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Abstract: Data science is facing the following major challenges: (1) developing scalable cross-

disciplinary capabilities, (2) dealing with the increasing data volumes and their inherent complexity, 

(3) building tools that help to build trust, (4) creating mechanisms to efficiently operate in the 

domain of scientific assertions, (5) turning data into actionable knowledge units and (6) promoting 

data interoperability. As a way to overcome these challenges, we further develop the proposals by 

early Internet pioneers for Digital Objects as encapsulations of data and metadata made accessible 

by persistent identifiers. In the past decade, this concept was revisited by various groups within the 

Research Data Alliance and put in the context of the FAIR Guiding Principles for findable, 

accessible, interoperable and reusable data. The basic components of a FAIR Digital Object (FDO) 

as a self-contained, typed, machine-actionable data package are explained. A survey of use cases 

has indicated the growing interest of research communities in FDO solutions. We conclude that the 

FDO concept has the potential to act as the interoperable federative core of a hyperinfrastructure 

initiative such as the European Open Science Cloud (EOSC). 

Keywords: digital object; data infrastructure; research infrastructure; data management; data 

science; FAIR data; open science; European Open Science Cloud; EOSC; persistent identifier 

 

1. Introduction 

From about the turn of the millennium, it has become apparent that the rapid acceleration in the 

production of research data has not been matched by an equivalent acceleration in our access to all 

that data [1]. Around the same time, the realization dawned that data science is at the core of our 

ability to address many global challenges in research as well as in society, e.g., through the 

construction of climate models, the monitoring of threatened species, or the detection of fake news. 

With “data” we do not just refer to published data, but to any data that has been created in research 

labs and lifted from its original workspace to a domain where it can be managed and shared.  

The arrows in the diagram in Figure 1 indicate possible movements of data. Newly created data 

and collected data reside in temporary workspaces. Most of the data to be shared with others in 

internal or external workflows will move to the registered data domain in which rapidly increasing 

amounts of data are being amassed and managed for reuse. A small fraction of those data will be 

formally documented and published so that it can be properly cited based on metadata and according 

to publishers’ requirements. 
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Figure 1. Layers of data with some data being published, more being shared for reuse in labs and 

collaborations, and a large amount residing in transient storage.1 

Most of the data with a potential value in scientific processing should be reusable and should be 

referenced in a stable way in the registered data domain. From this level, which is spread over many 

repositories with various thematic foci, some data are being collected and copied down again into 

transient storage to be used in analytics tasks. Cross-silo data science, attempting to track down and 

collect all relevant data for certain tasks, is however known to be extremely inefficient and thus 

expensive, which hampers progress in tackling the global challenges. 

In 2006, the first European Strategy Forum on Research Infrastructures (ESFRI) roadmap2 was 

published, which provided an impetus for a large variety of disciplines to build research 

infrastructures which provide advanced facilities for supporting research and fostering innovation 

in their fields. For the first time, distributed databases were accepted as research facilities comparable 

to large physical infrastructures. The construction of domain-based infrastructures sparked a 

harmonisation of standards, an exchange of tools and methods, the establishment of unified data 

catalogues, the development of trustworthy repositories, and interfaces for making data accessible. 

These important advances were however gained only within each domain or discipline. Data 

integration and reuse across discipline boundaries are however still highly inefficient. The European 

eInfrastructures3 have so far not been helpful in this respect, since they have been constructing 

specific technologies (grids, clouds, portals) while being mainly interested in offering core services 

such as compute cycles, cloud storage and networking capacity. Despite the provision of those core 

services, scientific communities still have not fully benefited from this public offering [2]. 

Consequently, today’s research data infrastructures are neither sufficiently interconnected nor 

interoperable. It is increasingly understood that the sheer volume of data and its inherent complexity 

makes manual search, evaluation, access and processing of datasets by individual researchers no 

longer feasible. In addition, we still lack the means to guarantee data accessibility and reusability 

over time. New strategies are required to improve practices. National and international funding 

bodies started an initiative towards open science and open data. Second, the wide adoption of 

principles for making data findable, accessible, interoperable and reusable, canonicalized in terms of the 

FAIR Guiding Principles, was meant to inform researchers on good data management but also to 

“provide ‘steps along a path‘ toward machine-actionability“ [3]. 

In this context, the European Open Science Cloud (EOSC) 4  was initiated as a next step to 

overcome the hurdles for cross-disciplinary data science and to progress towards implementing the 

FAIR principles. While a number of exploratory projects in the EOSC context have done interesting 

                                                 
1  Diagram adapted from EUDAT, a European Collaborative Data Infrastructure, https://eudat.eu/ 
2  European Strategy Forum on Research Infrastructures, https://www.esfri.eu/ 
3  https://ec.europa.eu/digital-single-market/en/policies/einfrastructure 
4  https://ec.europa.eu/research/openscience/index.cfm?pg=open-science-cloud 
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work, the core concept of EOSC is not well defined and remains elusive. Many research infrastructure 

experts see the EOSC promise only as a federated shell to combine the data and services created by 

the various disciplines. Basically, the research infrastructures expect to make their data, tools, services 

and repositories visible via the EOSC expecting that others might benefit from their work and 

knowledge, thereby potentially promoting interdisciplinary data use. Accordingly, some strategists 

are focusing on building an EOSC Portal5 which, however, may fail, as long as more fundamental 

issues in managing the billions of datasets and thousands of tools, including the need for easily 

integrating them, are not being tackled. 

