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ABSTRACT

Open access to data, as a core principle of open science, is predicated on assumptions 

that scientific data can be reused by other researchers. We test those assumptions by 

asking where scientists find reusable data, how they reuse those data, and how they 

interpret data they did not collect themselves. By conducting a qualitative meta-

analysis of evidence on two long-term, distributed, interdisciplinary consortia, we 

found that scientists frequently sought data from public collections and from other 

researchers for comparative purposes such as “ground-truthing” and calibration. When 

they sought others’ data for reanalysis or for combining with their own data, which 

was relatively rare, most preferred to collaborate with the data creators. We propose a 

typology of data reuses ranging from comparative to integrative. Comparative data 

reuse requires interactional expertise, which involves knowing enough about the data 

to assess their quality and value for a specific comparison such as calibrating an 

instrument in a lab experiment. Integrative reuse requires contributory expertise, 

which involves the ability to perform the action, such as reusing data in a new 

experiment. Data integration requires more specialized scientific knowledge and 

deeper levels of epistemic trust in the knowledge products. Metadata, ontologies, and 

other forms of curation benefit interpretation for any kind of data reuse. Based on 

these findings, we theorize the data creators’ advantage, that those who create data 

have intimate and tacit knowledge that can be used as barter to form collaborations 

for mutual advantage. Data reuse is a process that occurs within knowledge 

infrastructures that evolve over time, encompassing expertise, trust, communities, 

technologies, policies, resources, and institutions.                                                             

                                                                                                                                             

                                                                                                  (See Supplementary 

Materials for methodological and other details, including  a full bibliography.)

Keywords: data, science, reuse, biomedicine, environmental sciences, open science, 

data practices, science policy

1.  Introduction and Problem 

Statement

Scientific practice and public policy continue to move toward open access to 

publications, data, software, code, and other research products. To provide open 

https://hdsr.mitpress.mit.edu/pub/tn4j86t1


Harvard Data Science Review • 1.2 Uses and Reuses of Scientific Data: The Data Creators’ Advantage

3

access to research data, stakeholders must build digital archives, populate those 

archives, and maintain them. While all of these costly public investments are necessary 

for data reuse, they are not sufficient to ensure that those data are useful for further 

research, nor that those assets will be reused. Scientists and other scholars develop 

deep expertise in their research domain, methods, and tools, all of which become 

integral to the data they collect, analyze, interpret, report in publications, and may 

later deposit in digital archives. As a consequence of the expertise involved in their 

creation, data are difficult to extricate from the context in which they originated 

(Latour, 1987).

An important question for the sciences and for public policy is to ask what kinds of 

data reuse are made possible by access to public data archives and what kinds are not. 

When scientists seek data from sources beyond their own laboratories and current 

collaborations, under what conditions do public data suffice? When do scientists 

pursue interpersonal contact for further expertise about those data and their contexts 

of origin? How does data reuse vary by research domain, purposes for potential reuse, 

access to data creators, and time period? Answers to these questions can guide the 

design of digital archives, policies for data governance, and public policy for open 

access to data.

We have studied scientific data practices over a period of two decades. This article 

reports the findings of a qualitative meta-analysis of research on two large, long-term, 

distributed, and interdisciplinary scientific consortia. We found similar patterns of data 

reuse within and between consortia, despite considerable variation in research 

domains, access to data, research methods, and time periods. We combine 

ethnographic, interview, and documentary evidence to present a theoretical framework 

for a continuum of types of data reuses. At one extreme, comparative data reuse can 

be accomplished with access to publicly available data archives, which promotes 

greater equity in science. At the other extreme, integrative data reuse is most effective 

when accomplished in collaboration with the data creators, leading to a scientific 

advantage for these players. We explore the reasons and conditions for these different 

types of data reuses to theorize the data creators’ advantage.

2. Data Practices in the Sciences

Data sharing policies presume that research data are useful to others and that others 

will reuse those data (European Commission High Level Expert Group on Scientific 

https://www.fosteropenscience.eu/content/riding-wave-how-europe-can-gain-rising-tide-scientific-data
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Data, 2010; Hanson, Sugden, & Alberts, 2011; Wilkinson et al., 2016). A common 

argument for data sharing is to avoid duplication of research effort, thus accelerating 

the pace of science (Rung & Brazma, 2012).

A growing body of social science research reveals that sharing data is a complex 

sociotechnical process, making it hard to predict by whom, when, how, why, and 

whether scientific data will be reused (Borgman, 2015; Mosconi et al., 2019). These 

complexities are explored here to frame our empirical study.

2.1. Data Reuse and Reproducibility

Many stakeholders in the sciences and social sciences are concerned about a 

‘reproducibility crisis,’ given the difficulties in reproducing research based on 

information in journal articles (Center for Open Science, 2015; McNutt, 2014). The 

reproducibility argument for data release is usually based on grounds of transparency, 

verifiability, or accountability. However, arguments for reproducibility often founder on 

disputes over what constitutes reproduction, such as reanalyzing published data, 

repeating the study, reprocessing the ‘raw’ data, or replicating the findings under 

different conditions. A recent National Academies of Sciences consensus study (2019) 

constrained these terms to distinguish between computational reproducibility, 

replicability as obtaining consistent results across multiple studies, and generalizability

 as the extent to which findings apply to other domains.

Data reuse is a broader concept that incorporates many different activities, such as 

returning to one’s own data for later comparisons, acquiring datasets from public or 

private sources to compare to newly collected data, surveying available datasets as 

background research for a new project, or conducting reanalyses of one or more 

datasets to address new research questions. These activities vary widely in their 

implications for scientific practice, for the design of data archives, for public policy, 

and for data science. A starting point to conceptualize data reuse is to distinguish 

between ‘uses’ and ‘reuses’ of a dataset; distinctions are both contextual and temporal. 

In situations where data are collected by one individual (or one team) for a research 

project, the first use of a dataset typically occurs when an individual or team explores 

it for a specific question. If the same individual returns to that same dataset later, that 

is another use, as the dataset is still embedded in the creators’ context. When that 

dataset is contributed to a repository, retrieved by someone else, and deployed for 

another project, the action becomes a reuse of the dataset. Reuse thus implies usage of 

a dataset by someone other than the originator (Pasquetto, Randles, & Borgman, 2017).

https://www.fosteropenscience.eu/content/riding-wave-how-europe-can-gain-rising-tide-scientific-data
https://doi.org/10.1126/science.1203354
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/nrg3394
https://doi.org/10.1007/s10606-019-09354-z
http://centerforopenscience.org/
https://doi.org/10.1126/science.1250475
https://doi.org/10.17226/25303
https://doi.org/10.5334/dsj-2017-008
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Data reuse is a process that may occur over long periods of time. It is not a single 

action or product that is readily countable. Thus, data reuse is best studied with 

qualitative methods that afford the opportunity to observe the circumstances in which 

researchers find themselves in need of others’ data, how and when they pursue data, 

how they evaluate the usefulness of data for a given purpose, how they interpret 

others’ data, and how they deploy those data in their own research. Quantitative 

methods such as surveys and content analyses can identify researchers’ intentions to 

share or reuse data (Federer, 2019; Tenopir et al., 2011), rather than actual processes 

of reuse, which is our concern in this article.

2.2. Documenting Data for Reuse

Research data are not simply found in nature, but are crafted for specific research 

purposes. As a consequence, research data—like all data—are local and historically 

situated artifacts (Gitelman, 2013; Star & Griesemer, 1989). Studies grounded in the 

social sciences and philosophy continue to encounter tensions between the ability to 

repurpose research data in different contexts and the information loss that occurs 

when data are removed from their original contexts of production (Borgman, 2015; 

Leonelli, 2016; Loukissas, 2019).

