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Abstract
Background  A lack of transparency and reporting standards in the scientific community has led to increasing and widespread 
concerns relating to reproduction and integrity of results. As an omics science, which generates vast amounts of data and 
relies heavily on data science for deriving biological meaning, metabolomics is highly vulnerable to irreproducibility. The 
metabolomics community has made substantial efforts to align with FAIR data standards by promoting open data formats, 
data repositories, online spectral libraries, and metabolite databases. Open data analysis platforms also exist; however, 
they tend to be inflexible and rely on the user to adequately report their methods and results. To enable FAIR data science 
in metabolomics, methods and results need to be transparently disseminated in a manner that is rapid, reusable, and fully 
integrated with the published work. To ensure broad use within the community such a framework also needs to be inclusive 
and intuitive for both computational novices and experts alike.
Aim of Review  To encourage metabolomics researchers from all backgrounds to take control of their own data science, mould 
it to their personal requirements, and enthusiastically share resources through open science.
Key Scientific Concepts of Review  This tutorial introduces the concept of interactive web-based computational laboratory 
notebooks. The reader is guided through a set of experiential tutorials specifically targeted at metabolomics researchers, 
based around the Jupyter Notebook web application, GitHub data repository, and Binder cloud computing platform.

Keywords  Open access · Reproducibility · Data science · Statistics · Cloud computing · Jupyter

1  Introduction

Historically, journal articles have been the primary medium 
for sharing new scientific research. The intent of article 
content, and the corresponding review process, is to ensure 
adequate evidence of reproducibility; however, a recent 
report highlights increasing and widespread concerns relat-
ing to reproduction and integrity of results, with 52% of 
responding scientists agreeing there is a significant ‘crisis’ 
of reproducibility (Baker 2016). We and many others in the 
metabolomics community hold the view that a lack of trans-
parency and incomplete reporting has led to significant mis-
interpretation of data and a lack of trust in reported results 
(Broadhurst and Kell 2006; Considine et al. 2017; Goodacre 
et al. 2007; Spicer et al. 2017; Xia et al. 2013). A mechanism 
that may address these concerns is for the scientific com-
munity to take advantage of new online publishing media 
and associated data services, encouraging open science that 
recognises and aligns with the FAIR (Findable, Accessible, 
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Interoperable, and Reusable) data principles (Wilkinson 
et al. 2016).

This concern in metabolomics and other post-genomic 
platforms is a consequence of their success. The unprec-
edented rate at which new mathematical algorithms and 
computational tools are developed and adopted means that 
published findings are increasingly the sole result of com-
putationally intensive data processing (Teschendorff 2019). 
Advances in measurement technologies continue to gener-
ate ever increasing volumes of high-throughput data, which 
in turn require multidisciplinary expertise as ever more 
complex and elaborate statistical methods are used to infer 
generalisable biological associations (Pinu et al. 2019) and 
sophisticated visualization tools are used to make large data-
sets more understandable (Gehlenborg et al. 2010; Holten 
2006). Indeed, recent advances in machine learning algo-
rithms combined with improved visualisation strategies now 
allow researchers to integrate and interrogate multi-omic 
data sets of a size that was unmanageable 5 years ago (for 
example, Lee et al. 2019; Reinke et al. 2018; Rohart et al. 
2017). For science to continue to move forward under this 
deluge of data while avoiding technical debt and maintain-
ing reproducibility, the processes surrounding research data 
management, storage, analysis, and presentation need to be 
agile, transparent, reusable, and recoverably attached to pub-
lished work. A further challenge is that, to gain broad adop-
tion and be used by busy practising researchers, frameworks 
conforming to these requirements must also be intuitive and 
accessible to users who may have limited computational 
expertise.

Over the last several years, the metabolomics commu-
nity has made bold strides towards adopting FAIR standards 
for data including: development of vendor-independent raw 
data formats (such as mzXML) (Pedrioli et al. 2004); open 
access data repositories such as MetaboLights (Haug et al. 
2012), and Metabolomics Workbench (Sud et al. 2016); open 
access online spectral reference libraries such as METLIN 
(Smith et al. 2005), mzCloud (https​://www.mzclo​ud.org/), 
and MassBank (Horai et al. 2010); and online databases 
for metabolite identification and biochemical association 
such as HMDB (Wishart et al. 2018). These resources and 
others like them are fundamental to the future integrity of 
metabolomics as a science. It is well-recognised that open, 
interoperable datasets are essential for progress, and the 
computational tools and methods that convert, step-by-step, 
metabolite data to biochemical meaning also need to be 
FAIR (Wilkinson et al. 2016).

Numerous groups within the metabolomics community 
actively work to standardise computational workflows and 
provide online tools for statistical analysis (some recent 
advances are discussed later in this paper). However, a 
common characteristic of many computational frameworks 
encountered by researchers is a tendency to be prescriptive, 

in that they provide a restricted set of well-curated “plug 
and play” computational stepping stones that enable only 
limited choices within the workflow framework. These 
constraints limit the ability of a user to fully exploit the 
provided methodologies, or to explore and develop new 
analytical approaches. Presentation of analysis steps as plug-
gable “black box” approaches is convenient but diminishes 
opportunities for education and understanding of the analy-
sis methods being used. To fully embrace the concept of 
‘open data science’ the metabolomics community needs an 
open and easily accessible computational environment for 
rapid collaboration and experimentation.

The subject of this tutorial review is a practical open-sci-
ence solution to this problem that balances ease-of-use and 
flexibility, specifically targeted to novice metabolomic data 
scientists. This solution takes the form of ‘computational lab 
books’, such as Jupyter Notebooks (Kluyver et al. 2016), that 
have a diverse range of overlapping potential applications 
in the post-genomic research community (Fig. 1). Firstly, 
they enable open collaboration by providing a central plat-
form for researchers to cooperatively develop methodology 
and perform data analysis. Secondly, they provide a means 
for transparent dissemination of a finished study or product. 
In a formal context computational lab books can comprise 
supplemental material extending the reach of a publica-
tion that enables readers to rapidly recreate data analyses 

Fig. 1   Applications for Jupyter Notebooks in the postgenomic com-
munity. Open virtual notebooks have three main, non-mutually 
exclusive, applications. First, they provide an efficient means for 
transparent dissemination of methods and results, thereby enabling 
alignment with FAIR data principles. Second, they provide a central 
and interactive platform that facilitates open collaboration to develop 
methodology and perform data analysis. Finally, their interactive and 
easily deployable framework can drive experiential learning opportu-
nities for computational novices to develop their own skills and better 
understand metabolomics data analysis

https://www.mzcloud.org/
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and figures for themselves. In an informal context, they can 
provide a polished “showcase” that allows users to interact 
with and understand the functionality of underlying algo-
rithms. Finally, the inherent promotion of direct user interac-
tion enables experiential learning opportunities, where the 
user develops their understanding and skills through active 
experimentation, reflective observation, and abstract con-
ceptualisation (Kolb 1984).