Currently, EOSC does not address the fundamental questions of how to improve 

interoperability in the federating core, how to move toward automated data discovery, access and 

aggregation of data across repositories and other sources, as necessary to deal with the sheer volume 

and heterogeneity of the available data, and how to address the requirement of persistence, enabling 

data and references to survive technological changes that can be expected in the coming decades. 

In this paper, we present a way forward by focusing on a core model for interoperable data, 

instead of on tools that will come and go with frequent technology changes. We propose to take the 

work on persistent identifiers a major step forward by encapsulating sufficient information about a 

dataset into a FAIR Digital Object (FDO). This new approach will enable automated systems to 

interact with data in a reliable way over long periods of time. Previously this was called Digital Object 

(DO), as discussed at various meetings, among others, in Research Data Alliance6 (RDA) groups.7 

In the remainder of this paper, we will explain the FDO concept and we will show how it meets 

the FAIR principles. We will not go into details of implementations, on which progress is being made, 

but will explain the concept. We will discuss its potential, in particular for science, and we will 

describe how different areas of science are moving into this direction. Thus, we envisage the 

evolution of the EOSC into a highly interoperable Global FAIR Digital Object Domain while allowing 

different implementations and boosting innovation. The FDO architecture has the potential to be 

proliferated into science, industry and public services since the challenges described hold across 

sectors. 

2. Principal Challenges for Data-Intensive Science  

2.1. Addressing Grand Challenges is Linked to Scaled Cross-Disciplinary Capabilities 

Humanity continues to face ‘grand’ challenges towards its sustainable development. Global 

issues such as climate change, food security and lifelong health and wellbeing require concerted 

efforts across the realms of science, policy and technology [4,5]; so do the challenges of biodiversity 

loss, fake news and pandemic tracking and mitigation. The need for a globally coordinated response 

to global challenges has already been well documented, with important policy goals being articulated 

by international organisations.8 The scope and complexity of these problems create unprecedented 

barriers, and as such, require novel approaches in order to produce effective results. Arguably, the 

solution space for these challenges would include an interconnected multi-actor and multi-level 

ecosystem that supports cross-disciplinary socio-technical interfaces and thereby enables meaningful 

and scalable integration and interpretation of evidence across different realms of science. 

Our ability to combine and process complex information across scientific disciplines and draw 

conclusions that robustly inform policy making is predicated on the capacity of different 

communities of practice to navigate, understand and use increasingly complex data from across 

many fields of science. Such practices go above and beyond the traditional ways through which 

scientific communities operate, as they require them to transcend disciplinary boundaries defined by 

traditional epistemic objects. In this endeavor, the capacity to find, access, understand and reuse data 

across scientific domains is of pivotal importance. 

                                                 
5  https://www.eosc-portal.eu/ 
6  https://rd-alliance.org/ 
7  https://github.com/GEDE-RDA-Europe/GEDE/tree/master/FAIR%20Digital%20Objects/FDO-Contributions 
8  https://en.unesco.org/sdgs 
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2.2. Drowning in Data? 

Today, we have experienced the digital transformation of most sectors of our societies. Mass-

scale digitisation efforts, including the use of high-throughput monitoring and analytical devices, 

produce more data today than ever, and do so at ever-lower costd, while published knowledge 

continues to accelerate [6]. A prominent example can be found in the field of genomic studies. The 

National Center for Biotechnology Information (NCBI) runs one of the largest genomic sequences 

open repositories, doubling in size (in terms of the number of bases) on average every 18 months.9 

Similarly, the Global Biodiversity Information Facility (GBIF) publicly serves more than 1.3 billion 

organism occurrence records today, having doubled its size in the last five years.10 Similar examples 

of ever-increasing data availability can be found in other fields of science. In the field of material 

sciences, the results of millions of simulations and experiments are currently being aggregated to find 

hidden patterns in the data that may help to better categorize compound materials along with 

reduced descriptors. 11  In the domain of research on languages, large collections of textual and 

audiovisual materials are being collected. The CLARIN12 Virtual Language Observatory (VLO)13 has 

brought together metadata on more than one million datasets related to language, of various 

granularities. These datasets, and the technologies to process them, are transforming scholarship in 

the humanities. 

The availability of large amounts of data, as promoted in part by Open Data policies, has great 

potential for the advancement of knowledge. The current interest in interdisciplinary data research 

is however not on par with the much larger increase in data that is potentially, but not in practice, 

available across disciplines. The properties of openness and FAIRness, despite being prerequisites 

for data discoverability and reuse, are in themselves not sufficient to support the transformation in 

community practices towards interdisciplinary data research. The fact that much data currently has 

a short shelf life is not so much because it ceases to be relevant, but because sufficient knowledge of 

the context in which the data originated has gotten lost and it is unclear how the data can be reused 

in evolving contexts. More generally, the assessment of data quality is crucial for analyzing and using 

big data [7]. 

There is yet another cultural aspect in science that prevents cross-disciplinary, even cross-project 

data science. C. Borgmann pointed to a paradox when she applied an expression from S.T. Coleridge 

“Water, water, everywhere, nor any drop to drink” to data [8]. There is already much data out there, 

but we seem to have a skills gap in terms of making use of this richness, even when reuse is possible. 

Many researchers still prefer to refer to research results as documented in written papers since their 

reference is only dependent on proper language understanding. Data science, as is currently being 

conducted, requires mastering new skills which many researchers do not have, including approaches 

to maintain transparency in their reuse of data. Further support to the assertion that data science across 

discipline boundaries, while becoming important [9], is still not a comfort zone for scientific 

communities, can be drawn from the relatively lower success rates of project proposals on 

interdisciplinary data research as compared to proposals that stay within disciplinary boundaries [10]. 

