.org/​), which can be used to semantically, rather than programmatically or 
mathematically, define all aspects of a statistical model and its results, including assumptions, 
variables, covariates, and parameters (Figure 11). While STATO is currently focused on 
univariate statistics, it represents one possible conception for enabling broader reproducibility 
than simply relying on specific programmatic implementations of statistical routines. 

 
Figure 11: Concepts pertaining to a linear mixed model used by STATO​ ​140 
 
One attempt to ontologize the machine learning workflows. MEX is designed as a vocabulary to 
describe the components of machine learning workflows. The MEX vocabulary builds on 
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PROV-O to describe specific machine learning concepts such as hyperparameters and 
performance measures and includes a decorator class to work with Python. 
 
 

Future directions - parameter tracking 
MLFlow ​141​ is designed specifically to handle hyperparameter tracking for machine learning 
iterations or "runs" performed in the Apache Spark , but also tracks arbitrary artifacts and 
metrics associated with these. The metadata format MLFlow uses exposes variables which are 
explored and tuned by end-users (Figure 12). 

 
Figure 12: MLflow snippet showing exposed hyperparameters 

 
4. Pipelines 
Most scientific analyses are conducted in the form of pipelines, in which a series of 
transformations is performed on raw data, followed by statistical tests and report generation. 
Pipelines are also referred to as "workflows," a term which sometimes also encompasses steps 
outside an automated computational process. Pipelines represent the computation component 
of many papers, in both basic research and tool papers. Pipeline frameworks or scientific 
workflow management systems (SWfMS) are platforms that enable the creation and deployment 
of reproducible pipelines in a variety of computational settings including cluster and cloud 
parallelization. The use of pipeline frameworks, as opposed to standalone scripts, has recently 
gained traction, largely due to the same factors (big data, big science) driving the interest of 
reproducible research. Although frameworks are not inherently more reproducible than shell 
scripts or other scripted ad hoc solutions, use of them tends to encourage parameterization and 
configuration that promote reproducibility and metadata. Pipeline frameworks are also attractive 
to scientific workflows in that they provide tools for the reentrancy - restarting a workflow where 
it left off, implicit dependency resolution - allowing the framework engine to automatically chain 
together a series of transformation tasks, or "rules," to produce a give a user-supplied file target. 
Collecting and analyzing provenance, which refers to the record of all activities that go into 
producing a data object, is a key challenge for the design of pipelines and pipeline frameworks.  
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The number and variety of pipeline frameworks have increased dramatically in recent years - 
each framework built with design philosophies that offer varying levels of convenience, 
user-friendliness, and performance. There are also tradeoffs between the dynamicity of a 
framework, in terms of its ability to behave flexibly (e.g. skip certain tasks, re-use results from a 
cache) based on input, that will affect the apparent reproducibility and the run-level metadata 
that is required to inspire confidence in an analyst's ability to infer how a pipeline behaved in a 
particular situation. Leipzig ​142​ reviewed and categorized these frameworks into three key 
dimensions: using an implicit or explicit syntax, using a configuration, convention or class-based 
design paradigm and offering a command line or workbench interface. 
 
Convention-based frameworks​ are typically implemented in a domain-specific language, a 
meaningful symbol set to represent rule input, output, and parameters that augment existing 
scripting languages to provide the glue to create workflows. These can often mix 
shell-executable commands with internal script logic in a flexible manner. Class-based pipeline 
frameworks augment programming languages to offer fine-granularity means of efficient 
distribution of data for high-performance cluster computing frameworks such as Apache Spark. 
 
Configuration based framework​ abstract pipelines into configuration files, typically XML or 
JSON which contain little or no code. Programmatic logic, for instance, determining which tasks 
can be run in parallel, which tasks are not relevant to a particular data set and can be skipped, 
must be represented using predefined configuration properties or wrapped in helper tasks. 
Workbenches such as Galaxy ​143​, Kepler ​144​, KNIME ​145​, Taverna ​146​, and commercial 
workbenches such as Seven Bridges Genomics and DNANexus typically offer canvas-like 
graphical user interfaces by which tasks can be connected and always rely on 
configuration-based tool and workflow descriptors. Customized workbenches configured with a 
selection of pre-loaded tools and workflows and paired with a community web portal are often 
termed "science gateways." Configuration-based pipelines offer the greatest potential for the 
distribution of reproducible workflows to others, and the easiest integration of metadata 
concepts discussed in this paper but can be onerous to build for one-time ad-hoc or 
bleeding-edge analyses. 
 