In this review, we provide a brief overview of current data 
science frameworks relevant to the metabolomics commu-
nity, corresponding barriers to achieving open science, and 
finally a practical solution in the form of the computational 
lab notebook, where code, prose and figures are combined 
into an interactive notebook that can be published online 
and accessed in a modern web browser through cloud com-
puting. We present a set of experiential learning tutorials 
introducing the Jupyter Notebook framework, specifically 
tailored to the needs of a metabolomics researcher. The 
tutorials are designed in a hierarchy of complexity follow-
ing Bloom’s taxonomy of educational learning objectives 
(Anderson et al. 2001). Tutorial one introduces the basic 
concepts of Jupyter Notebooks. Tutorial two encourages 
interactive learning using an existing metabolomics data 
science Jupyter notebook. Tutorial three establishes the 
framework in which the user can create a Jupyter notebook 
on a local computer. Tutorial four teaches the user how to 
create a simple notebook for their own data. Tutorial five 
explains how to publish and share a new Jupyter notebook 
in the cloud. The overarching aim of this document is to 
encourage metabolomics researchers from all backgrounds, 
possibly with little or no computational expertise, to seize 
the opportunity to take control of their own data science, 
mould it to their personal requirements, and enthusiastically 
share resources through open science.

2 � Background

A glossary of terms has been provided in Table 1 to help 
clarify technical terms used in this tutorial.

2.1 � Software tools and barriers to open science

Many statistical and data science software tools are avail-
able for use in metabolomics data analysis and visualisa-
tion. They can be classified as commercial (requiring a paid 
licence) or “free” (as in zero-cost) and, in either case, may 
be open-source (the underlying computer code is available 
for inspection) or proprietary (closed-source, code unavail-
able for inspection). The primary mode of interaction with 
the user may be via scripting, a command line (CLI), or a 
graphical (GUI) user interface.

Commercial, proprietary (closed-source) GUI software 
packages include Microsoft Excel, Minitab, SPSS, Unscram-
bler, and SIMCA (Umetrics). Tools like these generally 
offer the benefits of being user-friendly, stable and reliable 
platforms with well-documented resources, and have a high 
level of technical customer support. However, proprietary 
software can also lack methodological transparency because 
the source code is not freely available. When source code 
cannot be inspected a researcher’s ability to interrogate 
underlying algorithms, demonstrate correctness, diagnose 
problems, or improve the tool is limited. If the package 
prescribes an analytical workflow it may be difficult, or 
even impossible, to embed alternative third-party compu-
tational steps. If additional functionality is required users 
are dependent on the software’s developers to implement 
this, which may impose an additional expensive commercial 
transaction even in cases where the request is approved. It is 
also difficult to produce usable graphical interfaces that are 
also customisable by the user, so this kind of interface can 
be relatively inflexible and so constrain the researcher to a 
specific mode of working.

Command-line or script-based proprietary software pack-
ages such as MATLAB, SAS, and Stata overcome some of 
the limitations imposed by graphical interfaces and closed-
source code by allowing third party code to be embedded, 
and implementation of alternative algorithms and arbitrary 
workflows by the researcher. In the case of MATLAB the 
source code of some or all of the proprietary tools is read-
able, which improves transparency of methods, and it is pos-
sible for the programmer to develop open custom graphical 
interfaces. However, even then open-source commercial 
packages can carry a significant financial cost limiting the 
ability of researchers, especially those in developing nations 
or on smaller budgets, to replicate results, adapt methods, 
or collaborate to develop better workflows. We consider 
that open-source “free” tools and applications will form the 
future basis of shareable research, as they enable the greatest 
possible degree of transparency and reproducibility.

Open-source GUI workflows providing simplified or user-
friendly access to underlying programs and analytical tools 
have been developed to improve usability for scientists who 
have not yet acquired the programming skills necessary to 
write their own pipelines and workflows. Within the metab-
olomics community popular applications include: Meta-
boAnalyst (Xia and Wishart 2011), Galaxy-M (Davidson 
et al. 2016), and Workflow4Metabolomics (Giacomoni et al. 
2015). Galaxy workflows provide a unified data visualisa-
tion and analysis environment that allows seamless (to the 
user) integration of multiple open-source software packages, 
and tools written in multiple programming languages (Afgan 
et al. 2018). These tools allow rapid construction, imple-
mentation, and sharing of standardised workflows, includ-
ing integration with remote and local databases, without the 
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need for programming skills. This provides a mechanism 
to ensure methodological consistency and precise report-
ing standards. Resources such as Galaxy simplify the user 
experience and enable flexible use of a wide range of open 
source tools.

Despite the many strengths of open-source GUI work-
flows such as Galaxy, they do not always provide users 
with a free choice of available data analysis methods. For 
example, unless the user has administrative rights on the 
server, the browser interface of Galaxy does not permit 
direct access to software package management. This restricts 

extension, modification, and development of workflows by 
the user. Although an arbitrary set of tools can in principle 
be “wrapped” by a researcher for use with Galaxy, there may 
be in practice only limited support for requests to imple-
ment a tool, especially when working on public servers. It 
is possible to implement arbitrary tools and processes in a 
locally-managed Galaxy instance with administrative control 
of the workflow service, but this requires investment of time, 
technical expertise, and local computational capacity, as well 
as carrying implications for long-term systems support and 
maintenance.

Table 1   Glossary of terms

Paper section Term Definition

1 Data repository A platform (such as Metabolights or Metabolomics Workbench) used to store meta-
data and experimental data

2.1 Command line interface (CLI) A user interface that is used to execute operating system functions using text
2.1 Graphical user interface (GUI) A user interface that is used to execute operating system functions using graphical 

icons or other visual indicators
2.1 Integrated development environment (IDE) A software application that provides an interface to write and test code (such as 

RStudio, PyCharm and Visual Studio Code). It typically includes basic tools such 
as a code editor, compiler, and a debugger

2.1 Containers Self-contained units of software that package code, dependencies, system tools and 
system libraries. The purpose is to be reliably transferred between, and deployed 
on, various operating systems and infrastructures

2.1 JavaScript object notation (JSON) format A lightweight data-interchange format commonly used for communication between 
a browser and server. Internally, Jupyter Notebooks are JSON files with the.ipynb 
extension

2.1 Packages Units of shareable code that can be imported and used to provide additional func-
tionality (such as matplotlib and scikit-learn)

2.1 Application programming interface (API) A set of defined functions and protocols for interacting with the software or package
2.1 Kernel The “computational engine” that runs and introspects the code contained in a note-

book document. Jupyter supports a kernel for Python, as well as kernels for many 
other languages (such as R, Julia, Kotlin, etc.)