We briefly discuss some of the current limitations that potentially impede the amplification of 

actionable knowledge production from the vast volume of newly produced and available data, and 

discuss the scientific value of FAIR Digital Objects as a unified data organisation model, in particular 

for data science across the boundaries of domains and disciplines. 

2.3. Interpreting Scientific Evidence in a Trusted Context 

The global scientific domain is traditionally organized in distinct communities of practice. These 

communities consist of scientists who not only focus on a certain field, but also operate within a 

                                                 
9 https://www.ncbi.nlm.nih.gov/genbank/statistics/ 
10 https://www.gbif.org/news/6s1uLwFkwGq0oSHGNnzfUE/doubling-up-two-year-ebird-refresh-adds-200-

million-more-observations 
11  https://nomad-coe.eu/ 
12  The European Research Infrastructure for Language Resources and Technology, http://www.clarin.eu 
13  http://vlo.clarin.eu 
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common socio-scientific context. They share mechanisms and processes through which they 

construct knowledge and attribute credit. Scientific outputs deriving from their members are 

interpreted through an implicit understanding of the context that is pivotal to the ability of a 

practitioner to evaluate the fitness-for-purpose of the information consumed. Traditionally, this 

information is circulated within the community’s trusted communication channels and interpreted 

based on community-specific criteria for quality and fitness. 

As data pieces “travel” across domain-agnostic repositories and aggregators, thus becoming 

available to a variety of scientific communities, they tend to become gradually uncoupled from the 

original context in which the data were generated. They effectively lose their contextual information, 

which is essential for communities to understand and evaluate the quality and fitness for purpose of 

the data, and to verify research results through replication studies. This carries the risk of reducing 

the reusability of the data, especially across scientific disciplines. The greater the conceptual and 

methodological distances between the data-producing communities and the data-consuming 

communities are, the less contextual information can be automatically induced, and the lower the 

ability is for the consuming community to trust the available data. 

2.4. Advancing Data to Actionable Knowledge Units 

Soon it will no longer be feasible for researchers to find, extract, evaluate and process digital 

data manually. Instead, successful data science will be dependent on highly automated methods for 

identifying and extracting data from repositories, aggregating selected data, and analyzing the 

combined data for given purposes. This will not only require the application of new types of 

algorithms summarised under the heading “AI” (Artificial Intelligence), but these algorithms will 

also require that data and information about data be stored and disseminated in more robust and 

informative ways, thus allowing automatic systems to make sense of the vast number of individual 

pieces of knowledge.  

Some scientific communities are already experimenting with new forms of knowledge 

representations such as nano-publications which are basically assertions described in some formal 

semantic language such as RDF,14 augmented by sufficient metadata. These nano-publications can 

be subject to smart statistical processing. Surveys in the biomedical area indicate that there are about 

1014 such assertions, with an enormous increase every year. Eliminating duplicate findings still 

amounts to 1011 canonical assertions and further processing yields about 106 so-called knowlets which 

can be seen as core concepts in this endless space of assertions related with sets of different findings 

[11]. Finally, this highly reduced space of knowlets can be used to draw conclusions, for example, for 

proper health treatments.  

Thus a variety of scientific disciplines are creating complex relationships between basic findings, 

layers of derived data and knowledge sources of different kinds (ontologies, etc.). In the coming 

decades, scientific communities will spend huge efforts in creating and curating these relationships, 

which will form an essential part of our scientific knowledge that must be preserved. Traditional 

forms of publications will lose relevance compared to the knowledge captured in these relational 

frameworks. Therefore, new methods are required to preserve this new digital scientific memory. 

The ability of a scientist to verify the relevance, provenance, completeness and fitness of data is 

an essential process in the scientific pipeline. As such, the practice of data sharing must include the 

preservation and reconstruction of the contextual information in which data was generated. Such 

contextual information needs to be permanently coupled to the dataset, irrespective of the mode in 

which the data are shared. This information goes beyond the typical domain-agnostic metadata as 

introduced, for instance, by Dublin Core15 and instead requires standards for rich metadata that are 

not only discoverable and accessible (as by OAI-PMH16) but also interpretable in a machine-readable 

way. We need datasets that are fully actionable and comprehensible knowledge units, to be shared 

                                                 
14  Resource Description Framework, https://www.w3.org/2001/sw/wiki/RDF 
15  https://dublincore.org/ 
16  Open Archives Initiative Protocol for Metadata Harvesting, https://www.openarchives.org/pmh/ 
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across digital environments and reused across scientific disciplines in both human and machine-

actionable ways, without degradation of its rich contextual information. These actionable knowledge 

units need to be stable across cyberspace and time. 

The persistent encapsulation of data and different types of metadata into such a knowledge unit 

should significantly improve the level of trust with which it can be understood across disciplines and 

modes of sharing. For such a transformation be achieved, it is essential to employ a set of robust 

conceptual and technological models that enable sharing and reuse of data-in-context.  

2.5. Tool Proliferation and Fundamental Decisions 

Another challenge data scientists are confronted with is the proliferation of tools and standards 

they need to chose to tackle new questions. The problem is not so much the heterogeneity in itself, 

but the fact that any choice of tools brings with it the risk of a lock-in to particular standards, formats 

and other details of storage and processing that researchers are in principle not interested in. 

Researchers would, in general, prefer to deal with data objects at a more abstract level which are 

stable and not dependent on particular technologies. 