For the purposes of reproducibility, a pipeline can be represented as an atomic tool - with known 
dependencies, inputs, outputs, and parameters. A pipeline's constituent tools can be loosely 
represented by the dependency management formats discussed above, but many pipelines are 
designed to run on high-performance computing grids or clusters, the composition of which can 
be difficult to replicate locally. Describing a pipeline is more than merely an ordered collection of 
its parts. Maintaining metadata integrity throughout a workflow depends on compiling formatted 
metadata at the time of data collection and using those metadata as the primary configuration 
files for analytical pipelines. Reproducible research is best accomplished by building 
"metadata-driven analyses," whereby workflow engines can infer tasks from recorded metadata 
rather than relying on manual intervention. 
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Examples 

CWL - A configuration-based framework for interoperability 
The Common Workflow Language (CWL) ​147​ is a specification for tools and workflows to share 
across several pipeline frameworks, adopted by several workbenches. CWL manages the 
exacting specification of file inputs, outputs, parameters that are "operational metadata" - used 
by the workflow machinery to communicate with the shell and executable software (Figure 13). 
While this metadata is primarily operational in nature and rarely accessed outside the context of 
a compatible runner such as Rabix ​148​ or Toil ​149​, CWL also enables a tool metadata in the form 
of versioning, citation, and vendor-specific fields that may differ between implementations.  
 
Using this metadata, an important aspect of CWL is the focus on richly describing tool 
invocations both for reproducibility and documentation purposes, with tools referenced as 
retrievable Docker images or Conda packages, and identifiers to EDAM​ ​60​, ELIXIR’s bio.tools ​56 
registry and Research Resource Identifiers (RRIDs) ​150​. This wrapping of command line tool 
interfaces is used by ​GA4GH Dockstore ​129​ for providing a uniform executable interface to a 
large variety of computational tools even outside workflows. 
 
While there are many other configuration-based workflow languages, CWL is notable for the 
number of parsers that support its creation and interpretation, and an advanced linked data 
validation language, called Schema Salad. Together with supporting projects, such as Research 
Objects, the CWL appears more amenable to being used as metadata for all components of an 
analysis, as demonstrated in the EOSC-Life ​Workflow Hub​, which allows workflows and scripts 
in any format to be accompanied by an ​abstract​ CWL that provide structural and semantic 
descriptions. 
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Figure 13: Snippets of a COVID-19 variant detection CWL workflow and the workflow as viewed 
through the cwl-viewer ​151​. Note the EDAM file definitions. 
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Future directions 

Interoperable script and workflow provenance 
For future metadata to support pipeline reproducibility must accommodate huge menagerie of 
solutions that coexist inside a number of computing environments. Large organizations have 
been encouraging the use of cloud-based data commons, but solutions that target the majority 
of published scientific analysis must address the fact that many if not most of them will not use a 
data commons or even a pipeline framework. ​Because truly reproducible research implies 
evaluation by third parties, portability is an ongoing concern. 
 
Pimental et al. reviewed and categorized 27 approaches to collecting provenance from scripts 
152​. A wide variety of relational databases and proprietary file formats are used to store, 
distribute, visualize, version, and query provenance from these tools. The authors found while 
four approaches - RDataTracker ​153​, SPADE ​154​, StarFlow ​155​, and YesWorkflow ​156​ - natively 
adopt interoperable W3C PROV or OPM standards as export, most were designed for internal 
usage and did not enable sharing or comparisons of provenance. In part, these limitations are 
related to primary goals and scope of these provenance tracking tools.  
 