2.2 Version control A documented history of changes made to a file, enabling step-by-step reproduction 
and reconstruction of its development

2.2 Code repository A hosted archive (such as those at GitHub and BitBucket) of source code and sup-
porting files.

3 Virtual environment An isolated environment that contains a specific version of Python and dependencies
3.1.1 Distribution (Software) A collection of software bundled together
3.1.1 Markdown A lightweight markup language used to add and format plain text. It is used in Jupy-

ter Notebooks within “Markdown” cells
3.1.3 Configuration file A file used to set the initial settings and parameters for computer applications. It is 

used in Binder to build the virtual environment with specific dependencies
3.2.1 Text cell (Markdown cell) A cell in the Jupyter Notebook used to write text (using the Markdown language)
3.2.1 Code cell A cell in the Jupyter Notebook used to run code (such as Python code)
3.2.3 Sandbox (Software development) A software environment typically used to run or test experimental code in isolation 

from the rest of the system
3.2.5 Dependencies The packages (and versions) that are required to be installed to use the software. For 

Python, these are the packages that need to be imported at the start of the file
3.2.5 Channels (Specific to Anaconda) The location where packages that are installed using conda are stored (such as 

conda-forge and bioconda)
3.2.5 README A file (commonly markdown or text) used to communicate information to visitors 

about the repository (such as purpose, usage, and contributors)
3.2.5 Root directory The directory (or folder) that is the highest level in a hierarchy
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Even with a free choice of tools and algorithms, work-
flows implemented in GUI-based tools like Galaxy are “lin-
ear” in the sense that the browser interface imposes a process 
in which data passes through a sequential chain of opera-
tions. These interfaces are not well-suited to representing 
complex workflow logic, such as branches and loops that 
explore alternative approaches or parameter choices as part 
of the same analysis. This can inadvertently encourage a 
“black box” one-size-fits-all approach to analysis that may 
be of concern when the dataset is non-standard or, for exam-
ple, when a statistical analysis requires customisation due to 
assumptions made by the model regarding the distribution 
of the input data. Incurious application of standardised GUI 
workflows with limited opportunity for experimentation can 
lead to inappropriate analytical strategies and unintentional 
misreporting of results. The linearity constraint is recog-
nised by the Galaxy developers, who provide a program-
matic Application Programming Interface (API) enabling 
automation of complex workflow logic, but this requires 
programming ability to use.

Another limitation of GUI workflow-based applications 
can be a lack of contextual annotation. With most interfaces 
the user must document separately why computational 
methods and parameter settings were chosen in a specific 
workflow. It is not typically possible through GUI workflow 
interfaces to embed the experimental context, explanation 
of methods, code, and figures into a single live (interactive) 
document. The formal reporting may then be reduced to a 
terse listing of steps and parameter values for generating 
data, tables and figures, rather than a more readable “liter-
ate programming” account of the analysis. This retrospec-
tive approach is sufficient and appropriate for standardised, 
repeated workflows that vary little from experiment to exper-
iment, such as a mass spectrometry deconvolution workflow 
that converts a set of raw instrument files into an annotated 
table (e.g. XCMS → CAMERA → MetFrag). However, when 
a metabolomics scientist moves on to statistical analysis, 
multivariate machine learning, and data visualisation to 
extract and present a biologically-informative interpreta-
tion of the data, it is desirable to have an integrated, flexible 
data analysis environment that includes detailed annotation 
of analysis choices.

The most flexible data science solution is to conduct 
analyses in one or more high-level open-source program-
ming languages such as C, Fortran, Java, Julia, Perl, Python, 
Octave, R, or Scala, that also support sophisticated statistical 
tools. Python and R have become especially popular lan-
guages in data science due to the availability of comprehen-
sive, robust, and well-documented code libraries (modules/
packages). Many statistical and machine learning packages 
are available for these languages (including bindings to Gal-
axy, which overcomes some of the GUI-based limitations of 
that platform), with strong data science community support 

(Lantz 2013; Müller and Guido 2017). However, these gen-
eral-purpose languages may present novice (or non) data 
scientists with a forbiddingly steep learning curve, especially 
in comparison with GUI tools. To be most effective in these 
languages a researcher requires a basic understanding of 
computer programming to use the available code libraries 
in their specific field. There is an initial learning curve, but 
knowledge of a programming language is more generally 
useful and broadly applicable than familiarity with a specific 
software tool’s interface and can impact positively on many 
areas of research. Programming is increasingly recognised 
as a foundational skill for research and promoted at all levels 
from primary to postgraduate education (Passey 2017). The 
broad impact of this skillset throughout academic research, 
including arts and humanities, is recognised in the growing 
influence of training foundations such as The Carpentries 
(https​://carpe​ntrie​s.org/) that aim to “[teach] researchers the 
computing skills they need to get more done in less time and 
with less pain.”

Several freely-available software tools bridge the gap 
between GUI interfaces and high-level languages by pro-
viding a user interface for researchers to develop their own 
code. For Python and R, integrated development environ-
ments (IDEs) such as PyCharm (Python), RStudio (R), and 
more general multi-language IDEs (e.g. Visual Studio Code, 
Komodo and Eclipse), provide additional tools for automat-
ing, testing and visualizing the process of writing scripts, 
programs and analysis workflows. These IDEs can simplify 
the learning and programming experience but are primarily 
designed for larger program and application development, 
rather than composing and sharing data analysis workflows. 
However, IDEs in general are extremely useful even to the 
novice programmer, and some prominent examples are spe-
cifically targeted towards data analysis, such as RStudio and 
JupyterLab.

Recently, several independent strands of general-purpose 
data science software development have been woven into 
practical solutions to the various limitations of the above 
frameworks. Firstly, RStudio established itself as the ‘go to’ 
data science IDE for R programming and was extended to 
allow integration of R code, narrative text, and figures into 
a single notebook interface using “RMarkdown” (Baumer 
et al. 2014). The software companies Enthought Inc. and 
Anaconda (formerly Continuum Analytics) independently 
developed distributions of the Python programming lan-
guage to include core scientific computing packages. Ana-
conda later extended their distribution to include R. In 2015, 
the non-profit Project Jupyter was established (Kluyver 
et al. 2016) to “develop open-source software, open-stand-
ards, and services for interactive computing across dozens 
of programming languages” (Project Jupyter 2019). Their 
main product is Jupyter Notebook, a browser-based interac-
tive data science notebook environment. Jupyter Notebook 

https://carpentries.org/
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allows seamless integration of code, narrative text, and fig-
ures into a single live executable and editable document, 
recorded in the open-standard and language-independent 
JavaScript Object Notation (JSON) format. Notebooks may 
be written in a single programming language, or a combina-
tion of multiple languages. Jupyter Notebooks can use ker-
nels for new or more specialised languages (such as Kotlin, 
GAP, Haskell, etc.), which gives them an advantage of being 
agnostic to programming language. Finally, integration of 
Jupyter Notebooks with the Docker (www.docke​r.com) vir-
tualization platform enables operating system level work-
ing environments to be packaged into virtual “containers”, 
which allows collections of notebooks and the supporting 
third-party tools and software to be deployed as public, self-
contained, reproducible interactive services using cloud 
computing.