The important role of abstraction in this respect is schematically presented in Figure 2 adapted 

from L. Lannom [12]. The user only needs to interact with FAIR Digital Objects which are identified 

by their persistent identifiers (PID) 17  and gets information from them through operations on 

metadata contained in the digital objects themselves. Metadata, data and PIDs are serviced by a 

federative core of registries and repositories, connected with the help of a unifying Digital Object 

Interface Protocol, as explained below. 

 

Figure 2. Layers of abstraction in the data domain.18 

                                                 
17  On the Web, a PID has the form of a Persistent Uniform Resource Locator (PURL), which curates redirection 

by means of a resolver. This scheme attempts to solve the problem of transitory locators in location-based 

schemes like HTTP. Example types of persistent identifiers are the Handle, the Digital Object Identifier (DOI), 

and the Archival Resource Key (ARK). There are also different types of globally unique identifiers which do 

not involve automatic curation by a resolver, such as the International Standard Language Resource Number 

(ISLRN). 
18  Diagram adapted from L. Lannom [12]. 
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Currently, research communities are offered funding to adapt to flavors of cloud systems and 

substantial funds are being spent on defining interfaces between such systems. However, the 

researcher is not interested in whether data will be stored in clouds, high-performance file systems 

or in database management systems. Instead, they are interested in parameters such as capacity or 

access speed. With respect to storage systems, we can expect new technological developments, driven 

by, for example, quantum computing. These technological changes should be transparent to the user 

and implementers need to take care that the digital knowledge domain remains stable. The service 

layer is a virtualisation step that avoids the necessity for the researcher to interact with the underlying 

technology. 

3. FAIR Digital Objects  

3.1. The Scientific View on FAIR Digital Objects 

To meet the scientific needs and expectations described in the previous chapter, we envisage a 

unit of data that is able to interact with automated data processing systems. We call this a FAIR 

Digital Object (FDO). From the perspective of a data scientist, an FDO is a stable actionable unit that 

bundles sufficient information to allow the reliable interpretation and processing of the data 

contained in it. In this section, we will give an introductory description of the FDO concept without 

going into technical details. 

The encapsulation of information in an FDO is illustrated in Figure 3. FDOs are accessed through 

their PID. They may receive requests for operations, which they may inherit from their type, as 

known from object-oriented programming. Through operations, their metadata can be accessed, 

which in turn describes the enclosed data content (a bit sequence). FDOs enable abstraction, i.e., at 

the object management level it does not matter whether the FDO content is data, metadata, software, 

assertions, knowlets, etc. In an FDO, a data bit sequence is bound to all necessary metadata 

components (descriptive, scientific, system, access rights, transactions, etc.) at all times. While the 

PIDs and metadata of FDOs are normally open, access to their bit sequences may be subject to 

authentication and authorization, for example, to secure personal or otherwise protected data. 

 

Figure 3. Layers of encapsulation in an FDO. Objects are accessed through a PID and may receive 

requests for operations. Their metadata describes the enclosed data (bit sequence) [13]. 

From a researcher’s point of view, we can imagine the following ideal data flow scenario: A 

sensor or other source produces a bit sequence of data, associates metadata with it and places both in 

the care of trustworthy repositories. These repositories analyze the metadata and may decide to host 

and manage the new data as an FDO. Doing so implies that the data and metadata will be bundled 

in an FDO to which a type (with associated operations) and a PID will be assigned. Furthermore, the 

repository may extend the metadata based on known contexts; for instance, policies for permission 

to use the data may be turned into licenses and access control lists. Then repositories may propagate 

the FDO to other agents on the Internet, which examine the metadata of the new FDO and decide 

whether the new data are of interest. If so, they will seek to get access to the content, contingent upon 

licensing, security measures and legal constraints encapsulated in the FDO. Compared to older 
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protocols such as OAI-PMH,19 new types of protocols will be used by repositories to offer their 

holdings, which are not restricted to metadata, but to any type of Digital Object.  

All actors in cyberspace dealing with FDOs are connected using a unifying protocol which 

guarantees interoperability. For this purpose, we propose the DO Interface Protocol (DOIP), the role 

of which can be compared to that of HTTP on the Web. For technical details on DOIP, we refer to the 

version 2 specification which has been published.20  

The concept of FAIR Digital Objects which will enable this innovative scenario goes back to 

papers in the 1990s by Kahn and Wilensky [14,15]. Earlier, when Kahn designed the basic principles 

of the Internet, where scientifically meaningless datagrams were being routed, it was already 

understood that the objects to be exchanged between senders and consumers must be assigned some 

meaning. Shortly after, the design of the World Wide Web by Berners-Lee21 represented the first step 

in this direction. However, despite its benefits, the Web remains an ephemeral technology, of which 

the high numbers of link rot are a symptom. Therefore Cerf, a colleague of Kahn in the development 

of TCP/IP, stated that we risk sinking into a “dark digital age”.22 

The introduction of stable FDOs based on persistent identifiers will not change the current bulk 

of the web, which is unstructured information, but it will offer a more stable and lasting solution for 

datasets in the registered domain, which need to be preserved for a long time. This stability will 

increase the level of trust by researchers and other stakeholders who are investing big efforts towards 

the preservation of scientific knowledge. This will, in turn, provide the following advantages for 

research and development to address the challenges that were discussed in Section 2. 

Scaled Cross-Disciplinary Capabilities: FDOs are a way to create an interconnected multi-actor 

and multi-level ecosystem, since there is a protocol (DOIP) that speaks the “FDO language” to all 

actors in this interoperable global domain of digital objects. This will allow us to invest in a new set 

of tools supporting cross-disciplinary research more efficiently compared to the current data 

practices. 