To repurpose data collected by others, researchers need contextual information such 

as documentation about equipment, protocols, procedures for collecting and 

processing data, and experimental or laboratory conditions of data handling (Culina, 

Crowther, Ramakers, Gienapp, & Visser, 2018). Metadata schemas and ontologies are 

means to formalize and transfer such information (Mayernik, 2016; Mayernik & Acker, 

2017). Leonelli (2010), a historian and philosopher of science, distinguishes between 

ontologies as “relevance labels” and metadata as “reliability labels” that situate many 

“small facts.” Together, these mechanisms associate datasets with specific research 

objects (e.g., the biological entity under study) and provide information about the 

quality of the data, such as data format, organisms used in experiments, instruments 

and methods applied, and laboratory conditions under which data were obtained.

When successfully applied, metadata and ontologies help research data to perform as 

“mobile” objects (Latour, 1987), meaning objects that can move between different 

contexts of production while retaining sufficient evidentiary power. These labels also 

allow datasets to work as “boundary objects”: objects that are both plastic enough to 

adapt to local conditions, yet robust enough to maintain a common identity across sites 

(Star & Griesemer, 1989). Investments in metadata and ontologies can make data more 

https://drum.lib.umd.edu/handle/1903/21991
https://doi.org/10.1371/journal.pone.0021101
https://doi.org/10.1177/030631289019003001
https://doi.org/10.1038/s41559-018-0579-2
https://doi.org/10.1002/asi.23425
https://doi.org/10.1002/asi.23927
https://doi.org/10.1177/030631289019003001
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amenable to integration and metanalyses, and may lead to higher rates of data reuse 

(Jones, Schildhauer, Reichman, & Bowers, 2006). Borrowing an economics term, 

Leonelli (2015) refers to transferable research data as “fungible objects” defined by 

“their portability and their prospective usefulness as evidence” (p. 810).

2.3. Trust in Data 

Among the most essential but intangible aspects of data reuse is the ability to trust 

data collected by others. Scientific practice depends upon the ability to trust 

knowledge claims and products of others, a concept known as ‘epistemic trust’ (Darch, 

2019; Porter, 1996; Shapin, 1994). Epistemic trust has several dimensions, and is 

relational, rather than something inherent in a dataset. One dimension is interpersonal 

trust, such as trust in the team that created a dataset (Prieto, 2009). For example, 

Jirotka et al.’s (2005) study of distributed readings of mammograms revealed 

strategies for assessing trustworthiness based on whether the data creator was known 

to produce reliable data. Similarly, ecologists assess data by disciplinary standards 

involved in their production and by reputation of the data creator (Yakel, Faniel, 

Kriesberg, & Yoon, 2013).

Other dimensions of trust include the ability to evaluate the quality of data, the 

reputations of the archives that host relevant datasets, and organizations responsible 

for the data curation process (Bietz & Lee, 2009; Borgman, Scharnhorst, & Golshan, 

2019; Faniel & Jacobsen, 2010).

In an influential policy report, the U.S. National Science Board (2005) categorized data 

collections along a continuum from local to global uses. Research data collections are 

those that result from focused research projects; curation is limited. Resource 

collections serve a community, have more extensive curation, and establish community-

level standards. Reference collections are broader in scope, serve large communities, 

and conform to robust and comprehensive standards. The latter are intended to 

promote epistemic trust by their communities.

Our hypothesis, posed in the 2015 grant proposal that supported this research, is that 

centralized data collection requires early agreements on data management, resulting 

in particular kinds of expertise and disciplinary configurations, whereas distributed 

data collection is more flexible and adaptive to local conditions, but the resulting 

datasets are more difficult to integrate later. Centralized data collection and curation, 

such as reference collections and sky surveys, results in standardized datasets that are 

https://doi.org/10.1146/annurev.ecolsys.37.091305.110031
https://doi.org/10.1086/684083
https://doi.org/10.1108/00242530910987082
https://doi.org/10.1007/s10606-005-9001-0
https://doi.org/10.2218/ijdc.v8i1.251
https://doi.org/10.1007/978-1-84882-854-4_15
https://doi.org/10.1002/asi.24172
https://doi.org/10.1007/s10606-010-9117-8
https://www.nsf.gov/pubs/2005/nsb0540/
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valuable for comparative reuses. Investigator-led projects are based in specific sets of 

research questions, models, theories, methods, and knowledge infrastructures. The 

resulting datasets, whether or not contributed to public collections, will be more 

idiosyncratic than those designed and curated for standardized comparisons (Borgman 

et al., 2015; Boscoe, 2019; Darch & Borgman, 2016; Sands, 2017).

2.4. Data and Infrastructure

The ability to create, use, document, and reuse scientific data depends on access to 

knowledge about those data and how they were created. Data creators usually have 

the most intimate knowledge about a given dataset, gained while designing, collecting, 

processing, analyzing and interpreting the data. Many individuals may participate in 

data creation, hence knowledge may be distributed among multiple parties over time. 

Later reusers of datasets seek whatever knowledge is needed through metadata, 

documentation, contact with data creators, or other means. The types of knowledge 

needed will vary by reusers’ distance from the origin of the data, whether distance in 

time, domain, expertise, resources, or other factors; and by intended purposes of reuse 

(Borgman, 2015).

Data, knowledge, and expertise. Differences in knowledge and expertise, a core 

problem of epistemology, help to explain data reuse. The most general distinction is 

between “knowledge that” and “knowledge how” (Ryle, 1949). An individual might 

have descriptive knowledge, or knowledge that, but not be able to explain how 

something works. Procedural knowledge is a more advanced form of expertise, where 

the person has knowledge how to do something. As people become more skilled at a 

task, they gain tacit knowledge, a form of expertise that is difficult to articulate 

(Polanyi, 1966). Hilgartner and Brandt-Rauf (1994) discuss the transition of a scientific 

innovation from the “magic hands” of the expert who developed tacit knowledge in the 

innovation process, to “kits” as procedures become more standardized. The expert has 

a competitive advantage in the initial stages until the process becomes common and 

repeatable.

Collins and Evans (2007) distinguish “ubiquitous tacit knowledge” of the general 

population and “specialist tacit knowledge” of specialists such as scientists. The latter 

category is further divided between “interactional expertise” and “contributory 

expertise.” Interactional expertise is the “ability to master the language of a specialist 

domain in the absence of practical expertise.” Peer review is among their examples. 

“Contributory expertise” is “what you need to do an activity with competence” (p. 14). 

https://doi.org/10.1177/107554709401500401
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Collins, Evans, and Gorman (2007) addressed relationships between interactional 

expertise and Galison’s (1997) “trading zones” to examine how scientists collaborate 

across areas of specialist knowledge. While their model is complex and multifaceted, 

the general idea relevant here is that scientists trade knowledge about theory, models, 

tools, and other forms of expertise to achieve common ground. Trading conditions 

involve degrees of collaboration and coercion, homogeneity and heterogeneity, and 

other features.

These distinctions between the types of expertise required to understand, or to 

perform, certain scientific tasks help to explain what kinds of knowledge are needed to 

reuse data. Leonelli (2013), for example, identified scientific knowledge specific to 

plant biology that were necessary to integrate data.

Notions of descriptive, procedural, tacit, and other forms of knowledge and expertise 

have a complex history that spans centuries and disciplines. Schmidt (2012), in an 

extensive review of tacit knowledge in science, found more than 100,000 references, 

spanning “Philosophy of Science, Sociology of Science, Theology, Philosophy of 

Sociology, Knowledge Management, Organization Theory, CSCW (Computer Supported 

Cooperative Work), and so forth” (p. 164). Thus, tacit knowledge is a nuanced concept 

with respect to the reuse of data.

Prospective data reusers often fill gaps in their knowledge by requesting the help of 

the data producers to reuse the data, and may credit them as coauthors in return 

(Pasquetto, 2018; Wallis, Rolando, & Borgman, 2013). Questions about the influence of 

knowledge gaps on decision making appear in economics, psychology, statistics, 

information science, and many other fields (Kahnemann, Slovic, & Tversky, 1982; 

Newell & Simon, 1972; Paisley, 1980). Differential degrees of information affect the 

ability of each party to interpret a problem. In statistics, for example, the concept of 

“uncongeniality” arises, wherein “the analyst and the imputer have access to different 

amounts and sources of information, and have different assessments (e.g., explicit 

model, implicit judgements) about both responses and nonresponses” (Meng, 1994, p. 