For analyses that use workflows, a prerequisite for reproducible research is the ability to reliably 
share "workflow enactments," or runs which encompass all elements of the analytic stack. 
Unlike pipeline frameworks geared toward cloud-enabled scalability, compatibility with 
executable command-line arguments and programmatic extensibility afforded by DSLs, Vistrails 
was designed explicitly to foster provenance tracking and querying, both prospective and 
retrospective ​157​. As part of the WINGS project, Garijo ​158​ uses linked-data standards - OWL, 
PROV, and RDF to create a framework-agnostic Open Provenance for Workflows (OPMW) for 
greater semantic possibilities for user needs in workflow discovery and publishing. ​The 
CWLProv ​72​ project implements a CWL-centric and RO-based solution with a goal of defining a 
format of implementing retrospective provenance.  
 

Packaging and binding building blocks 
While we have attempted to classify metadata across layers of the analytic stack, there are a 
number of efforts to tie or bind all these metadata that define a research compendia explicitly. A 
Research Compendium (RC) is a container for building blocks of a scientific workflow. Originally 
defined by Gentleman and Temple Lang as a means for distributing and managing documents, 
data, and computations using a programming language’s packaging mechanism, the term is 
now used in different communities to provide code, data, and documentation (including scientific 
manuscripts) in a meaningful and useable way (​https://research-compendium.science/​). A best 
practice compendium includes environment configuration files (see above), has files are under 
version control and uses accessible plain text formats. Instead of a formal workflow 
specification, inputs, outputs, and control files and the required commands are documented for 
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human users in a README file. While an RC can take many forms, the flexibility is also a 
challenge for extracting metadata. The Executable Research Compendium (ERC) formalizes 
the RC concept with an R Markdown notebook for the workflow and a Docker container for the 
runtime environment ​159​. A YAML configuration file connects these parts, configures the 
document to be displayed to a human user, and provides minimal metadata on licenses. The 
concept of bindings connects interactive parts of and ERC workflow with the underlying code 
and data​160​. 

 
Figure 14: erc.yml example file, see the specification at ​https://o2r.info/erc-spec/​. 
Instead of trying to establish a common standard and single point for metadata, the ERC 
intentionally skips formal metadata and exports the known information into multiple output files 
and formats, such as Zenodo metadata as JSON or Datacite as XML, accepting duplication for 
the chance to provide usable information in the long term. 
 
Perhaps the most prominent realization of the RC concept are Research Objects ​161​ and the 
subsequent RO-Crate ​162​ projects, which strive to be comprehensive solutions for binding code, 
data, workflows, and publications into a metadata-defined package. RO-Crate is lightweight 
JSON-LD (javascript object notation linked data) which supports Schema.org concepts to 
identify and describe all constituent files from the analytic stack and various people, publication, 
and licensing metadata, as well as provenance both between workflows and files and across 
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crate versions. 

 
Figure 15: RO-Crate metadata 
 
An alternative approach to binding is to leverage existing work in "application profiles" ​163​, a 
highly customizable means of combining namespaces from different metadata schemas. 
Application profiles ​follow along the Singapore Framework, and guidelines supported by the 
Dublin Core Metadata Initiative (DCMI). 

Figure 16: Singapore Framework application profile model 
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5. Publication 
Our conception of the analytic stack points to the manuscript as the final product of an analysis. 
Due to the requirements of cataloging, publishing, attribution, and bibliographic management, 
journals employ a robust set of standards including MARC21 and ISO_2709 for citations, and 
Journal Article Tag Suite (JATS) for manuscripts. Library science has been an early adopter of 
many metadata standards and encoding formats (e.g. XML) later used throughout the analytic 
stack. Supplementing and extending these standards to accommodate reproducible analyses 
connected or even embedded in publications is an open area for development. 
 