Data Made Accessible: The gap between the amount of data being created and our capability to 

make use has different causes. Among these, the lack of specialized skills and the low level of 

recognition for cross-disciplinary work cannot be addressed directly by FDOs. However, one reason, 

the lack of contextual information, will partly be addressed by the FDO concept, which enables 

binding of contextual information to data in a stable and persistent way. 

Interpreting Scientific Evidence in a Trusted Context: In FDOs, contextual and fingerprint 

information can be associated with digital objects at different steps during their lifetime. Privacy 

information can and must be associated with each digital object in a tamper-free way. In fact, all 

metadata are always bound to the data, so that researchers always have access to provenance and 

other information necessary for assessing fitness for purpose – thus building trust. 

Domain of Reasoning: The evolving complex domain of knowledge in and across all scientific 

domains drives us towards automatic processing in our quest for data-driven conclusions. As 

actionable units, FDOs capture and build complex relationships over long time periods. Thus, they 

form building blocks that build knowledge structures for our evolving digital scientific memory.  

Advancing Data to Actionable Knowledge Units: As FDOs travel through cyberspace and time, 

their encapsulation ensures that even after decades and in spite of changing technology and changing 

actors, data and their context will remain available as complete units. They will not lose any 

information but may accumulate contexts of reuse over time. 

Tool Proliferation and Fundamental Decisions: The FDO concept achieves abstraction that 

hides technological details from the researcher, thus preventing technological lock-in and allowing 

technological innovation without putting the evolving Digital Knowledge Domain at risk. Virtualised 

registry and repository services can be connected into a federated core using unified DO protocols 

and offering understandable client interaction at the service layer. 

                                                 
19  https://www.openarchives.org/pmh/ 
20  https://www.dona.net/sites/default/files/2018-11/DOIPv2Spec_1.pdf 
21  https://en.wikipedia.org/wiki/Tim_Berners-Lee 
22  https://www.bbc.com/news/science-environment-31450389 
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3.2. Digital objects in the DFT Core Model 

Although FDOs represent a quantity leap in data management, the concept can be implemented 

on top of the existing Internet protocols, as already suggested in earlier proposals [14,15]. After the 

World Wide Web established HTML resources as referenceable and shareable digital entities, this 

technology started to open possibilities for the Semantic Web23 and the Linked Data Platform.24 

However, the linked data concept is not sufficient [16], as also concluded at a recent workshop [17]. 

Subsequently, the term Digital Object (DO) found its revival in two developments: (a) the Data 

Foundation and Terminology Group of RDA,25 after having extracted a core data model from many 

scientific use cases, and (b) the design of large cloud systems, also called “object stores”. In the end, 

the definitions of DO made by the RDA DFT Core Model [18] did not differ so much from the 

definitions used by Kahn and Wilensky. For more details on the term and concept of DO see [17].  

Two diagrams explain the pervasive nature of DOs in the DFT Core Model. The diagram in 

Figure 4 indicates the simple structure of this model. The content of a DO is encoded as a structured 

bit-sequence and stored in repositories. It is assigned a globally unique, persistent and resolvable 

identifier (PID), as well as rich metadata (descriptive, scientific, system, provenance, rights, etc.). 

Metadata descriptions themselves are DOs. Moreover, DOs can be aggregated to collections which 

are also DOs with a content consisting of the references to its components. This simple definition 

makes DO a generic concept, abstracting away from the many possible types of content of a DO, and 

covering the whole domain of digital data entities. 

 

Figure 4. Relations between information associated with a Digital Object [13]. 

The diagram in Figure 5 indicates the role of the PID as the anchor point for accessing and 

reusing the DO. Assuming that the PID is indeed persistent, which is based on a cultural agreement, 

it makes sense to bind essential information into the PID record which will be returned to the user 

when a PID is being resolved. This essential information may contain paths to access the bit sequence, 

the metadata (also a DO), the rights record containing permission specifications, a pointer to a 

blockchain entry storing the transactions, a checksum for verification, etc. Furthermore, DOs are 

typed; operations are associated with a DO based on its type, which is a familiar, powerful concept 

from object-oriented programming. The RDA Kernel Information group26 defined a first core set of 

attributes which are of relevance for scientific disciplines and registered them in a public type 

registry. The nature of type registries has been specified by another RDA group.27 

                                                 
23  https://de.wikipedia.org/wiki/Semantic_Web 
24  https://www.w3.org/TR/ldp/ 
25  https://www.rd-alliance.org/group/data-foundation-and-terminology-wg.html 
26  https://www.rd-alliance.org/group/pid-kernel-information-wg/wiki/pid-kernel-information-guiding-principles 
27 https://www.rd-alliance.org/group/data-type-registries-wg/outcomes/data-type-registries 
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Figure 5. Components and pointers in a Digital Object [13]. 

3.3. From Digital Objects towards FAIR Digital Objects 

The above definition of a DO already satisfies some of the FAIR principles and has been used as 

a blueprint for their implementation [19]. Intensive discussions between RDA and GOFAIR experts 

over the past year revealed that additional specifications were required to make DOs fully FAIR 

compliant. Early papers, including one by a European Commission Expert Group on FAIR Data, 

coined the term FAIR Digital Object [20,21], but it was L. Bonino who recently identified the missing 

parts [22]. It has thus become obvious that the specifications of the DFT Core Model were not 

sufficient to guarantee machine actionability with respect to all FAIR principles. The RDA Kernel 

group defined kernel attributes and registered them, but the DO model did not make any statements 

about their usage. The FAIR Digital Object (FDO) model needs to be specific on three aspects: 

1. The FDO model requires the definition of PID attributes and their registration in a trustworthy 

type registry or a more complex type ontology, while trustworthy repositories are requested to 

use these attributes in order to achieve interoperability and machine actionability.  