2.2 � Collaboration through cloud computing

Open and dynamic collaboration on projects is critical to 
effective working but remains a significant challenge for 
researchers. There is a real and present need for efficient 
sharing and management of files that allows easy access, 
use, and version control (a documented history of the 
changes made to a file, enabling step-by-step reproduction 
and reconstruction of its development) for all collaborators. 
Widely-used collaboration mechanisms such as sharing code 
via email or online blogs are cumbersome, frequently lead-
ing to conflicts between the work of different researchers 
as they work on the same files at the same time in different 
locations. Cloud services including Box, Google Drive, and 
Dropbox have become essential tools for scientists by pro-
viding shared online data and document storage. Tools such 
as Microsoft Office Online and Google Suite provide real-
time collaboration tools enabling true simultaneous editing 
of a single document by multiple authors, and services like 
Dropbox are able to track edits and prompt users to keep 
local copies of files up to date. Both approaches allow users 
to step back through document history as a rudimentary 
form of version control. They reduce practical barriers to 
collaborative working and reduce frustration and conflicts 
resulting from two or more people editing different copies 
of the same file at the same time. Collaborative working on 
metabolomic data analysis workflows would benefit from 
adoption of similar approaches.

The source code hosting facilities Bitbucket, GitHub 
and SourceForge are currently the dominant platforms for 
sharing and collaborating on (particularly open-source) 
software. GitHub has become the largest source code host-
ing facility in the world, with over 36 million users and 
100 million repositories (GitHub 2019). These facilities 
offer many benefits including: free public (and private) 
source code repositories; enforced best practice through 

version control; and additional administrative and project 
management services that foster collaboration, including 
project webpages and wikis, issue tracking, code reviews, 
and task management. This makes GitHub and similar 
services a practical option for development, publication 
and distribution of Jupyter Notebooks, together with their 
associated source code and test data.

Services such as GitHub and BitBucket allow col-
laborators to view and edit static code and view static 
notebooks, but code cannot be executed directly on their 
servers. To run Jupyter Notebooks and associated source 
code, the user must either download and run a local copy 
of the files, or upload and run the notebook “in the cloud” 
using a cloud infrastructure provider such as Amazon 
Web Services, Google Colab, Openstack, or Microsoft 
Azure. The process of enabling the practical use of this 
shared resource can therefore require a level of compu-
tational expertise that may be a deterrent to casual users 
and restrict uptake by non-expert data-curious scientists.

The PhenoMeNal portal (http://pheno​menal​-h2020​.eu) 
is an elegant solution to this problem for the metabolomics 
community. PhenoMeNal (Peters et al. 2019) is an easy-
to-use, cloud-based metabolomics research environment 
led by EMBL’s European Bioinformatics Institute. The 
PhenoMeNal App Library includes over 50 widely used 
metabolomics data analysis tools that can be accessed 
either through Jupyter or Galaxy and deployed using a 
cloud infrastructure provider. This curated software library 
allows the community to maintain consistency across 
workflows but, in common with other GUI tools and cen-
trally-managed workflow approaches, it can be restrictive.

A comparable but completely general public service 
is provided by the Binder team at mybinder.org (Project 
Jupyter et al. 2018). Binder is an open-source web service 
that allows users to share notebooks by creating a tem-
porary cloud-based copy of the GitHub repository that 
contains them. This enables reproducible sharing of inter-
active and editable Jupyter or Rstudio notebooks as a vir-
tual machine running in the cloud. The user can start and 
access a new virtual machine running live notebooks by 
following a single web link. In use, the notebooks appear 
to the user as if they were any other Jupyter notebook 
running on their own computer, with all the necessary 
dependencies, supplementary code and data pre-installed. 
Using the Binder framework gives researchers the power 
to reproduce and thoroughly test published results, or 
apply the analyses to their own data by running the source 
code interactively in their browser. In this tutorial review 
we take the reader through a process of using, writing, and 
deploying Jupyter Notebooks on Binder to help them take 
control of their own data science, and share their work 
through open science approaches.

http://www.docker.com
http://phenomenal-h2020.eu
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3 � Experiential learning tutorials

The remainder of this review provides readers with an 
experiential learning opportunity (Kolb 1984) using an 
example interactive metabolomics data analysis workflow 
deployed using a combination of Python, Jupyter Note-
books, and Binder. We assume that the initial stage of 
data-processing for the computational workflow (con-
verting raw instrument files into an annotated data table) 
has already been completed, and that a deconvolved, but 
not necessarily annotated, data table has been created 
and checked for errors. These assumptions are made to 
make the learning objectives presented manageable, not 
as a directive for obfuscating the complete metabolomics 
workflow. It is possible, and encouraged, to include all 
data processing steps in interactive notebooks. The tutorial 
takes the reader through the process of using interactive 
notebooks to produce a shareable, reproducible data analy-
sis workflow that connects the study design to reported 
biological conclusions in an interactive document, using 
data from two previously published metabolomics studies. 
This workflow includes a discrete set of interactive and 
interlinked procedures: data cleaning, univariate statistics, 
multivariate machine learning, feature selection, and data 
visualisation (Fig. 2).

The following five tutorials have been pedagogically 
designed to lead the reader through increasing levels of 
cognitive complexity, according to Bloom’s revised tax-
onomy (Anderson et al. 2001):

(1)	 Launch and walk through a published Jupyter notebook 
using Binder in the cloud to duplicate a set of results.

(2)	 Interact with and edit the content of a published Jupy-
ter notebook using Binder in the cloud to understand 
workflow methods.

(3)	 Install Python and use published Jupyter Notebooks on 
the researcher’s computer to apply and experiment with 
workflow methods locally.

(4)	 Create a metabolomics Jupyter notebook on a local 
computer.

(5)	 Deploy the Jupyter notebook from Tutorial 4 on Binder 
in the cloud via GitHub.