For the purposes of reproducibility we are most interested in finding publication metadata 
standards that attempt to support structured results as a "first-class citizen" - essentially input 
metadata but for integration into the manuscript. Distinguishing this type of publication-level 
metadata from input metadata is not clear cut but  
 
The methods section of a peer-reviewed article is the oldest and often the sole source of 
metadata related to an analysis. However, methods sections and other free-text supplementals 
are notoriously poor and unreliable examples of reproducible computational research, as 
evidenced by the Amgen findings. A number of text mining efforts have sought to extract details 
of the software used in analyses directly from methods sections for purposes of survey ​164,165 
and recommendation ​166​ using natural language processing (NLP). The ProvCaRe database 
and web application extend this to both computational and clinical findings by using a 
wide-ranging corpus of provenance terms and extending existing PROV-O ontology ​167​. While 
these efforts are noble, they can never entirely bridge the gap between human-readable 
protocols and RCR.  
 
Journals share an important responsibility to enforce and incentivize reproducible research, but 
most peer-reviewed publications have been derelict in this role. While many have raised 
standards for open data access, "open analysis" is still an alien concept to many journals. Some 
journals, such as Nature Methods, do require authors to submit source code ​168​. Of the most 
prestigious life science journals (Nature, Science, Cell), the requirements vary considerably and 
it is not clear how these guidelines are actually enforced ​169 
 
Container portals, package repositories, and workbenches do provide some additional inherent 
structure that would be useful for journals to require, but these often lack any binding with 
notebooks or elegant routes to report generation that would guarantee the scientific code 
matches the results contained with a manuscript. Computational provenance between all figures 
and tables in a manuscript and the underlying analysis is an open area of research that we 
discuss below. 
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Examples 
 

Formalization of the Results of Biological Discovery 
In the scientific literature, authors must not only outline the formulation of their experiments, 
their execution, and their results, but also an interpretation of the results with respect to an 
overarching scientific goal. Due to the lack of specificity of prose and the needless jargon 
endemic to modern scientific discourse, both the goals and interpretation of results are often 
obfuscated such that the reader must exert considerable effort to understand. This burden is 
further exacerbated by the acceleration of the growth of the body of scientific literature. As a 
result, it has become overwhelming, if not impossible, for researchers to follow the relevant 
literature in their respective fields, even with the assistance of search tools like PubMed and 
Google. 
 
The solution lies in the formalization of the interpretation presented in the scientific literature. In 
molecular biology, several formalisms (e.g. BEL ​85​, SBML ​170​, SBGN ​171​, BioPAX ​172​, GO-CAM 
173​) have the facility to describe the interactions between biological entities that are often 
elucidated through laboratory or clinical experimentation. Further, there are several 
organizations ​174–178​ whose purpose is to curate and formalize the scientific literature in these 
formats and distribute them in one of several databases and repositories. Because curation is 
both difficult and time-consuming, several semi-automated NLP ​179,180​ curation workflows based 
on NLP-based relation extraction systems ​181–183​ and assemblers ​184​ have been proposed to 
assist. 
 
The Biological Expression Language (BEL) captures causal, correlative, and associative 
relationships between biological entities along with the experimental/biological context in which 
they were observed as well as the provenance of the publication from which the relation was 
reported (​https://biological-expression-languge.github.io​). It uses a text-based custom 
domain-specific language (DSL) to enable biologists and curators alike to express the 
interpretations present in biomedical texts in a simple but structured form, as opposed to a 
complicated formalism built with low-level formats XML, JSON, and RDF or mid-level formats 
like OWL and OBO. Similarly to OWL and OBO, BEL pays deep respect to the need for the use 
of structured identifiers and controlled vocabularies for its statements to support the integration 
of multiple content sources in downstream applications. We focus on BEL because of its unique 
ability to represent findings across biological scales, including the genomic, transcriptomic, 
proteomic, pathway, phenotype, and organism levels. 
 