2. The FDO model requires metadata descriptions to be interpretable by machines. This implies 

that their semantic categories must be declared and registered. A moderate requirement could 

be to declare at least metadata categories strictly necessary for basic management, such as where 

to find the PIDs of relevant information components. 

3. The FDO model requires the construction of collections to be machine actionable, thus enabling 

machines to parse collection descriptions and to find its component DOs. 

It is still an ongoing task to specify the required semantic explicitness in necessary detail to support 

the FAIR principles and make FDOs fully machine actionable. A recent workshop28 resulted in the 

formation of a coordination group and a technical implementation group that will define formal 

processes around requirements for FDO, called FDO Framework (FDOF),29 and will elaborate the 

specifications. FDOF will allow for different technical implementations, nevertheless guaranteeing 

interoperability. 

Researchers from many disciplines have been active in formulating organizational and technical 

specification details of FDOs since their scientific relevance became clear against the present 

background, revealing a pressing need to structure and represent increasingly complex scientific 

knowledge in a way that will be not only persistent but also independent of evolving underlying 

technology. International discussions have been held in two RDA groups, the Data Fabric Interest 

Group30 and the Digital Objects subgroup of the RDA Group of European Data Experts (GEDE-

                                                 
28  https://github.com/GEDE-RDA-Europe/GEDE/tree/master/FAIR%20Digital%20Objects/Paris-FDO-workshop 
29  https://github.com/GEDE-RDA-Europe/GEDE/tree/master/FAIR%20Digital%20Objects/FDOF 
30  https://www.rd-alliance.org/group/data-fabric-ig.html 
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DO 31), as well as in the C2CAMP 32  cooperation. We are currently seeing a tendency for these 

discussions to converge, while additional actors, e.g., from GOFAIR,33 are joining [19].  

Workflow frameworks that create and consume FDOs are expected to become increasingly 

popular, as further discussed in the next section. All components in a specific workflow (workflow 

script, software tools being used, data being processed, ontologies being applied, etc.) can be seen as 

a complex collection consisting of different object types. The goal of reproducibility suggests putting 

such collections into a container that can be transferred to another computational environment where 

it retains its full functionality. In this respect, the Research Objects (RO) initiative34 has been very 

active in specifying container and transmission standards that would ideally allow the execution of 

a workflow, including all its components on different virtual machines. Thus, the RO initiative is 

working towards complementary goals, so that a close collaboration can be envisaged. 

4. Scientific Use Cases 

Based on ongoing discussions about Digital Objects and FAIR Digital Objects in the RDA GEDE 

collaboration, 35  involving about 150 experts from more than the 47 scientific disciplines, also 

representing many infrastructures on the ESFRI36 roadmaps, a survey was held in 2018. This survey 

was formulated as an open request for use cases, i.e., descriptions of ongoing work related to the DO 

concept and of the potential of the DO concept for this work. Details on the survey and summaries 

of the different use cases have been described elsewhere [23]. Therefore, in this section, we will only 

summarize the results and discuss their relevance in the present context. 

The results of the survey showed that there is a wide recognition that the current status of 

fragmentation continues to hamper breakthroughs towards higher efficiency, effectiveness and trust. 

The research infrastructure experts are therefore looking for new options and were inspired by recent 

papers that describe FDOs, implementing the FAIR principles, as possible major anchors driving 

convergence and thus as effective means to help to tackle the major above-mentioned challenges.  

The survey resulted in 31 case descriptions driven by scientific needs and interests in the 

participating research communities [23]. The results reflect the three major areas of challenges: 

1. knowledge extraction from increasing amounts of complex data, especially in an 

interdisciplinary context; 

2. the aggregation of knowledge which requires a broad domain of trust and compatibility to yield 

evidence and enable decision-taking; and 

3. the provisioning of an ecosystem of research infrastructures that enables efficient and effective 

work on the two previous points. 

These challenges link scientific interests to issues of broad infrastructure and networking. Providers 

of scientific data and methods are aware that their intentions can only be realized when an 

appropriate infrastructure becomes available and when networking is supported at appropriate 

levels, including that of hyperinfrastructure initiatives such as EOSC. 

4.1. Scientific Interests 

4.1.1. Automatic Processing and Workflows 

The need to increase the degree of automation in knowledge extraction is apparent in many 

domains, especially in data science, where large and heterogeneous amounts of data must be 

aggregated and fed into machine learning algorithms. Introducing automatic workflows has a 

number of advantages for researchers: 

                                                 
31  https://github.com/GEDE-RDA-Europe/GEDE/tree/master/Digital-Objects 
32  https://www.rd-alliance.org/sites/default/files/2018Jan_ChairsMtg_C2CAMP.pptx 
33  https://www.go-fair.org/ 
34  http://www.researchobject.org/ 
35  https://www.rd-alliance.org/groups/gede-group-european-data-experts-rda 
36  European Strategy Forum on Research Infrastructures, https://www.esfri.eu/ 
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• Assuming rich metadata and clear identifiers for data, researchers could specify requirement 

profiles for data and for trustworthy sources, leaving the job of finding suitable data to 

cyberspace agents that crawl FDO repositories and build useful collections; thus, researchers can 

focus more on the algorithms that will use the data and on the evaluation of the results.  

• Workflow management tools could use rich metadata and identifiers in FDOs to track the status 

at every step of computation and determine which processes could be executed next in order to 

reach a certain goal. If properly designed by experts, such workflow managers would allow 

complex calculations to be carried out based on intentionally aggregated data collections. 