Fig. 2   Metabolomics data analysis workflow. The workflow imple-
mented in Tutorials 1 and 2 represents a typical metabolomics data 
science workflow for a binary classification outcome. The following 
steps are included: data import, data cleaning based on pooled QC 
relative standard deviation, PCA to visually inspect data reproduc-
ibility, univariate statistics, multivariate machine learning (PLS-DA 
including cross validation, feature selection, and permutation test-
ing). The flow diagram is coloured by primary operation type (yel-
low = data import/export; green = data visualisation; blue = data pro-
cessing)

▸
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3.1 � Overview of Jupyter/GitHub/Binders

Before beginning the tutorial, we review some fundamental 
concepts behind Jupyter Notebooks, GitHub, and Binder, 
as understanding these can aid successful independent 
execution of this open-science approach (Fig. 3). All code 
embedded in each of the example notebooks is written in 
the Python programming language and is based upon exten-
sions of popular open source packages with high levels of 
community uptake and support. These include: Numpy for 
matrix-based calculations (van der Walt et al. 2011); Pandas 
for high level data table manipulation (McKinney 2017); 
Scikit-learn for machine learning (Pedregosa et al. 2011); 
and Matplotlib (Hunter 2007), Bokeh (Bokeh Development 
Team 2018), Seaborn (Waskom et al. 2018), and BeakerX 
(Beaker X Development Team 2018) for data visualisation. 
Additionally, we deploy a simple package called ‘cimcb-
lite’, developed by the authors for this publication, that inte-
grates the functionality of the above packages into a set of 
basic methods specific to metabolomics. A tutorial on the 
Python programming language itself is beyond the scope of 
this publication, but we hope that the code presented is suffi-
ciently well-documented in each notebook to be understood. 
Many excellent publications can be consulted for an in-depth 
introduction to using Python for data science (Jones 2013; 
Ramalho 2015; The Carpentries 2019; VanderPlas 2016).

Digital object identifiers (DOI) are widely used to iden-
tify academic and government information in the form of 

journal articles, research reports and data sets. It is also pos-
sible to assign a DOI to open access software. Specifically, 
researchers are able to make the work shared on GitHub cit-
able by archiving with a data archiving tool such as Zenodo 
(www.zenod​o.org) (Sicilia et al. 2017). A detailed tutorial is 
available (Open Science MOOC 2018). This archiving tool 
will ‘fix’ in time a given repository (e.g. Jupyter notebook 
and meta data), so that it can be associated with a particular 
static publication, while allowing the programmer to further 
develop the notebook on GitHub. The tutorials in this paper 
are archived with the handle https​://doi.org/10.5281/zenod​
o.33626​24 (https​://doi.org/10.5281/zenod​o.33626​24).

3.1.1 � Jupyter Notebook

Jupyter Notebook (jupyter.org) is a powerful, open-source, 
browser-based tool for interactive development and presen-
tation of data science projects. Each notebook consists of a 
collection of executable cells, and each cell contains either 
text formatted using the Markdown language (Gruber 2004) 
or executable code (usually Python or R). When a ‘code 
cell’ is executed any graphical or text output (numerical 
results, figures or tables) is presented within the document 
immediately below the cell. Figure 4 shows an example of 
a notebook after execution. A popular way to get started 
with Jupyter Notebooks is to install the Anaconda distri-
bution (anaco​nda.com), for which graphical installers are 
available on Windows, macOS and Linux operating systems 
(anaco​nda.com/distr​ibuti​on/). After installation a local Jupy-
ter server can be launched using the Anaconda-Navigator 
application. To run a specific local Jupyter notebook with 
Anaconda-Navigator the user can navigate to the appropri-
ate local folder using the browser-based interface, and click 
on the desired notebook file (which can be identified by the 
.ipynb suffix).

3.1.2 � GitHub

GitHub (githu​b.com) is a cloud-based web service that helps 
programmers store, manage, and share their code (and asso-
ciated data files), as well as track and control changes to their 
code (version control). It is free to sign up and host a public 
code repository, which makes GitHub especially popular 
with open-source projects and a good choice for distributing 
Jupyter Notebooks, project-specific code and documenta-
tion. Jupyter Notebooks stored publicly on GitHub can be 
downloaded and run on a local machine using Anaconda 
or linked to a cloud-based platform. To complete all the 
steps of this tutorial a (free) GitHub account is required. 
An account at GitHub may be created by clicking “sign up” 
on the GitHub home page (githu​b.com) and following the 
instructions.
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Fig. 3   Key elements required for FAIR data analysis, using Jupyter 
Notebooks and Binder deployment. A fishbone diagram describing 
the detailed requirements for FAIR data analysis in metabolomics. 
Experimental data are derived from typical metabolomics workflows 
and formatted appropriately for analysis. Data need to be shared, 
either privately (for pre-publication collaboration) or publicly (for 
open dissemination). The Jupyter Notebook contains all code, mark-
down comments, outputs, and visualisations corresponding to the 
study. The Jupyter Notebook and other required files (such as Readme 
and configuration files) are compiled into a public GitHub repository. 
Finally, Binder is used to easily deploy and share the Jupyter Note-
book

http://www.zenodo.org
https://doi.org/10.5281/zenodo.3362624
https://doi.org/10.5281/zenodo.3362624
https://doi.org/10.5281/zenodo.3362624
http://anaconda.com
http://anaconda.com/distribution/
http://github.com
http://github.com
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3.1.3 � Binder

Binder (mybin​der.org) is an open source web service that 
allows users to deploy a GitHub repository comprising a 
collection of Jupyter Notebooks (with configuration files that 
describe the required computing environment) as a tempo-
rary cloud-based virtual machine. The Binder deployment 
is accessible by web browser and includes the programming 
language and all necessary packages and data. As with all 
publicly-accessible cloud storage care must be taken if data 
are sensitive or private. Researchers can launch the virtual 
machine in their browser but, because the user environ-
ment is temporary, once the session is closed all new results 
are lost. If changes are made, the user must download any 
changed files or output they wish to keep.

3.2 � Tutorials

3.2.1 � Tutorial 1: launching and using a Jupyter Notebook 
on Binder

This tutorial demonstrates the use of computational note-
books for transparent dissemination of data analysis work-
flows and results. The tutorial steps though a metabolomics 
computational workflow implemented as a Jupyter Notebook 

and deployed on Binder. The workflow is designed to ana-
lyse a deconvolved and annotated metabolomics data set 
(provided in an Excel workbook) and is an example of the 
standard data science axiom: Import, Tidy, Model, and 
Visualise.

The Jupyter notebook for this tutorial is named Tutorial1.
ipynb and is available at GitHub in the repository https​://
githu​b.com/cimcb​/Metab​Workf​lowTu​toria​l. This repository 
can be downloaded (cloned) to the researcher’s own com-
puter, or run on the Binder service. In the text we assume 
that the tutorial is being run using the Binder service. To 
open the notebook on Binder, go to the tutorial homepage: 
https​://cimcb​.githu​b.io/Metab​Workf​lowTu​toria​l and click 
on the topmost “Launch Binder” icon to “launch the tuto-
rial environment in the cloud”. It will take a short while for 
Binder to build and deploy a new temporary virtual machine. 
Once this is ready the Jupyter notebook landing page will 
show the files present in this copy of the GitHub repository 
(Supplementary Fig. 1).