539).

Knowledge infrastructures. Neither expertise nor data exist in a vacuum. Data 

practices are best understood within the rubric of knowledge infrastructures, which 

are “robust networks of people, artifacts, and institutions that generate, share, and 

maintain specific knowledge about the human and natural worlds” (Edwards, 2010, p. 

17). They are living systems influenced by complex sociotechnical factors. While data 

are fundamental parts of the research process, they are difficult to extract as products 

https://doi.org/10.1016/j.shpsa.2007.09.003
https://doi.org/10.1016/j.shpsc.2013.03.020
https://doi.org/10.1007/s10606-012-9160-8
https://escholarship.org/uc/item/1sx7v77r
https://doi.org/10.1371/journal.pone.0067332
https://doi.org/10.1214/ss/1177010269
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to be shared. Exchanging data between individuals and laboratories usually requires 

labor, expertise, and expense beyond the conduct of the research per se. The ability to 

create, process, and exchange datasets depends not only on scientific expertise, but on 

infrastructure to discover, retrieve, interpret, and use them (Borgman, 2015; Bowker, 

2005; Edwards et al., 2013; Karasti & Blomberg, 2017).

Tensions over ownership and control of data also influence data sharing and reuse. 

Community norms vary by domain, method, and types of data. Kohler (1994), building 

upon Thompson (1971), argued that early 20th-century drosophila biologists operated 

in a “moral economy” of openness, in which scientists openly shared their data, fly 

stocks, and tools with other laboratories in the same domain (p. 12). For these 

scientists, openness was a response to practical needs when labs were producing more 

data than they could analyze. Later, Kelty (2012) argued that this community was, at 

the same time, both open and closed. It was not open “to just anyone”; rather, 

members had unrestricted access to others’ data on the condition that they first share 

their own data. Today, new kinds of moral economies are emerging in science 

(Mirowski, 2018). Openness requires governance, whether for common grazing areas 

or data repositories, lest “free riders” undermine community norms (Hess & Ostrom, 

2007). Those who reuse data without giving adequate credit to the original creators of 

data are viewed as “data parasites” in some circles (Longo & Drazen, 2016).

3.  Research Design

Studies of data sharing and reuse practices over the last two decades have informed 

science policy and the design of knowledge infrastructures. We have explored how 

data reuse varies by factors such as scientific domain, scale, heterogeneity, 

temporality, research design, goals of reuse, and levels of data processing. These are 

qualitative studies that explore the processes by which scientists are able to reuse 

others’ data and the obstacles they encounter along the way. Among the domains we 

have studied are sensor networks, environmental sciences, ecology, biology, 

seismology, astronomy, earth sciences, and biomedicine. Due to our own investments in 

data stewardship, we have deep troves of evidence available for meta-analyses. By 

comparing data reuse practices across contrasting arrays of disciplines, in different 

time periods, we generalize our findings and propose a new theoretical framework for 

data practices.

http://hdl.handle.net/2027.42/97552
https://doi.org/10.1007/s10606-017-9296-7
https://doi.org/10.1093/past/50.1.76
https://doi.org/10.1057/biosoc.2012.8
https://doi.org/10.1177/0306312718772086
https://doi.org/10.1056/NEJMe1516564
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Our overarching research question asks what kinds of data reuse are made possible by 

access to public archives of scientific data and what kinds are not? Three sub-

questions address scientific practice, policy, and data science concerns:

RQ1: Where do scientists find reusable data?

RQ2: How do scientists reuse others’ data?

RQ3: How do scientists interpret others’ data?

3.1. Research Sites

We conducted a meta-analysis of data from multiple studies of two scientific consortia, 

both of which were large-scale, long-term, distributed, multi-sited, data-intensive, and 

interdisciplinary. Studies included in the meta-analysis were led by the same principal 

investigator, using the same general research design (Borgman, Wofford, Golshan, 

Darch, & Scroggins, 2019). Each individual study varied in research questions, sources 

of grant funding, and personnel, involving graduate students, postdoctoral fellows, and 

collaborators from other universities.

Center for Embedded Networked Sensing. During its decade (2002–2012) as a U.S. 

National Science Foundation Science and Technology Center, the Center for Embedded 

Networked Sensing (CENS) open science requirements were minimal and few data 

archives existed in the scientific or technical areas of their research. CENS facilitated 

multidisciplinary collaborations among faculty, staff, and students of five partner 

universities (UCLA, University of Southern California, Caltech, UC-Merced, and UC-

Riverside) to conduct research on developing and implementing innovative wireless 

sensor systems. More than 300 individuals were associated with the center over the 

course of its operations, drawn from computer science, engineering, robotics, 

geophysics, seismology, environmental sciences, oceanography, ecology, biology, 

design and media arts, education, medicine and health sciences, information studies, 

and other areas.

Much of CENS research was exploratory, resulting in data that were diverse in 

character and small in volume. Teams went into the field with research questions 

about particular phenomena and returned to their laboratories to test or to generate 

hypotheses. Some researchers modeled systems and others used models of phenomena 

to design their data collection methods. The overarching goal of these collaborations 

https://escholarship.org/uc/item/5bb8b1tn
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between technology researchers and scientists was to develop new instruments, new 

methods, and new measures.

CENS was a productive endeavor for studying data practices due to the array of 

interdisciplinary collaborations, geographic distribution of field sites, diversity of data 

production, and continuity over the course of a decade. As a founding co-investigator 

of CENS, Borgman and her team conducted data practices research throughout the life 

of the center. We studied knowledge production in interdisciplinary contexts, data 

sharing, stewardship, and access to information. The challenges of reusing research 

data created by others came to the fore (Borgman, Wallis, & Enyedy, 2007; Borgman, 

Wallis, & Mayernik, 2012; Borgman, Wallis, Mayernik, & Pepe, 2007; Mayernik, Wallis, 

& Borgman, 2013; Wallis, Borgman, Mayernik, & Pepe, 2008).

Sensors were unreliable, especially in the early stages of the center’s research 

program, and trust in the data was a major concern (Hamilton et al., 2007; Wallis et 

al., 2007). CENS researchers produced fewer datasets than anticipated, and 

encountered myriad difficulties managing, sharing, and reanalyzing those data 

(Mayernik, Wallis, Borgman, & Pepe, 2007; Pepe, Borgman, Wallis, & Mayernik, 2007; 

Wallis, Mayernik, Borgman, & Pepe, 2010).

DataFace Consortium. The DataFace Consortium (a pseudonym for privacy reasons) 

was funded by the U.S. National Institutes of Health in 2009 to advance knowledge on 

development, diagnoses, and treatment of craniofacial syndromes in humans. The 

consortium concluded its second 5-year grant phase in 2019. Participants collect, 

process, and deposit diverse sets of craniofacial biomedical data in a public repository 

that was developed and is managed by the consortium. DataFace scientists collect 

highly heterogeneous datasets such as 3D facial images, anthropometrics, gene 

expression data, ChIP-seq, RNA-seq, and animal and human tissues. By the completion 

of our study of DataFace in 2018, about 100 participants had released a total of more 

than 700 research datasets.

DataFace investigators spanned molecular and developmental biology, computational 

biology, genomics, clinical genetics, medicine, bioinformatics, dentistry, plastic surgery, 

and computer science. Members were geographically distributed across nine academic 

laboratories, one national lab, and three international labs. Some labs were concerned 

with diagnosing and preventing rare craniofacial syndromes in humans, others studied 

evolutionary processes of facial variation in humans, chimpanzees, mice, and zebrafish.

https://doi.org/10.1007/s00799-007-0022-9
https://doi.org/10.1007/s10606-012-9169-z
https://doi.org/10.1145/1255175.1255228
https://doi.org/10.1007/s10606-012-9178-y
https://doi.org/10.2218/ijdc.v3i1.46
https://doi.org/10.1089/ees.2006.0045
https://doi.org/10.1007/978-3-540-74851-9_32
https://doi.org/10.1002/meet.1450440388
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.596.2608
https://doi.org/10.1145/1816123.1816173
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3.2. Research Methods

The research methods for this article are two-fold: methods by which we conducted 

individual studies from 2002 to 2018, and methods by which we conducted the meta-

analysis reported here. Throughout this body of research, our investigations focus on 

data reuse as a process, for which we applied multiple qualitative methods. Each study 

began with ethnographic observation to understand what researchers were doing with 

data. After one to two years of observation, we understood these processes well 

enough to design interview protocols. Our interviews, which were tailored to each 

study and sample, provided evidence on what researchers said they do with data. 