Below is a representation of a portion of the MAPK signaling pathway in BEL, which describes 
the process through which a series of kinases are phosphorylated, become active, and 
phosphorylate the next kinase in the pathway. It uses the FamPlex (fplx​)​ ​185​namespace to 
describe the RAF, MEK, and ERK protein families. 
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act(p(fplx:RAF), ma(kin)) directlyIncreases     p(fplx:MEK, pmod(Ph)) 

    p(fplx:MEK, pmod(Ph)) directlyIncreases act(p(fplx:MEK), ma(kin)) 

act(p(fplx:MEK), ma(kin)) directlyIncreases     p(fplx:ERK, pmod(Ph)) 

    p(fplx:ERK, pmod(Ph)) directlyIncreases act(p(fplx:ERK))) 

Figure 17: MAPK signalling pathway in Biological Expression Language (BEL) 
 
While the additional provenance, context, and metadata associated with each statement have 
not been shown, this example demonstrates that several disparate information sources can be 
assembled in a graph-like structure due to the triple-like nature of BEL statements. 
 
While BEL was designed to express the interpretation presented in the literature, related 
formats are more focused on mechanistically describing the underlying processes on either a 
qualitative (e.g., BioPAX, SBGN) or quantitative (e.g., SBML) basis. Ultimately, each of these 
formalisms has supported a new generation of analytical techniques that have begun to replace 
classical pathway-analysis.  

Future directions - reproducible articles 
Attempts have been made to integrate reproducible analyses into manuscripts. An article in 
eLife ​186​ was published with an inline live RMarkdown Binder analysis as part of a 
proof-of-concept of the publisher's Reproducible Document Stack (RDS) ​187​. Because of the 
technical metadata used for rendering and display, subtle changes are required to integrate 
containerized analyses with JATS, and the requirements for hosting workflows outside the 
narrow context of Binder will require further engineering and metadata standards. 
 

Discussion 
 
The range and diversity of metadata standards developed to aid researchers in their daily 
activities, but also in sharing research (data, code, publications), and contributing to open 
science is extensive. If we promote metadata as the "glue" of reproducible research, what does 
that entail for the metadata and RCR communities? While there are overlapping standards, and 
no one metadata schema can support all aspects of the analytic stack, it is important to 
recognize that the metadata developments pursued, particularly the standards that are shared 
and maintained by a community, many of which have gone through formal standards review 
processes, demonstrate value to their communities. Science has no boundary, and while these 
standards may have been developed to meet more specific needs as part of the research 
life-cycle, as reviewed above, they have a continuing value for RCR.  
 
In our review, we have attempted to describe metadata as it addresses reproducibility across 
the analytic stack. Two principal components: 1)Embeddedness vs connectedness and the 2) 
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methodology weight and standardization appear to be recurring themes across all RCR 
metadata facets. 

Embeddedness vs connectedness 
Certain efforts in the metadata context lend to the stickiness of experimental details from data 
collection to publications, and others are more directed to the goals of data sharing and 
immediate access. Data formats have an influence on the long-term reproducibility of analyses 
and reusability of input data, though these goals are not always aligned. Some binary data 
formats lend them to easily accommodate embedded metadata - i.e. metadata that is bound to 
its respective data by residing in the same file. In the case of the DICOM format used in medical 
imaging, a well-vetted set of instrumentation metadata is complemented by support for 
application-specific metadata. Downstream this has enabled support for DICOM images in 
various repositories such as The Cancer Imaging Archive ​188​. The continued increase in the use 
of such imaging data has led to efforts to further leverage biomedical ontologies in tags ​189​ and 
issue DOIs to individual images ​190​. As discussed above, the lack of support for complex 
metadata structures has not significantly hindered the adoption of DICOM for a variety of uses 
not anticipated by its authors (DICOM introduced in 1985). This could be an argument that 
embeddedness is more important than complexity for long-term sustainability, or merely that 
early arrivals tend to stay entrenched. In the case of Binary Alignment Map ​191​ files used to store 
genomic alignments, file-level metadata resides in an optional comment section above data. 
Once again, these are arbitrary human-readable strings with no inherent advanced data 
structure capabilities. In some instances, instrumentation can aid in reproducibility by 
embedding crucial metadata (such as location, instrument identifiers, and various settings) in 
such embedded formats with no manual input, although ideally this should be not simply be 
used at face value as a sanity check against metadata used in the analysis, for instance, to 
identify potential sample swaps or other integrity issues. Reliance on ad-hoc formatting methods 
of supporting extensibility, as in through serializations using commas or semicolons delimiters, 
can have deleterious effects on the stability of a format. In bioinformatics, a number of genomic 
position-based tabular file formats have faced "last-column bloat," as new programs have piled 
on an increasingly diverse array of annotations. 
 