The tutorial workflow analysis interrogates a published 
dataset used to discriminate between samples from gastric 
cancer and healthy patients (Chan et al. 2016). The dataset is 
available in the Metabolomics Workbench database (http://
www.metab​olomi​cswor​kbenc​h.org, Project ID PR000699). 
For this tutorial, the data are stored in the Excel workbook 

Fig. 4   Example Jupyter Notebook Screenshot. At the top of the page, 
there is the Jupyter menu bar and ribbon of action buttons. The main 
body of the notebook then displays text and code cells, and any out-
puts from code execution. This screenshot taken near the end of Tuto-
rial 1 when the partial least squares discriminant analysis model is 
being evaluated. Three plots are generated, showing comparisons of 
the performance of the model on training and holdout test datasets: 

a violin plot showing the distribution of known positive and nega-
tive in both training and test sets, and the class cut-off (dotted line); 
probability density functions for positive and negative classes in the 
training and test sets (the training set datapoints are rendered as more 
opaque); ROC curves of model performance on training (with 95% 
CI) and test set

http://mybinder.org
https://github.com/cimcb/MetabWorkflowTutorial
https://github.com/cimcb/MetabWorkflowTutorial
https://cimcb.github.io/MetabWorkflowTutorial
http://www.metabolomicsworkbench.org
http://www.metabolomicsworkbench.org
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GastricCancer_NMR.xlsx using the Tidy Data framework 
(Wickham 2014): each variable is a column, each observa-
tion is a row, and each type of observational unit is a table. 
The data are split into two linked tables. The first, named 
‘Data’, contains data values related to each observation. i.e. 
metabolite concentrations M1 … Mn, together with meta-
data such as: ‘sample type’, ‘sample identifier’ and ‘outcome 
class’. The second, named ‘Peak’, contains data that links 
each metabolite identifier (Mi) to a specific annotation and 
optional metadata (e.g. mass, retention time, MSI identifica-
tion level, number of missing values, quality control meas-
ures, etc.). The Excel file can also be downloaded from the 
Binder virtual machine for inspection on your own machine 
by selecting the checkbox next to the filename and clicking 
on the Download button in the top menu (Supplementary 
Fig. 1).

To begin the tutorial, click on the Tutorial1.ipynb file-
name (Supplementary Fig. 1). This will open a new tab in 
your browser presenting the Jupyter notebook (Supplemen-
tary Fig. 2). At the top of the page there is a menu bar and 
ribbon of action buttons similar to those found in other GUI-
based software, such as Microsoft Word. The interface is 
powerful, and it is worth taking time to become familiar with 
it, but for this tutorial only the “Run” button and the “Cell” 
and “Kernel” drop down menus are required.

The rest of the page is divided into “code cells” and “text 
cells”. The “text cells” briefly outline the context and com-
putation of the “code cells” beneath them. Code and text 
cells can be distinguished by their background colour (code 
cells are slightly grey, text cells are slightly red), by the text 
formatting (code cells have a fixed-width font, text cells have 
word processor-like formatting), and the “In []:” marker text 
is present next to each code cell.

To run a single code cell, first select it by clicking any-
where within the cell, which will then be outlined by a green 
box (if you select a text cell, this box is blue—Supplemen-
tary Fig. 3). Once a cell is selected, the code in the cell 
can be executed by clicking on the “Run” button in the top 
menu. Multiple cells can also be run in sequence by choos-
ing options from the dropdown list in the “Cell” menu item. 
The options include “Run All” (runs all the cells in the note-
book, from top to bottom), and “Run all below” (run all cells 
below the current selection). These can be used after chang-
ing the code or values in one cell to recalculate the contents 
of subsequent cells in the notebook.

The “computational engine” that executes the code con-
tained in a notebook document is called the kernel, and it 
runs continually in the background while that notebook 
is active. When you run a code cell, that code is executed 
by the kernel and any output is returned back to the note-
book to be displayed beneath the cell. The kernel stores 
the contents of variables, updating them as each cell is 
run. It is always possible to return to a “clean” state by 

choosing one of the “Restart Kernel” options from the 
“Kernel” menu item’s dropdown list. Selecting “Restart & 
Run All” from the “Kernel” dropdown menu will restart 
the kernel and run all cells in order from the start to the 
end of the notebook.

Beginning from a freshly-loaded Tutorial1.ipynb note-
book in the Binder, clicking on “Cell->Run All” or “Kernel-
>Restart & Run All” will produce a fully executed notebook 
that matches the output in the static supplementary html file 
Tutorial1.html (cimcb​.githu​b.io/Metab​Workf​lowTu​toria​l/
Tutor​ial1.html). Choosing “Restart and Clear Outputs” from 
the “Kernel” dropdown menu, will reset the notebook and 
clear all data from memory and remove any outputs, restor-
ing its original state.

The tutorial can be completed by reading the text cells 
in the notebook and inspecting, then running, the code in 
the corresponding code cells. This is an example of “Lit-
erate Programming” that weaves traditional computing 
source code together with a human-readable, natural lan-
guage description of the program logic (Knuth 1984). The 
notebook interface makes notable advances on the original 
proposition for literate programming that are used in this 
tutorial, the most significant of which is that the output of 
running the code is also incorporated into the document. The 
browser interface allows for further enhancements, such as 
hyperlinks to external webpages for explanations and fur-
ther reading about technical terms, embedded interactive 
spreadsheet-like representation of large datasets (e.g. sec-
tion 2. Load Data and Peak Sheet), and embedded interactive 
graphical output (e.g. section 4. PCA Quality Assessment).