Lastly, we analyzed publications, reports, protocols, websites, and other 

documentation to identify what they actually reported doing during their research 

processes. All three methods were iterated throughout the studies, providing contrasts 

between what we observed scientists doing, what scientists told us they do, and how 

these scientists reported their work. Data were analyzed using grounded theory, where 

we tested hypotheses iteratively in our own datasets (Strauss & Corbin, 1998).

Our data resources for CENS consist of notes from 10 years (2002–2012) of frequent 

observation, several waves of interviews (stored as audio files and as textual 

transcriptions), and a deep trove of documents. Our data resources for DataFace 

similarly consist of observation records, interviews, and documentary analyses 

gathered from 2015 to 2018. These are human subjects studies certified by the 

Institutional Review Board of UCLA. Details of these research methods are presented 

in supplemental materials and in prior publications about CENS and DataFace, cited 

therein.

4. Findings

Our findings are organized by the three research questions, each subdivided by the 

two consortia. We report the outcomes of our meta-analysis, illustrating findings with 

quotations from interviews. This body of evidence lays the foundation for theoretical 

development in the discussion section.

https://hdsr.mitpress.mit.edu/pub/tn4j86t1
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4.1. RQ1: Where Do Scientists Find 

Reusable Data?

Scientists in both CENS and DataFace sought data from sources beyond their own 

laboratories and their current collaborations. Given the different time frames, fewer 

data public sources were available for CENS research than for DataFace. Data sources 

varied considerably by research domain and intended reuses.

Center for Embedded Networked Sensing. The majority of CENS researchers were 

in computer science and engineering; the remainder worked in scientific application 

areas of sensor research such as geophysics, biology, oceanography, ecology, and 

environmental sciences. Many researchers straddled science and technology, such as 

those in environmental engineering and seismology. Collecting one’s own data was the 

norm across these disparate CENS communities. Few of their research domains, at 

least in that time period, required data sharing or deposit, thus few open datasets 

were available for reuse. Exceptions were seismology, which has a shared repository 

(IRIS, 2018), and some genomic data collected for biology and oceanography research 

that were contributed to genomic databases.

As these were early days of open science, data sharing was not yet a common practice 

in these communities. Researchers expressed a variety of conditions for sharing data, 

the most common of which was that they retain first rights to publish and that they 

receive attribution for the data. Reuse practices varied by discipline, methods, 

infrastructure, and a variety of other factors (Wallis et al., 2013).

Fewer than half of the researchers interviewed for the CENS studies mentioned a 

specific collection from which they obtained data for purposes of reuse (Wallis et al., 

2013). Most of these collections were environmental observatories or regional 

repositories containing records on irrigation, ocean water conditions, tide charts, solar 

radiation, and other metrics; others contained photos, images, or bird sounds. They 

also deposited data in some of these collections, such as Incorporated Research 

Institutions for Seismology (IRIS) for seismology, SourceForge for software code, and 

the University of California James Reserve, which was a CENS partner. Collections 

existed only for a small portion of the many domains covered by CENS, hence, 

searching options for relevant data were few. These data sources spanned the 

continuum from research collections of individual projects, resource collections with 

more curation, and established reference collections, such as the U.S. Geological 

https://www.iris.edu/hq/
https://doi.org/10.1371/journal.pone.0067332
https://doi.org/10.1371/journal.pone.0067332
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Survey, National Oceanic and Atmospheres Administration, and NASA. The data most 

commonly mentioned were those of established reference collections.

Many researchers in the CENS community received requests for their data, thus, 

interpersonal exchange was an important vector. As our CENS studies addressed data 

release and sharing, we asked specific questions about when and how they responded 

to requests for reuse of their own data. Researchers mentioned a number of occasions 

when others had requested data for reuse. In some cases, requestors were known 

colleagues and in others they were unknown researchers who had identified datasets 

through publications, talks, or other means.

DataFace Consortium. DataFace scientists reported using open data from online 

repositories every day as an integral part of their research workflow. Contrary to the 

situation of CENS researchers, DataFace researchers had access to a wide array of 

online repositories and bioinformatics tools, which vary by specialization. Among those 

resources mentioned were repositories of human and animal sequence data from the 

National Center for Biotechnology Information, GenBank, Exome Aggregation 

Consortium (ExAC) browser, UCSC Genome Browser (‘the genome browser’), Online 

Mendelian Inheritance in Man (OMIM) (a catalog of human genes and genetic 

disorders and traits), ClinVar (lists the relationships among human variations and 

phenotypes), 1000 Genomes (a catalogue of human variation between ethnic 

populations), and PubMed (a search engine of references and abstracts on life sciences 

and biomedical topics).

Like CENS, DataFace researchers reported receiving requests for their data, and 

asking others for their data at least a few times in their career.

4.2. RQ2: How Do Scientists Reuse Others’ 

Data?

The second question addresses the purposes for which scientists use data acquired 

from others. We asked how data reuse varies by research domain, purposes for 

potential reuse, access to data creators, and time period. Our goal is to develop a 

typology of data reuses, the conditions under which these reuses occur, and 

relationships between data sources and reuses.

Center for Embedded Networked Sensing. CENS researchers sought external data 

to learn about a field site, such as current and historical weather conditions, to 
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determine trends of temperature, water, sunlight, and other factors relevant to 

planning new data collections. Often, they would combine literature and data reviews 

to gather information such as measurements of birds, microclimates, and soil 

conditions. CENS scientists referred to these processes as “ground truthing,” a 

method to verify and compare real-world conditions for their empirical or experimental 

data collection (Borgman et al., 2012).

Our meta-analysis revealed myriad uses of external data for ground-truthing that 

crossed the boundaries of scientific domains. Biologists used recordings of bird sounds 

acquired from a data archive to calibrate instruments that detected the presence of 

those species. This team also used these recordings to attract birds of those species so 

they could be observed in situ. In another case, environmental engineering 

researchers used near-real-time data from the California Digital Exchange Center on 

river conditions to determine where to place sensors most safely and effectively. One 

CENS team employed a dataset on military truck movements to test localization 

algorithms for predicting the routes of marmots and woodpeckers. An electrical 

engineering group with experience in weapons guidance systems reused those 

algorithms to detect harmful algal blooms. In yet another example, a team acquired 

GIS data from weather, traffic, and fast-food restaurants to test sensor algorithms 

(Wallis et al., 2013).

Comparative uses of external data could also reveal errors or faulty detection systems, 

such as whether chemical concentrations were within an expected range. One 

researcher in 2006 explained how he compared measurements from his standard 

“trusted” method to those of a CENS nitrate sensor: “Historically and currently there’s 

no readings getting a third of what it was by using this other trusted method…So that 

was kind of my first indication that ‘Hey, this is probably not doing what it’s supposed 

to be doing.’” We found ground-truthing to be an innovative, idiosyncratic, and 

scientifically effective practice of data reuse, but hard to generalize.

While most CENS participants reported using others’ data for ground truthing, only a 

few mentioned reusing others’ data for analysis, such as testing new hypotheses 

through statistical analysis. These latter cases usually involved meta-analyses. For 

example, researchers in the five Mediterranean climates combined raw datasets on 

specific species or variables to compare findings in California with those of other 

Mediterranean climates. As explained by this CENS scientist in 2006, “Data sets are 

getting shared in a big way, although at a high level, and at a very detailed level. ... 

https://doi.org/10.1007/s10606-012-9169-z
https://doi.org/10.1371/journal.pone.0067332
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One complaint about ecology is that there is no grand unified theory. It’s hard to get 

general principles out of it.”