This rigid embedded scheme employed by DICOM stands in contrast to standards such as 
EML, where contributors are encouraged with a flexible ontology to support supplemental 
metadata for the express purposes of data sharing. MIAME appears to lie somewhere in the 
middle, where there is a required minimal subset of tags to be supplied, much of it from the 
microarray instruments itself and aided by a strong open source community (Bioconductor), and 
paired with a data availability incentive in order to publish associated manuscripts. 
 
In terms of reproducibility, embeddedness represents a double-edged sword. As a packaging 
mechanism, embedded metadata serves to preserve aspects of attribution, provenance, and 
semantics for the sharing of individual files but a steadfast reliance on files can lead to siloing 
which may be antithetical to discovery (the "Findable" in FAIR). Files as the sole means of 
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research data distribution are also contrary to the recent proliferation of "microservices" - 
Software-as-a-Service often instantiated in a serverless architecture and offering APIs. While 
provenance can be embedded in the headers described above, these types of files are more 
likely to be found at the earlier stages of an analysis, suggesting there is work to be done in 
developing embedded metadata solutions for notebook and report output if this is to be a viable 
general scheme. So much of reproducibility depends on the relay of provenance ​between​ layers 
of the analytic stack that the implementation of metadata should be optimized to encourage 
usage by the tools explored in this review. 
 
Metadata is, of course, critical to the functioning of services that support the "semantic web," in 
which data on the world wide web is given context to enable it to be directly queried and 
processed, or "machine-readable." Several technologies enabling the semantic web and linked 
data RDF, OWL, SKOS, SPARQL, and JSON-LD are best recognized as metadata formats 
themselves or languages for metadata introspection allowing the web to behave like a database 
rather than a document store. Semantic web services now exist for such diverse data sources 
as gene-disease interactions ​192​ and geospatial data ​193​. RDF triples are the core of knowledge 
graph projects such as DBpedia ​194​ and Bio2RDF ​195​. The interest in using knowledge graphs for 
modeling and prediction in various domains, and the increased use of "embedding knowledge 
graphs," graph to vector transformations designed to augment AI approaches ​196​, has exposed 
the need for reproducibility and metadata standards in this area ​197​. 
 
The development of large multi-institutional data repositories that characterize "big science" and 
remote web services that support both remote data usage and the vision of "bringing the tools to 
the data" make the cloud an appealing replacement for local computing resources ​198​. This 
dependence on data and services hosted by others, however, introduces the threat of "workflow 
decay" ​199​ that requires extensive provenance tracking to freeze inputs and tools in order to 
ensure reproducibility at a later date. 
 
The promise of distributed annotation services, automated discovery, and the integration of 
disparate forms of data, using web services and thereby avoiding massive downloads, is of 
central import to many areas of research. However, the import of the semantic web to RCR is a 
two-sided coin. On one hand, as noted by Aranguren and Wilkinson ​200​, the semantic web 
provides a formalized means providing context to data, which is a crucial part of reproducibility. 
The semantic web is by its very nature, open, and provides a universal low barrier to data 
access with few dependencies other than an internet connection. Conversely, a review of the 
semantic web's growing impact on cheminformatics ​201​ notes that issues of data integrity and 
provenance are of concern when steps in an analysis rely on data fetched piecemeal via a web 
service. 
 
They provide a common source reference point for several unrelated analyses, but that can 
serve as a critical point of failure should they disappear. Projects serving to provide long-term 
archival solutions for scientific analyses need to cache or download webservice data. Along the 
same lines, often studies are conducted entirely from dedicated databases - relational, so-called 
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"NoSQL" solutions - key-value, document stores, or column-stores. These can introduce 
substantial issues to portability and reproducibility, especially when studies access relational 
joins across subsets of these databases. 