• The introduction of actionable digital object collections, in which every included FDO is 

associated with a type, enables a high degree of automation. The creation or uploading of a new 

FDO with a specific type will trigger automatic procedures for data management or analytical 

tasks. Some research labs report that they are already doing something similar. 

• Large existing software stacks, for example for distributed cloud computing, could be amended 

to support FDOs by recording rich metadata, thereby enabling responsible data science and 

increasing reproducibility, thanks to documentation in terms of data provenance and tracking 

production steps taken towards computational results. 

Well-known communities such as those engaged in climate modelling (ENES37), language data and 

technologies (CLARIN38) and material science (NOMAD39), research groups at the University of 

Illinois40 , the cloud provider DEWCom, 41  and others have started designing and implementing 

solutions in the above-mentioned direction. The motivation for such innovations is obvious, but the 

communities also face difficulties along this path. Experimentation needs the flexibility to change 

parameters while still keeping stable data objects. The amendment of interactive frameworks such as 

Jupyter42 and Galaxy43 with software libraries that will support FDOs, therefore seems promising. 

The extension of broadly used orchestration frameworks such as Weblicht44 will enable even IT-

laymen to create FAIR compliant FDOs with ease [24,25]. 

4.1.2. Stable Domain of Scientific Entities and Relationships 

Automatic workflows for a variety of data management and analytic tasks, as described above, 

create large numbers of relationships that need to be part of the scientific memory and therefore must 

be stored with PIDs and metadata records that crucially record data provenance. However, the 

relationships that follow from explicit data management and processing will be only a fraction of the 

relationships that will be automatically created. 

The DiSSCo45 (biodiversity), ELIXIR46 (biomedical research), E-RIHS47 (cultural heritage), and 

EISCAT48 (atmospheric research) initiatives provide excellent examples of the challenges and needs 

which many scientific disciplines are faced with [26,27]. At the bottom layer of the scientific 

knowledge space are the digital representations of large numbers of physical objects such as, for 

example, biological specimens [28], or observations of phenomena such as caused by, for example, 

diseases, treatments of diseases, chemical processes in the atmosphere, and many others. Exemplars 

of the corresponding digital objects are hosted in many institutions and labs worldwide. They are 

annotated, based on multiple information sources, taxonomies, and ontologies, and, as described 

                                                 
37  https://is.enes.org/ 
38  http://www.clarin.eu/ 
39  https://nomad-coe.eu/ 
40  https://illinois.edu/ 
41  http://www.dewcomputing.org/ 
42  https://jupyter.org/ 
43  https://en.wikipedia.org/wiki/Galaxy_%28computational_biology%29 
44  https://www.clarin-d.net/en/language-resources-and-services/weblicht 
45  https://www.dissco.eu/ 
46  https://elixir-europe.org/ 
47  http://www.e-rihs.eu/ 
48  https://en.wikipedia.org/wiki/EISCAT 
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above, the resulting digital objects will be part of workflows to generate derived data. Specifically 

designed collections serve as a basis for new theories. Layers of digitally represented knowledge are 

thus created on top of the bottom layer of digital objects and form the incrementally growing scientific 

knowledge space, in a way similar to the knowledge network created by scientific papers with their 

references to other papers until now. The inherent capabilities of abstraction, binding and 

encapsulation of FDOs based on stable identifiers will establish the trust of researchers to invest their 

time in developing and maintaining these knowledge spaces over the next decades. There is no doubt 

that researchers globally and in many disciplines are waiting on signals of convergence on FDOs, 

since this would mean that their investments will not be lost. 

In the health sector (e.g., ECRIN49), the additional requirements posed by sensitive data need to 

be considered. In addition to increased security restrictions on transfer of data, transaction relations 

and contractual specifications on data are of the greatest importance. Furthermore, in this respect, 

properly typed FDOs can provide inherent security measures, e.g., by recording transactions in a 

blockchain. For agricultural research, such as carried out at Wageningen University, a temporal 

aspect needs to be considered as well. Entire food creation chains from production to consumer 

products need to be registered and monitored. As shown already by the implementation of a Chinese 

supply chain control system for baby milk powder, the FDO approach has the potential to solve such 

complex systems with the promise to store temporal relations in a persistent and stable way. 

The virtual integration of many existing databases, increasingly common in an interdisciplinary 

setting, requires proper strategies for enabling semantic crosswalks based on ontologies; but also in 

these cases, the created linked structures must be stable. Suitable extensions of the concept are 

brought forward by the e-RIHS (cultural heritage), MIRRI50 (microbial databases), GESIS51 (social 

sciences), ForumX52 (experimental sciences) and Instruct53 (structural biology) communities. 

4.1.3. Advanced Plans for Management and Security 

A follow-up in scientific communities that are experimenting with complex constructions of 

relationships between digital objects concerns two questions: How should we express what 

constitutes “knowledge” in this endless mass of digital objects and their relationships? And how 

should we identify “relevance“ in this complex domain? There are no clear answers yet and there 

may be disciplinary differences in approaching the questions. 

A large community, in particular in the biomedical domain, believes that the way forward is to 

document knowledge in nano-publications which are essentially augmented RDF assertions, which 

are, for example, extracted from an extensive literature. In this scenario, written papers have a role in 

verifying details in cases, but the sheer amount of scientific papers requires a more condensed form 

of knowledge representation that is suitable for computational analysis. 