DataFace Consortium. Pasquetto (2018), in examining socio-technical, epistemic, 

and ethical challenges of making biomedical research data openly available and 

reusable, found that data reuse in DataFace remained a complex, delicate, and often 

time-consuming process. Patterns of data reuse among DataFace researchers were 

similar to those of CENS, despite differences in scientific domains, methods, and time 

periods. DataFace researchers often reused others’ data for activities comparable to 

ground truthing, while relying almost entirely on their own data for analysis and 

hypothesis testing. Typically, DataFace scientists would reuse data acquired from 

online repositories for comparison and control. As explained by this DataFace 

bioinformatician in 2016, “When we map our data back on to the human genome or 

mouse genome, being able to visualize it on [the Genome Browser] is really 

valuable...PubMed just for literature, search…OMIM [when] trying to figure out gene 

function or genetic basis of various human diseases.” In another lab, another biologist 

explained, still in 2016: “[For] a margin of interest, we found mutation in the gene and 

we want to look at the expression (to see) if there is any animal model for the gene…

the database basically makes it easier for you to see if…anything...was done before, so 

you don't repeat.”

DataFace researchers relied on data from open archives to compare, interpret, and 

summarize statistical findings about biological functions of certain genetic variations. 

When significant associations between genotypes and phenotypes were found, 

researchers compared their preliminary findings with other information known about 

the genetic markers and their biological functions. A postdoctoral researcher in 

genomics interviewed in 2017, for example, reviewed data and literature for 358 genes 

previously associated with the genetic markers identified by the team. The OMIM 

database was used to investigate whether the identified genes or single nucleotide 

polymorphisms (SNPs) variants are associated with syndromes that affect the 

formation of mouse or human faces. The VISTA Enhancer browser was used to check 

whether genes are located in ‘enhancers.’ The DECIPHER database, an online clinical 

database that contains human genome variants and phenotypes of thousands of 

patients worldwide, provided other clues.

Like CENS researchers, the DataFace community rarely reused data collected by 

others for analysis. Researchers mentioned new analyses conducted on others’ data as 

anecdotes. One example of a secondary analysis conducted on existing data involved a 

https://escholarship.org/uc/item/1sx7v77r
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Genome Wide Association Study (GWAS) (SNPs, 3D facial images, etc.) craniofacial 

dataset that contained phenotypical and genotypical information on the variations of 

craniofacial features among a certain population. The dataset was originally collected 

by one of the DataFace labs to investigate how genetic predictors for craniofacial 

syndromes (e.g., orofacial clefting) might be different within and across populations. A 

second lab specialized in computer science and physical anthropology repurposed this 

dataset to test whether a machine-learning algorithm for spatial clustering would be 

able to predict facial features from genetic markers—a process called “DNA facial 

phenotyping.” This new effort combined the GWAS dataset collected by the DataFace 

lab with four other similar data sources. The analysis conducted on the combined 

genomic and phenotypic datasets was completely new and it employed software 

pipelines not previously tested on these four datasets to extract new information.

4.3. RQ3: How Do Scientists Interpret 

Others’ Data? 

The third, and most complex, question examines the conditions under which available 

documentation is sufficient for scientists to reuse data, when scientists pursue 

interpersonal contact for further expertise about those data, the processes by which 

they interpret others’ data, and the types of knowledge they employ for interpretation.

Our findings for the first two research questions demonstrate that researchers in both 

CENS and DataFace sought external data for use in their research and that they 

employed those data in myriad ways. The primary distinctions between comparative 

reuses and integrative reuses, such as conducting new analyses, are the greater 

difficulties in interpreting others’ data and the knowledge required to do so.

Center for Embedded Networked Sensing. A typical research scenario in CENS 

was one in which scientists and technology researchers jointly developed and deployed 

a wireless sensor network in an environment that a scientific team wished to observe. 

Both the sensor network and the environment were studied—the sensor for its 

effectiveness and ability to collect accurate data, and the environment for trends and 

patterns that could be found in data collected by the sensors. Science and technology 

teams worked in the field together, spending a day, several days, or several weeks in 

ecological reserves, public lands, or private lands such as farmers’ fields. Most of these 

sites were in California, but some were part of international collaborations, such as 
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large-scale seismic installations in Mexico and Peru, or ecological habitat reserves in 

Costa Rica.

Despite working closely together, and pursuing interdependent research questions, 

each of the CENS teams tended to collect, store, manage, and interpret their data 

independently. As shown in Figure 1, each team needed the measurements from the 

sensor network (center circle), but each team compared those measurements to others 

from their own equipment or methods. Biologists (hand-collected application data, 

bottom) dipped water samples from the lake, stream, or river; centrifuged the 

specimens; adjusted the pH; and took their own values of nitrates and other variables. 

Roboticists (sensor-collected proprioceptive data, top left) observed how their own 

devices could locate nitrate concentrations, algae, or other features based on the 

sensor-collected application data. Electrical engineers concurrently were testing the 

health of the sensor network (top right), using information-theoretic algorithms. 

Despite this interdependence, the teams made little attempt to interpret each others’ 

datasets. Rather, they returned to their labs with their own datasets, and published 

their findings in journals of their own research domains (Borgman, Wallis, & Enyedy, 

2007; Pepe, 2010).

Later research in CENS affirmed the complex relationships between data collected 

collaboratively by multiple teams and the uses those teams made of these data. CENS 

teams could use datasets from other teams for comparative or “background” uses, but 

generally preferred to collect their own data to conduct new inquiries, deemed 

“foreground” uses of data (Wallis et al., 2013).

https://doi.org/10.1007/s00799-007-0022-9
http://dx.doi.org/10.2139/ssrn.1616935
https://doi.org/10.1371/journal.pone.0067332
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Another striking example of the difficulty of interpreting others’ data, even when 

researchers are collaborating on complementary problems, arose in the competing 

ways that CENS teams interpreted the concept of temperature. The measurement of 

temperature appeared throughout CENS research in biology, environment, ecology, 

health, and other areas because temperature gradients influence so many other 

variables. Through extensive observation of teams working together, followed by 

individual interviews in private settings, we came to realize that researchers 

conceptualized temperature in very different ways, and measured the variable 

accordingly. Teams often were unaware of these differences or the effects of 

measurement parameters on the work of other teams in CENS.

A simple example of the differences in interpretation is the succinct statement of an 

engineering researcher in 2006 that “temperature is temperature.” His concern, from 

an engineering perspective, is whether measurements of temperature from the sensor 

network are consistent. A CENS biologist, however, told us in 2006 that:

There are hundreds of ways to measure temperature. “The temperature is 98” is 

low-value compared to, “the temperature of the surface, measured by the infrared 

thermopile, model number XYZ, is 98.” That means it is measuring a proxy for a 

temperature, rather than being in contact with a probe, and it is measuring from a 

distance. The accuracy is plus or minus .05 of a degree. I [also] want to know that 

it was taken outside versus inside a controlled environment, how long it had been 

in place, and the last time it was calibrated, which might tell me whether it has 

drifted.

The biologist’s concern is whether the instrument meets the accuracy standards that 

are necessary to publish in his domain’s journals. Despite the best intentions of his 

engineering partner, the sensor network measurements of temperature were useless to 

the biologist until (and unless) the instruments could be calibrated to biology 

standards. For biology research purposes, the new instrument had to be installed and 

operational next to his own instruments for a continuous 365 days to be considered 

trustworthy (Borgman et al., 2012).

CENS researchers also commented on the labor that would be required to assist 

others in interpreting their data sufficiently for reuse. An ecologist said in 2006, for 

example: “Oh gosh, it would be substantial [labor for us to work with the reusers]. I 

Figure 1. Data variation in CENS (Borgman, Wallis, & Enyedy, 2007).

https://doi.org/10.1007/s10606-012-9169-z
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think a lot of hand holding [would be needed] until people got used to it [the data]. 