Methodology weight and standardization 
Our review has spotlighted several metadata solutions across a spectrum of heavyweight vs 
lightweight solutions, bespoke vs standard solutions and offering different levels of granularity, 
and adoption. Because these choices can often largely reflect those of the stakeholders 
involved in the design and their goals rather than immediate needs, a discussion of those 
groups is warranted. 

Sphere of Influence 
Governing and standards-setting organizations​ (e.g. NIH, GA4GH, W3C) new applications (e.g. 
machine learning, translational health) and trends in the greater ​scientific community (open 
science, reproducible research) are steering metadata for reproducible research in different and 
broader directions than traditional stakeholders, individual researchers. There are also 
differences in the approaches taken between different scientific fields, with the life sciences 
arguably more varied in both the size of projects and the level of standards than those physical 
sciences (e.g. LIGO). This does not discount the fact that much of the progress in metadata for 
RCR has been from the ground up, and often originally intended for purposes other than 
reproducibility. ​One could argue the vertical integration required to take raw data to report would 
enable small labs and individual investigators to control all aspects of the research process, 
designing pipelines and metadata standards for RCR. Most of these solutions, however, are 
"bespoke," or custom-designed to address the problem at hand. A good example is the tximeta 
Bioconductor package, which implements reference transcriptome provenance for RNA-Seq 
experiments, extending a number of popular transcript quantification tools with checksum-based 
tracking and identification ​202​. While this is an elegant solution, tximeta is focused on one 
analysis pattern.
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Figure 18: The high-level schematic of tximeta ​202 
 
In practice, concerns over reproducibility appear to be correlated with the number of 
stakeholders. While there are highly conscientious scientists who have built tools and standards 
to support the reproducibility of their own work, pressure coming from attempts to reproduce 
published analyses, and the heightened reuse of data among participants in multi-institution 
consortia, data repositories, and data commons have forced the issue. In addition to the greater 
scientific community, a perhaps unexpected source of impetus has been from private 
companies offering forecasting services and predictions derived from machine learning and 
deep learning techniques for whom a lack of reproducibility is a legal liability. These data 
science customers have driven the development of a number of tools along the analytic stack 
(Docker, Airflow, Luigi, MLflow) that have been open-sourced and adopted scientific users. 
 

Metadata capital and reuse 
The term "metadata capital" ​203​ was coined to describe how an organization's efforts in 
producing high quality metadata can have a positive return on investment downstream. We 
contend this applies to RCR. In this context it may be useful to reposition the onus for collecting 
metadata along the competitiveness of smaller groups - labs, cores, and individual institutions. 
These smaller organizations clearly experience a reproducibility crisis in the form of impaired 
transfer of knowledge from outgoing to incoming trainees. However, the seminal Nature Baker 
survey of 1,500 scientists reported 34% of participants had not established procedures for 
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reproducibility in their own labs ​14​. Metadata reuse - for replication, generalization, 
meta-analyses, or general research use is enabled by RCR and elemental to FAIR. Reuse 
typically demands greater metadata needs than narrow-sense reproduction, for instance, to 
control for batch effects or various assumptions that go into original research ​204​. Often the 
centralized submission portals demand more expansive metadata than an individual researcher 
would anticipate being necessary, belying their importance in the reproducibility and reuse 
process. Essential for reproducibility, surveys suggest provenance information is an important 
criteria for reuse in the physical sciences ​205​. Metadata for data reuse has relevance for data 
harmonization for biomedical applications, such as toward highly granular phenotype ontologies, 
genotype-phenotype meta-analyses ​206​, generating synthetic controls for clinical trials, and, 
consent metadata such as the Data Use Ontology ​207​ to describe allowed downstream usage of 
patient data. Designing metadata for the needs of general reuse, especially outside narrow 
scientific domains, requires greater foresight than that needed for RCR but authors can follow 
similar templates. 