Following an approach suggested by GOFAIR,54 smart statistics such as calculating cardinal 

assertions that represent many others could be used to identify “knowlets” as clusters with high 

connectivity, their central concepts and their internal and external relationships [11]. These knowlets 

could be used to unleash unseen patterns and stimulate further theory development and 

investigations. Investing in establishing a domain of billions of assertions requires trust in the 

stability of the underlying mechanisms. The systematic use of the FDO concept with its binding to 

metadata, relationships and in particular provenance to represent such knowlets builds a stable 

fundament for analyses that, for instance, examine older states of knowlets and their evolution. In 

this domain, each assertion, each concept and each central concept will be identified by a PID, and 

the FDO will have pointers to all related concepts. 

                                                 
49  https://www.ecrin.org/ 
50  https://www.mirri.org/defaultinfo.aspx?page=Home 
51  https://www.gesis.org/home 
52  https://www.forumx.org/ 
53  https://instruct-eric.eu/ 
54  https://www.go-fair.org/ 
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A Virtual Research Environment (VRE) is a concept that points to the virulent challenge IT-naive 

users are confronted with. Such users cannot grasp all the possibilities that state-of-the-art 

infrastructures are offering, so they need a very simple desktop with easy-to-use applications that 

brings all those possibilities at their fingertips. In this context, the challenge is one of reducing 

complexity at the man-machine interface, which needs to be tailored to the disciplinary terminology 

and jargon that researchers are used to. In the climate modelling domain, ENES reports that the 

development of suitable VREs is a high priority task to allow many researchers to participate in their 

emerging FDO-based landscape. Likewise, it seems possible for CLARIN to update their existing 

Virtual Collection Builder tool to meet the requirements of the FDO model and make it more available 

to related humanities disciplines [24]. 

In experimental fields, the maintenance of lab books, in which every experiment is being 

documented in relation to its purpose, is crucial. Turning these lab books into electronic versions 

which contain all important relationships is a step suggested by material science (NOMAD), but 

certainly of relevance for many other disciplines as well. The FDO model with its binding capability 

could achieve traceability by binding entries to a tamper-free blockchain if required, in addition to 

making electronic lab-books part of VREs. 

Often errors are detected in data that have already been offered for reuse. An important step 

towards trust building would consist of tracing the reuse of data and issuing a warning to those who 

already used the erroneous data. Tracing the reuse of data is currently not easy, especially in contexts 

where open access is important. Systematically applying the FDO concept, as suggested by VAMDC55 

experts working on atomic and molecular data, would offer the opportunity to make real steps 

toward checking authenticity and tracing reuse in order to validate and monitor scientific results. 

4.2. Infrastructural and Networking Interests 

All participating research infrastructures stressed the need for an FDO based infrastructure with 

appropriate basic services, and of funding flexible and extendable testbeds as a way to come to 

satisfactory solutions. Many components are at the core of such an infrastructure and some of them 

have been specified by DONA56 and RDA.57 An elaborate list can be found in the FDO roadmap 

document [29] and will not be commented in detail in this paper. 

In order to make progress in fairly new areas, much networking will be needed, not only among 

the key experts, but also including potential users. More than 150 experts from many research 

infrastructures have supported the idea to submit a proposal to closely interact on FDO matters and 

organised several activities under the umbrella of RDA GEDE DO58 that emerged from the RDA Data 

Fabric group. 

In addition to the communities already mentioned, we should here refer to the following 

communities and/or institutions which have participated in the discussions and emphasise the 

importance of these developments: CNRI-US,59 DONA, GWDG/ePIC,60 CNIC-CAS61 and ICOS.62 

5. Conclusion 

We have presented the background against which the FAIR Digital Object (FDO) concept has 

been evolving, and we have described its rationale as well as its potential for science. This concept is 

fundamentally changing our view of what a dataset should be. In current practice, the world of digital 

data lacks explicit semantics, and despite best practices,63 the information obtained by resolving a 

                                                 
55  http://www.vamdc.org/ 
56  https://www.dona.net/ 
57  https://www.rd-alliance.org/ 
58  https://github.com/GEDE-RDA-Europe/GEDE/tree/master/Digital-Objects 
59  https://www.cnri.reston.va.us/ 
60  https://www.pidconsortium.eu/ 
61  http://english.cnic.cas.cn/ 
62  https://www.icos-ri.eu/ 
63  https://support.datacite.org/docs/landing-pages 
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PID is not yet fully interpretable by machines. Instead, we propose that data should be a stable, typed 

bundle of information, directly accessed by a PID and able to return requests for information in a 

semantically defined way. 

The proposed approach not only meets the FAIR principles for scientific data management, but 

also extends their scope through more explicit mechanisms allowing machine-actionability. FDOs are 

findable through their persistent identifiers, and contain rich metadata. They are accessible using a 

standardized communications protocol, for which we propose DOIP. Furthermore, FDOs achieve a 

higher level of interoperability because of the standard way in which their operations are 

encapsulated in typed objects, and for that reason, they are also highly reusable. These properties are 

important for the advancement of data science, especially in interdisciplinary, cross-domain and 

cross-sector contexts. 

Our proposal has been supported by the results of a survey of use cases in a substantial number 

of scientific areas. There is still a lot of work ahead, including implementation and testing in realistic 

research contexts. For this purpose, a substantial interdisciplinary group of researchers needs to be 

mobilized. We feel that the concept has matured enough to warrant our suggestion that the EOSC 

consider the option of using FDO as a basic mechanism for achieving global interoperability in data 

management. Thus we envisage the evolution of the EOSC into a Global Digital Object Cloud. 

Furthermore, the FDO architecture has the potential to be widely proliferated in science, industry 

and public services. 
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