3.2.2 � Tutorial 2: interacting with and editing a Jupyter 
Notebook on Binder

The second tutorial is interactive and showcases the utility 
of computational notebooks for both open collaboration and 
experiential education in metabolomics data science. Tuto-
rial 2 is accessed on GitHub through the same process as 
described for Tutorial 1. To open the notebook on Binder, 
go to the tutorial homepage: https​://cimcb​.githu​b.io/Metab​
Workf​lowTu​toria​l and click on the topmost “Launch Binder” 
icon to “launch the tutorial environment in the cloud”, then 
click the Tutorial2.ipynb link on the Jupyter landing page. 
This will present a new tab in your browser containing the 
second tutorial notebook. The functionality of this notebook 
is identical to Tutorial 1, but now the text cells have been 
expanded into a comprehensive interactive tutorial. Text 
cells, with a yellow background, provide the metabolomics 
context and describe the purpose of the code in the follow-
ing code cell. Additional coloured text boxes are placed 
throughout the workflow to help novice users navigate and 
understand the interactive principles of a Jupyter Notebook:

http://cimcb.github.io/MetabWorkflowTutorial/Tutorial1.html
http://cimcb.github.io/MetabWorkflowTutorial/Tutorial1.html
https://cimcb.github.io/MetabWorkflowTutorial
https://cimcb.github.io/MetabWorkflowTutorial
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3.2.2.1  Action (red background labelled with  ‘gears’ 
icon)  Red boxes provide suggestions for changing the 
behaviour of the subsequent code cell by editing (or sub-
stituting) a line of code. For example, the first red cell 
describes how to change the input dataset by changing the 
path to the source Excel file.

3.2.2.2  Interaction (green background with  ‘mouse’ 
icon)  Green boxes provide suggestions for interacting with 
the visual results generated by a code cell. For example, the 
first green box in the notebook describes how to sort and 
colour data in the embedded data tables.

3.2.2.3  Notes (blue background with ‘lightbulb’ icon)  Blue 
boxes provide further information about the theoretical rea-
soning behind the block of code or a given visualisation. 
This information is not essential to understand Jupyter Note-
books but may be of general educational utility and interest 
to new metabolomics data scientists.

To complete the tutorial, first execute the notebook by 
selecting the “Restart & Run All” option in the “Kernel” 
dropdown menu. Move through the notebook one cell at a 
time reading the text and executing the code cells. When 
prompted, complete one (or multiple) modifications sug-
gested in each ‘action’ box, and the click “Run all below” 
from the “Cell” dropdown menu, observing the changes in 
cell output for all the subsequent cells. Further guidance is 
included in the notebook itself.

It is possible to save the edited notebook to the Binder 
environment, but any changes made to the notebook during 
the tutorial are lost when the Binder session ends. To keep 
changes made to the tutorial notebook or its output, modi-
fied files must be downloaded to your local computer before 
you end the session. Modified files can also be downloaded 
from the Jupyter landing page. To download files, click the 
checkbox next to each file you wish to download, and then 
click the ‘Download’ button from the top menu.

3.2.3 � Tutorial 3: downloading and installing a Jupyter 
Notebook on a local machine

Jupyter Notebooks can be run on a standard laptop or desk-
top computer in a number of different ways, depending on 
the operating system. The Anaconda distribution provides a 
unified, platform-independent framework for running note-
books and managing Conda virtual environments that is con-
sistent across multiple operating systems, so for convenience 
we will use the Anaconda interface in these tutorials.

To install the Anaconda distribution, first download 
the Python 3.x Graphical Installer package from the Ana-
conda webpage (https​://www.anaco​nda.com/distr​ibuti​on/) 
then open the installer and follow the instructions to com-
pete the installation (https​://docs.anaco​nda.com/anaco​nda/

insta​ll/). Be sure to download the installer package specific 
to your computer’s operating system (e.g. macOS, Micro-
soft Windows or Linux). When the process is completed, 
the “Anaconda Navigator” application will be installed in 
your applications folder.

To start Jupyter on your machine first launch the Ana-
conda Navigator application. This will display a home 
screen with a sidebar menu on the left-hand side and the 
main area showing a panel of application icons, with short 
descriptions. Locate the Jupyter Notebook application and 
icon in this panel and click the “launch” button under the 
icon. This will start a Jupyter web server and open the 
Jupyter landing page in your default web browser. To run 
an existing Jupyter notebook, navigate to the appropriate 
folder on your computer’s filesystem in the Jupyter landing 
page, and click on the notebook (.ipynb) file you wish to 
open. To end a Jupyter session, click on the “quit” button 
in the top right-hand corner of the Jupyter landing page. 
Quit now if you have been working along.

To run the Tutorial notebooks, we need to download 
the tutorial repository containing those notebooks from 
GitHub and set up a local “virtual environment” that con-
tains the programming libraries and software tools neces-
sary to run the code cells in the notebooks.

To download the notebook and associated files from the 
Github repository page (https​://githu​b.com/cimcb​/Metab​
Workf​lowTu​toria​l), click on the green button labelled 
“clone or download” and choose the option to “Download 
ZIP”. Save the zip file (MetabWorkflowTutorial-master.
zip) in a convenient location. Extract the zip file to create 
a new folder in the same location as the .zip file, called 
“MetabWorkflowTutorial-master”. The contents of this 
folder are the files visible in the repository at the GitHub 
site. We will refer to this folder as the “repository root”, 
or just “root”.

The Jupyter Notebooks in the repository require several 
Python packages to be installed in order to be run suc-
cessfully. It would be possible to install these on the local 
computer so that they are visible to, and accessible by, all 
notebooks on the computer. However, it is often the case 
that different repositories and projects require alternative, 
incompatible versions of these packages. So, in practice, it 
is not usually possible to install a single set of packages that 
meets the needs of all the projects that a user would want to 
run. A technical solution to this is to create a new “virtual 
environment” that contains only the packages necessary for a 
project to run, and keeps them separate (“sandboxes” them) 
from any other projects. Environments can be created when 
required, and deleted when no longer necessary, without 
affecting other projects or the operation of the computer. 
It is good practice to create a new virtual environment for 
each project, and typical that multiple such environments are 
set up, and exist simultaneously on the same computer. The 

https://www.anaconda.com/distribution/
https://docs.anaconda.com/anaconda/install/
https://docs.anaconda.com/anaconda/install/
https://github.com/cimcb/MetabWorkflowTutorial
https://github.com/cimcb/MetabWorkflowTutorial


	 K. M. Mendez et al.

1 3

  125   Page 12 of 16

Anaconda Navigator application provides an interface for 
creating and managing these virtual environments.

To create a new virtual environment for the tutorial, 
first open the Anaconda Navigator application and click on 
“Environments” in the left-hand sidebar. The main panel 
will change to list any virtual environments that have been 
created using Anaconda. If no environments have been cre-
ated only “base (root)” will be listed. To the right of each 
virtual environment Anaconda Navigator lists the packages 
that have been installed in that environment.

It is common to create a new environment “from scratch” 
by specifying individual packages in the Anaconda Navi-
gator, but for this tutorial we will use a configuration file 
called “environment.yml” that is part of the GitHub reposi-
tory. This file describes all the packages that are necessary 
to reproduce an environment for running the tutorial note-
books. To create a new environment from this configura-
tion file, click on “Import” (at the bottom of the main panel 
of Anaconda Navigator) and navigate to the repository root 
folder. By default Anaconda Navigator expects configuration 
files with “.yaml” or “.yml” file extensions, so only the file 
named “environment.yml” should be highlighted in the file 
dialog box. Select this file and click “Open”. The “Import 
new environment” dialogue box will have autocompleted 
the “Name:” field for the new environment (“MetabWork-
flowTutorial”). To complete creation of the new environ-
ment, click on the “Import” button. Anaconda Navigator 
will show a progress bar in the main panel as it creates the 
new environment.