Recommendations & Future Work 
Widespread adoption of RCR is highly dependent on a cultural shift within the scientific 
community ​208,209​ promoted by both journals and funding agencies. The allegorical "stick" of 
higher RCR standards should be accompanied by carrots in the form of publication incentives. 
One of these carrots could involve a ​support mechanism by which pre- and post-publication 
peer review can properly evaluate and test statistical methods cited in papers. Such a 
collaborative computational peer review could involve parameter exploration, swapping out 
individual statistical tests or tool components for similar substitutes, and using new data sets. ​An 
"advocated software peer review" enabled by RCR and conducted by reviewers taking a 
hands-on approach to strengthening analyses using collaborative interactive notebooks or other 
tools.​210 
 
One interesting development in this area is the growing interest in developing FAIR metrics and 
reproducibility "badges" to denote compliance. The FAIRshake toolkit implements rubrics to 
evaluate the digital resources such as datasets, tools, and workflows ​211​. These rubrics include 
criteria such as data and code availability but also metadata such as contact information, 
description, and licensing embedded using Schema.org tags. 
 
In terms of the analytic stack, there are several areas which offer low-hanging fruit for 
innovation. One is developing inline semantic metadata for publications and notebooks. While 
schema.org tags have been used for indexing data, to our knowledge there is no journal that 
supports, much less encourages, semantic markup of specific terms within a manuscript. There 
has been tacit support for such inline markup in newer manuscript composition tools such as 
Manubot ​212​, but generally Such terms could disambiguate concepts, point to the provenance of 
findings within a result section or from a figure, and accelerate linked data and discovery. 
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Secondly there is a clear need for greater annotation within statistical reports and notebooks for 
semantic markup to categorize and disambiguate machine learning and deep learning 
workflows. Because of the explosion in advances from this area, researchers outside the 
machine learning core community have found it difficult to keep up with the litany of terminology, 
techniques, and metrics being developed. Clearly metadata can play a role in augmenting users 
understanding of, for instance, existing technique relates most closely with a new one. This will 
ensure the broader goals of reproducibility. 
 
Statistical metadata is vital for users to discover, and reviewers to evaluate complex statistical 
analyses ​213​, but metadata that describe statistical methods is largely non-existent. The 
increasing diversity and application of machine learning approaches makes it increasingly 
difficult to discern the intent and provenance of statistical methods. 
 
This confusion has serious consequences for the peer review system, as it provides more 
opportunities for submitters to engage in "p-hacking," cherry-picking algorithms and parameters 
that return a desired level of significance. Another, perhaps less common, tactic is "steamrolling" 
reviewers by submitting a novel, opaque algorithm to support a scientific hypothesis. Without 
reproducible code, evaluating such submissions becomes impossible. Both of these strategies 
are arrested by reproducible research standards at the publication level. 
 
To test the robustness of a set of results, reviewers should be able to swap in similar methods, 
but identifying and actually applying an equivalent statistical method is not for the weak of heart. 
As an example consider gradient boosted trees, a method of building and improving predictive 
models that involves weak learners (classifiers only slightly better than random guess) using 
decision trees. Random forests is a popular machine learning algorithm for classification, also 
decision tree-based. The choice between these two methods is subtle that even experienced 
data scientists may have to evaluate them empirically but may substantially change model 
predictions given limited data. 
 
Metadata standards that can support lightweight and heavyweight solutions are well positioned 
for sustainability and adoption, as are those that provide connections between layers of the 
analytic stack without a steep learning curve. One example of this which to our knowledge has 
yet not been implemented is file format and content sanity checks defined by input metadata but 
implemented at the pipeline level. 
 
Finally there needs to be greater emphasis on translation between embedded and distributed 
metadata solutions. As discussed, files which support embedded metadata excel as data 
currency, but may not be ideal for warehousing, querying, or remote access. Conversely, 
solutions that rely on databases for metadata storage to offer advanced features, whether they 
be for input metadata, provenance tracking, or workflow execution usually do so at the expense 
of portability. Systems and standards which provide conduits between these realities are more 
likely to succeed. 
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While metadata will always serve as the "who, what, where, why, and how" of data, it is also 
increasingly the mechanism by which scientific output is made reusable and useful. In our 
review we have attempted to highlight reproducibility as a vital formal area of metadata research 
and underscore metadata as an indispensable facet of RCR. 
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