Maybe third or fourth-time users would probably start to get a feel for it, but first-time 

users you’re going to probably be answering two or three emails a day from this 

person.” Another researcher, considering whether to reuse data collected by others, 

said “The data are out there for people to use, but you really probably want to talk to 

that person who collected it before you just use it. … for ecological data, I think that 

oftentimes there is a whole huge context—the way the data are collected” (2006).

Central to the interpretation challenges is the ability to know how, how much, and why 

data were processed. Only the data creators know all the minute details of data 

handling, some of which are difficult or impossible to document, as a CENS graduate 

student told us in 2012: “I know the site, I installed the sensors and I have looked at 

the data for a very long time, so if I want to do another paper I don’t have any 

problem. ... It’s very hard to share those … because most of them will just be in a 

notebook and even if the metadata tells you the basic things of what it was installed 

and what was done, all of the little things [are] really, really, really hard to share. So 

usually people will not share the raw data, they will just share with you the processed 

data, which to get to that product you need to do all the processing and all the 

cleaning, and everything else that was involved with this information that is usually not 

shared.”

Among the most revealing comments about data interpretation came from a CENS 

statistician in 2006:

It’s certainly part of how I’ve been trained that you can be a statistician and never 

look at data, but to me that’s not very fun. So you’ve got to go talk to somebody. 

You’ve got to go collaborate... The whole point of me going on this deployment is I 

can now see and ask questions and do all that stuff that I end up doing after the 

fact.

DataFace Consortium. The goal of the DataFace consortium was to collect and 

release high-quality, structured data for reuse by the community. Despite their 

devotion to this goal, researchers preferred collaborative work for integrative reuse of 

data. Given this puzzling finding, we conducted a second round of interviews to 

investigate the circumstances in which they needed collaboration to run new analyses 

on others’ data. This second set of interviews and observational evidence allowed us to 

gain a better understanding of what constitutes the little things that are hard to share, 

and conditions when one has to talk to somebody to reuse their data.



Harvard Data Science Review • 1.2 Uses and Reuses of Scientific Data: The Data Creators’ Advantage

21

DataFace researchers found collaborative work particularly useful when they needed 

to acquire new and specialized skills, expertise, or knowledge to reuse data. When 

asked why they preferred collaborative reuse instead of independent reuse, a typical 

response was:

Collaboration is better because it makes sure that everybody’s on the same page 

and they know what’s going on with the data. ... The groups have complementary 

skills ... for human data, we have our own GWAS and we participated in a different 

GWAS ... we could just download the data from dbGaP but our preferred method is 

just to collaborate with the group that did that GWAS and … then we share the 

results and we help each other on different analyses and we’re always talking 

about who’s doing which things and where are the priorities for different groups 

(2016).

Collaboration between the two labs was crucial to accomplishing the GWAS reanalysis. 

Members of the first lab cleaned the original dataset to make it reusable for the new 

research design and for searching the literature to identify additional variance. The 

second lab computed the analysis of the dataset and interpreted the statistical 

findings. The two labs coauthored the resulting articles, which were published in a 

prominent journal.

In these cross-disciplinary or cross-specialty situations, DataFace researchers 

preferred (although not necessarily required) collaboration even when data are 

structured, properly curated, interoperable, and of high quality. Typically, data reusers 

would ask data creators either to run entire new analyses for them (and then send 

them the refined results), or to provide them with a dataset that has been processed in 

a specific format for the intended analysis. Prospective data reusers reported that they 

often lacked time and resources necessary to become sufficiently familiar with the data 

to run new analyses themselves. Asking data creators for analytical assistance was 

more effective.

We found numerous examples in DataFace of how data interpretation required 

knowledge of the theoretic framework for the study, how experiments were conducted, 

how data were processed, and how signals were separated from noise. To collect and 

analyze their experimental data, these teams accessed specialized knowledge that they 

had accumulated over time. For a lab studying orofacial clefting in mouse embryos, for 

example, the teams’ expertise can be clustered into three categories. First is scientific 

domain knowledge, which includes the biology of facial development, biology of the 

model organism (mouse), and data types (tissues, sequences, etc.), and the associated 
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theoretical framework. Second is research methods, including research design and 

methods for data collection (microarray). Third is the tools and technologies, including 

data processing and quality control workflow, databases for annotating data based on 

previous data, and computational packages and tools for statistical data analysis 

(Python, R, Jupyter notebooks). As one of the team members explained:

If people want to go into our data and do the type of analysis that we want to do, 

well, they can do that too. I think they would be at a disadvantage though, 

because they do not know … all the meta-analysis that's associated with it. They 

weren't involved necessarily in the design and the execution. So I think it's more 

difficult for people to get in there and make sense of this.

5. Discussion

Researchers in both CENS and DataFace reused data created by other researchers, by 

government agencies, and by other trusted sources. The most common reuses of data 

were for comparative purposes such as ground truthing, calibration, and identifying 

baseline measurements of phenomena. Less commonly, they reused other's data for 

integrative purposes to ask new questions or conduct new analyses.1 Here we develop 

the theoretical framework for types of data reuses and the data creators’ advantage.

5.1. Comparative and Integrative Reuses of 

Research Data

In our initial studies of CENS, we identified a dichotomy of background and foreground 

reuses of data (Wallis et al., 2013). Background data are “those that are important to 

research activities but that are not necessarily reported in publications nor kept for 

future use or reuse.” These include ground-truthing data from public sources and 

comparative uses of data from collaborating CENS teams, as illustrated in Figure 1. 

Foreground data, in contrast, were the focus of a CENS research project, whether a 

field deployment or laboratory study. Researchers referred to these forms of data as 

“core” or “primary” data. We tested our hypothesis of the background–foreground 

dichotomy of data reuse in the DataFace Consortium. Based on our meta-analysis of 

the CENS and DataFace studies, we propose a continuum of data reuses from 

comparative to integrative, which better describes the types of reuse and reflects the 

https://doi.org/10.1371/journal.pone.0067332
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variance in activities that fall between these end points. Table 1 summarizes our 

theoretical framework for the comparative–integrative continuum.

Table 1. Comparative–Integrative Data Reuse 

Continuum

 Comparative Reuses of Research Data. At the comparative end of the continuum, 

researchers reuse others’ data to assess similarities and differences for purposes such 

as ground-truthing, calibration, and experimental controls. Observations of earth, 

oceans, and atmosphere are readily amenable to ground-truthing, as are many kinds of 

biomedical data. Reference collections, such as the databases of observations provided 

by USGS, NOAA, NASA, and similar resources provided by the National Institutes of 

Health, are curated to robust community standards (U.S. National Science Board, 

2005). These are trusted sources for comparison and were essential resources for the 

communities studied. Epistemic trust in knowledge products (Darch, 2019; Porter, 

1996; Shapin, 1994) may stem from the design and stewardship of collections, to the 

extent that they align with community practices.

Researchers in CENS and DataFace also sought data from sources that could be 

classified as research or resource collections, when those best served their needs. 

When reusing data for comparative purposes, researchers appear to rely on 

interactional expertise (Collins & Evans, 2007; Collins et al., 2007) to interpret data. 

That is, a scientist who is an expert in the same field can understand someone else’s 

Comparative Data Reuse ⟷ Integrative Data Reuse

Goal ‘Ground truthing’: calibrate, 

compare, confirm

Analysis: identify patterns, 

correlations, causal 

relationships

Example Instrument calibration, 

sequence annotation, review 

summary-level data

Meta-analyses, novel statistical 

analyses

Frequency Frequent, routine practice Rare, emergent practice

Interpretation Interactional expertise, 

‘knowledge that’

Contributory expertise, 

‘knowledge how,’ tacit 

knowledge

https://www.nsf.gov/pubs/2005/nsb0540/
https://doi.org/10.1016/j.shpsa.2007.09.003
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data for comparative purposes, given sufficient metadata, ontologies, and other 

documentation. In these cases, researchers are able to obtain enough information 

about the data, whether through documentation, familiarity, personal contacts, 

literature, or other means, to assess the quality and value of data for a particular 

reuse. Comparative reuses of data are such commonplace occurrences that datasets, 

or the data collections from which they were acquired, may not be cited in publications 

(Borgman, 2015; Wallis et al., 2013). Expert readers of scientific publications may 

place varying degrees of epistemic trust in samples, field sites, methods, 

instrumentation, and other factors necessary to assess their adequacy for particular 

reuses.

Integrative Reuses of Research Data. At the integrative end of the continuum of 

data reuses, much more extensive knowledge about the data is required for 

interpretation. To reanalyze datasets created by others, or to combine data from 

external sources, CENS and DataFace researchers appeared to draw upon 

contributory expertise to interpret data (Collins & Evans, 2007). Contributory 

expertise is the ability to perform the action, such as reusing others’ data in a new 

experiment. To perform a scientific action such as a laboratory technique requires 

training and experience. These experts develop tacit knowledge that cannot be fully 

documented in metadata, ontologies, and other “small facts” (Leonelli, 2010). Some of 

that tacit knowledge involves artisanal expertise, embodied knowledge (Ryle, 1949), or 

“magic hands” (Hilgartner & Brandt-Rauf, 1994).

Integrative reuses of data appear to require greater levels of expertise in the scientific 

specialty, including theory, models, methods, tools, and technologies associated with 

the dataset, and deeper levels of epistemic trust in the knowledge products and those 

who created them. Our findings that researchers in both CENS and DataFace 

preferred to collaborate with data creators for purposes of integrative data reuse 

support this theory. These researchers have learned through experience that 

interpreting data for reanalysis requires more knowledge of the context and purposes 

for which those data were created than is available through public documentation.

Data Reuse along the Comparative-Integrative Continuum. In between the 

extremes of comparative and integrative reuses of data are practices that require 

varying degrees of knowledge about the data and the infrastructure for interpretation. 

Types and degrees of expertise and trust required for data reuse may vary 

considerably by specialty. In the DataFace example of interpreting data about 

oroclefting in mouse embryos, knowledge about theory and method are distributed 

https://doi.org/10.1371/journal.pone.0067332
https://doi.org/10.1177/107554709401500401
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among multiple individuals, each with different skill sets. In plant biology, Leonelli 

(2010) identified field-specific types of data integration that are hard to generalize, but 

lead to new knowledge: “inter-level integration and model organism research,” “cross-

species integration and biofuels research,” and “translational integration and plant-

pathogen interaction.”

In some situations, data reuse may be accomplished by brief exchanges of information 

between creator and reuser. The reused datasets may be cited in publications and their 

creators acknowledged. In other situations, researchers may conduct reanalyses on 

their own by investing extensive labor to replicate as much context as they can (Wallis 

et al., 2013). Time estimates vary widely; some scientists in our studies have suggested 

that a year or more of effort might be required to reuse data without direct 

collaboration (Borgman, 2015).

5.2. Sources and Characteristics of 

Reusable Data

In principle, any scientific dataset might be reused for unknown purposes by unknown 

individuals in unknown domains at unknown times in the future. However, our findings 

suggest that some kinds of data are more readily reusable than others. Data created by 

individuals and teams for specific research projects are necessarily more difficult to 

interpret and reuse than those intentionally created for comparative purposes, such as 

the reference collections popular in CENS and DataFace.

While investigators can standardize the form of their datasets for deposit in an archive, 

the full array of knowledge about the dataset, its context, and relationships to other 

information is likely to remain local knowledge. Depending on the size of the creating 

team, that knowledge may be embodied in one person or distributed across many 

people. Another factor in reusability is the maturity of the technique. In the early 

stages of development, one person may have the “magic hands” necessary to perform 

the technique; if the method becomes common practice, it may be commodified into 

“kits” that are readily transferrable within the scientific specialty (Hilgartner & Brandt-

Rauf, 1994).

The scale of the community is another consideration in the likelihood of reuse for any 

given dataset (Borgman, Darch, Sands, Wallis, & Traweek, 2014; Borgman et al., 

2016). Smaller communities such as CENS, particularly those conducting exploratory 

research with new methods, have fewer public data sources on which to draw. 

https://doi.org/10.1371/journal.pone.0067332
https://doi.org/10.1177/107554709401500401
https://doi.org/10.1109/JCDL.2014.6970177
https://doi.org/10.2218/ijdc.v11i1.428
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Similarly, the community that might wish to reuse those datasets is relatively small. 

Conversely, DataFace is part of the biomedical community, which functions on a much 

larger scale, and has access to far more reference collections. Even so, the size of 

specialty communities varies widely within the biomedical sciences.

Open access policies also influence the reuse of data. When CENS began in 2002, few 

of their research domains were subject to data-sharing requirements and relatively few 

data collections were available. Even so, CENS researchers did reuse data from 

available collections for comparative purposes, and did seek data from other 

researchers for integrative purposes (Wallis et al., 2013). DataFace began in 2009 as a 

consortium dedicated to building a common data collection, in biomedical fields with a 

long history of data-sharing requirements and with numerous public collections 

available.

5.3. The Data Creators’ Advantage

Ontologies, metadata, documentation, and other forms of curation all aid in 

transferring knowledge between contexts. Curation is necessary, but rarely sufficient, 

for integrative data reuse. In the empirical sciences included in our meta-analysis, the 

individuals and teams who create datasets retain an inherent advantage in 

interpretation over any other prospective data reuser who may come along later. One 

reason is that data creators possess tacit knowledge about the context and purposes 

for which those data were collected. Removing data from their original context 

necessarily involves information loss. In the social studies of science, this problem is 

known as “making data mobile” across contexts (Bowker, 2005; Latour, 1987).

Researchers in CENS and DataFace described numerous examples of small details that 

were nearly impossible to convey to researchers who had not participated in the data 

creation. We also observed many situations where researchers made minor 

adjustments to sensors, devices, or software that were not recorded, any of which can 

change interpretation considerably. These details involved research design, methods, 

anomalies of field and laboratory sites, calibrations, fragile technologies, failing 

batteries, equipment sensitivities, and environmental and atmospheric conditions. 

Some anomalies can be known, such as recorded electrical failures, tinfoil hats that 

were folded around sensors to add shade or reflection, or calibrations that were 

tweaked between observing runs. Others are only suspected, such as a sensor that 

may have been kicked by a cow, a laptop signal disrupted by a cellphone, or a lab 

experiment that may have been influenced by odors on a visitor’s clothes.

https://doi.org/10.1371/journal.pone.0067332
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Data are processed, cleaned, and reduced according to the best practices of a domain. 

Data creators incorporate these many decisions into the interpretations they report in 

publications. However, detailed choices about removing outliers from observing runs 

or customizing sensors on the fly may be omitted from journal articles due to space 

limitations, or simply because they are standard practices within a specialty. Similarly, 

the “uncongeniality” problem in statistics is that data creators and data reusers have 

different interpretations due to different amounts and sources of information about a 

dataset (Meng, 1994, p. 539).

A second reason for the data creators’ advantage is that they master the cumulative, 

multifaceted, and collaborative expertise needed to analyze a specific dataset for a 

specific purpose. Even when metadata, ontologies, and other documentation meet the 

best quality standards for a domain, that contextual information may not be sufficient 

for integrative data reuse. Data creators develop expertise through experience in 

designing experiments, participating in laboratory and field exercises, selecting data 

collection protocols, learning to use instruments, writing software, and through data 

analysis.

5.4. Knowledge Infrastructures in Practice

The data creators’ advantage rests on knowledge and experience with a dataset, which 

in turn rests on access to resources, tools, communities, and institutional 

arrangements. Epistemic trust in knowledge products such as datasets also involves 

the ability to assess their value for a particular reuse. Members of a research specialty, 

who have similar expertise and similar access to the knowledge infrastructure of a 

community, are in the best position to make those value judgments.

Collaboration for data reuse is often a function of community relationships. For 

integrative purposes, CENS and DataFace researchers preferred to analyze others’ 

data in the context of a collaboration. Working together saves time and improves 

accuracy. When mutual benefits accrue, data are more likely to be shared and reused.

As good citizens of their communities, CENS and DataFace researchers responded to 

most requests for information when asked. However, they lacked the resources to 

provide service for all of their prior datasets, for indefinite periods of time. Members of 

a research community who have common interactional expertise, and who are known 

to each other, appear most likely to share data with each other.

https://doi.org/10.1214/ss/1177010269
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Knowledge infrastructures are dynamic ecosystems that have temporal characteristics. 

Data reusers can contact data creators while they are alive and have access to their 

data and resources. That time window can be short, as graduate students and 

postdoctoral fellows who collected data may depart within months or a few years. 

When migrated to new hardware, software, and servers, data may be lost, difficult to 

find, corrupted, or no longer readable by new tools (Borgman, 2015; Jackson, Ribes, 

Buyuktur, & Bowker, 2011).

Shared data collections are a key component of knowledge infrastructure. CENS never 

developed a data repository, due to lack of requirements, lack of interest, and the 

disparate types of data collected (Mandell, 2012; Wallis et al., 2010). Individual 

investigators in CENS were responsible for managing their own data, per the 

requirements of their own fields. CENS’ documented legacy exists as a collection in 

the University of California eScholarship repository (2011), which currently contains 

671 papers, posters, and other CENS products. More than half of these are posters, 

which proliferated at frequent research community events, and often contain detailed 

data, diagrams, photographs, and other images. DataFace, in contrast, has a shared 

repository that contains contributed datasets, and will remain available at least for the 

duration of project funding. Access to datasets created by CENS and DataFace will 

decline inexorably, as investigators cease to maintain local copies and physical 

specimens, as computers and scientific instruments are replaced, as students 

graduate, postdoctoral fellows and staff change jobs, and as others retire.

6. Conclusions

“The value of data lies in their use” is the premise claimed by the National Research 

Council (1997, p. 10) for open science. For data to be used, they must be usable and 

useful, which requires investments in knowledge infrastructures. Many kinds of data 

reuse can be accomplished with publicly available data, especially for purposes of 

comparison. To reuse data for integrative purposes, such as combining data from 

external sources to ask new questions, requires more knowledge of the context of the 

original data production and deeper expertise in the scientific domain. Therein lies the 

data creators’ advantage.

https://doi.org/10.1145/1958824.1958861
http://ozk.unizd.hr/proceedings/index.php/lida2012/article/view/59/43
https://doi.org/10.1145/1816123.1816173
http://www.nap.edu/openbook.php?record_id=5504
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6.1. Data Reuse Is a Process 

Reuse is not a binary variable; thus, counting the frequency of dataset downloads from 

public archives is a misleading metric. Just as scholars read far more literature than 

they cite in their publications, these researchers survey more datasets than they reuse. 

When datasets are reused for comparison or ground-truthing, authors may not cite 

those datasets or the collections from which they were acquired. As a consequence, 

the knowledge infrastructures that support these research communities may be 

invisible and their value underappreciated.

6.2. Data Reuse Requires Expertise and 

Trust

Trust in the value of a dataset may depend upon the ability to assess the integrity of 

individuals, institutions, methods, and contexts of creation. Metadata, ontologies, and 

other forms of curation promote epistemic trust in knowledge products. To assess 

whether a dataset is reusable, researchers draw upon their tacit knowledge about the 

scientific domain. For comparative reuses, interactional expertise may suffice, as 

experts can glean enough knowledge about the dataset from available documentation. 

To assess whether a dataset may be reusable for integrative purposes, higher levels of 

epistemic trust and tacit knowledge are required. Contributory expertise entails 

deeper knowledge of context and greater skills in performing the tasks necessary to 

create the dataset. Interpretation depends upon a much deeper understanding of how 

those data were created.

6.3. The Data Creators’ Advantage 

Promotes Scientific Collaboration

Data creators have intimate knowledge of their datasets that cannot be fully explained 

to others. They know those small things that are difficult to share. To interpret a 

dataset, one needs knowledge not only of what is in a dataset, but also knowledge of 

models, theories, hypotheses, instruments, hardware, software, techniques, and 

circumstances associated with its creation. Prospective data reusers seek out data 

creators when contributory expertise is required. Successful new collaborations result 

when the parties find mutual benefit. Data creators in our studies were generally 

helpful in providing information to prospective data reusers. However, they were 

necessarily selective in forming new partnerships to reanalyze their data. 
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Collaboration is time-consuming and resource-intensive, but worthwhile when both 

parties see mutual benefit for shared research agendas. For individual scientists and 

teams, datasets are valuable scientific assets that can be deposited, shared, and 

brokered to form new collaborations. Datasets also are scientific liabilities, to the 

extent that they need to be managed, stored, maintained, and serviced for reuse by 

others.

The ‘reproducibility crisis’ can be partially attributed to the data creators’ advantage. 

No matter how similar the methods, laboratories, or field sites, identical circumstances 

and expertise cannot be achieved. Replicating a study using different methods is a 

more powerful outcome than reproduction, per se (McNutt, 2014; National Academies 

of Sciences, 2019).

In cases where datasets can be standardized sufficiently to circulate through 

communities, science benefits. Our findings suggest that anyone with sufficient 

interactional expertise can use those datasets for comparative purposes. While 

datasets may be fungible or substitutable objects for comparative purposes, rarely are 

they fungible for integrative reuse. In the CENS and DataFace communities, 

integrative data reuse was rare, occurring only a few times in a career.

6.4. Investments in Knowledge 

Infrastructures Promote Data Reuse

Scientific data reuse occurs in communities, as scientists develop “trading zones” 

within which they can exchange knowledge. Data curation facilitates the exchange of 

data within and between communities, thus expanding the range of possible reuses. 

However, data archives are expensive to build, requiring resources, governmental and 

institutional commitments, and policies that encourage or require scientists to 

contribute their datasets. Data stewardship is also an expensive process, involving 

digital collections, hardware, software, instrumentation, samples, and human expertise 

for curation and maintenance. These investments, which are core to open science, are 

necessary conditions for data to be available for reuse. Individual scientists must have 

means to discover, locate, retrieve, and interpret those datasets. They need knowledge 

and trust, but they also need network access, equipment, software, and other tools.

Knowledge infrastructures evolve over time; thus, temporal factors are a critical 

concern for data reuse. Datasets in well-curated public collections may be useful 

indefinitely for comparative purposes, but the time window for integrative reuses is 

https://doi.org/10.1126/science.1250475
https://doi.org/10.17226/25303
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much shorter. To the extent that data reusers must rely on information available only 

from the data creators, those individuals must be reachable, available, and still have 

access to original records. Even if principal investigators are reachable, their 

knowledge of datasets may be limited; often, the graduate students or postdoctoral 

fellows who collected data in laboratories and field sites are the individuals with the 

intimate knowledge necessary for integrative reuses. Once separated from the 

university where the research was conducted, students and postdoctoral fellows 

usually are separated from those data and computing resources as well.

In sum, data reuse in the sciences is a complex process that depends upon trust, 

expertise, policy, and knowledge infrastructures. Public investments in scientific 

infrastructure, especially in data curation, are necessary to make data available and 

reusable. For comparative reuses of data, these investments may suffice to increase 

the circulation of data within and between scientific communities. For integrative 

reuses of data, however, collaboration between data creators and reusers usually is 

necessary. The data creators’ advantage is a consequence of investments made by 

individuals and teams in conducting their research to high standards, with deep 

knowledge of theory, method, context, tools, and instrumentation. When data creators 

and reusers find mutual benefit in collaboration, science benefits. Our findings from a 

qualitative meta-analysis of nearly two decades of research on scientific data practices 

is extensive, but by no means comprehensive of all scientific fields. To advance open 

science and data science, we strongly encourage more qualitative and quantitative 

research into data practices in other domains.

Supplements

A full bibliography of sources for this article, including prior publications in which our 

initial findings were reported, is provided in the supplemental materials available at 

https://hdsr.mitpress.mit.edu/pub/tn4j86t1
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Footnotes

1. A summary of our findings by the three research questions is included in the 

supplemental materials: https://hdsr.mitpress.mit.edu/pub/tn4j86t1/branch/2 ↩

https://hdsr.mitpress.mit.edu/pub/tn4j86t1/branch/2