Once the environment has been created, click on the 
“Home” icon in the left-hand sidebar. In the main panel, 
the dropdown should now read “Applications on [Metab-
WorkflowTutorial]”, which indicates that the MetabWork-
flowTutorial environment which was just created is now 
active. If “MetabWorkflowTutorial” is not visible, click on 
the dropdown menu and select that environment. Click on 
the “Launch” button under Jupyter Notebook in the main 
panel, to launch Jupyter in your web browser.

The Jupyter landing page will start in your home folder. 
To use the tutorial notebooks, navigate to the repository root. 
The notebooks for Tutorial 1 and 2 can now be run on your 
own computer, just as on Binder, by selecting the appro-
priate notebook file. However any output or changes to the 
contents of a notebook file will now be saved persistently in 
the local computer and can be reused at any time.

As an alternative you may wish to try to create a vir-
tual environment and launch Jupyter in your web browser 
through a terminal window (command window). To do this 
open the terminal window (type ‘terminal’ in your comput-
er’s search box), then type the following five lines of code:

git clone https://github.com/cimcb/
MetabWorkflowTutorial

cd MetabWorkflowTutorial
conda env create -f environment.yml
conda activate MetabWorkflowTutorial
jupyter notebook

Line one creates an exact copy of the github file directory 
on your local machine in the folder ‘MetabWorkflowTuto-
rial’. Line two moves you into that folder. Line three creates 
the virtual environment called “MetabWorkflowTutorial” 
using the contents of the environment.yml file. Line four 
activates the virtual environment. Line five launches a local 
Jupyter notebook server and opens the Jupyter landing page 
in your web browser, from which you can run the tutorials.

To close the local Jupyter notebook server press 
“<control>c” twice in the terminal window and it will ask 
you to confirm the action. You may then close the virtual 
environment by typing:

conda deactivate

When you no longer need the virtual environment, the 
following will delete it from your computer:

conda remove –name MetabWorkflowTuto-
rial –all

If you created a virtual environment using Anaconda 
Navigator you will have to delete the environment before 
creating a fresh version.

3.2.4 � Tutorial 4: creating a new Jupyter Notebook 
on a local computer

Tutorial 4 builds on tutorial 3. Please ensure that the Ana-
conda Python distribution is installed on your computer.

In this tutorial we will create a new Jupyter notebook 
that demonstrates the use of visualisation methods available 
in Anaconda Python without the need to install additional 
third-party packages. We will upload a generic metabo-
lomics data set and write code to produce four graphical 
outputs:

(1)	 A histogram of the distribution of QCRSD across the 
data set.

(2)	 A kernel density plot of QCRSD vs. D-ratio across the 
data set.

(3)	 A PCA scores plot of the data set labelled by sample 
type.

(4)	 A bubble scatter plot of molecular mass vs. retention 
time, with bubble size proportional to QCRSD

The data set included in this tutorial is previously unpub-
lished, and of arbitrary biological value. It describes serum 

https://github.com/cimcb/MetabWorkflowTutorial
https://github.com/cimcb/MetabWorkflowTutorial
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data acquired using a C18+ LC–MS platform consisting of 
3084 unidentified peaks and 91 samples. Of the 91 sam-
ples, 23 are pooled QCs injected every 5th sample across 
the experimental run. The Peak table contains informa-
tion on the molecular mass, retention time of each detected 
metabolite, and the associated QCRSD and D-ratio values 
calculated following recommended quality control proce-
dures (Broadhurst et al. 2018). The data are presented in an 
Excel file using the previously-described “tidy data” format.

Tutorial 4 is available in a GitHub repository at https​://
githu​b.com/cimcb​/Metab​Simpl​eQcVi​z. Download and unzip 
the repository to a folder on your own computer, using the 
method described in Tutorial 3 (the location of this folder 
will now be the “repository root”). This copy (clone) of the 
repository is for reference only as we will be recreating the 
contents of this directory under a different name as we move 
through this tutorial and Tutorial 5.

First create a new Jupyter notebook. To do this, start the 
Anaconda Navigator application if it is not already open. 
Ensure that “[base (root)]” is selected in the “Applications 
on” dropdown list of the main panel, then launch Jupyter 
Notebook. This will start a new Jupyter notebook server in 
your browser and show files from the home directory on the 
landing page. Navigate to the repository root (the “Metab-
SimpleQcViz” folder). To create a new notebook, click on 
the “New” button in the top right corner of the page. This 
will list supported Jupyter Notebook languages in the drop-
down. Select “Python 3” from this list. A new tab will open 
in your browser, showing a blank notebook called “Untitled” 
(at the top of the page). Rename the notebook by clicking on 
the text “Untitled” and replacing it with “myExample”. This 
will create a new file in the repository called “myExample.
ipynb”

When the “myExample.ipynb” notebook is launched, it 
contains a single empty code cell. We will use this cell to 
add a title to the notebook. To do this we need to convert the 
cell type to be a Markdown cell, then type a header in the 
cell, and execute it. First, select the empty cell by clicking 
anywhere within the cell. To convert the cell type, click on 
the dropdown field marked “Code” in the top menu bar and 
select “Markdown”. The “In[]:” prompt should disappear 
from the left-hand side of the cell. Now click inside the cell 
to see the flashing cursor that indicates the cell is ready to 
accept input. Type “# Tutorial 4” and click on the “Run” but-
ton in the top menu. The formatting of the first cell should 
change, and a new code cell should appear beneath it.

In the new code cell, we will place Python code that:

1.	 Imports the Pandas package (necessary to load the Excel 
spreadsheet).

2.	 Loads the dataset into variables called “data” and 
“peak”.

3.	 Report the number of rows and column in the tables.

4.	 Displays the first few lines of the resulting table.

The required code is provided in the static supplementary 
html file Tutorial4.html (https​://cimcb​.githu​b.io/Metab​Simpl​
eQcVi​z/Tutor​ial4.html) and “Tutorial4.ipynb” notebook and 
can be copy-and-pasted or typed in manually, as preferred. 
When the code is complete, click on the “Run” button again 
to execute the cell. On completion, two tables should be 
visible below the code cell (one for “data”, one for “peak”), 
and a new empty code cell should be placed beneath this.

Next we add the code required to draw a histogram of the 
RSD values across all the detected peaks in this data set. 
Using the Tutorial4.html file as a guide, add in the required 
explanatory text and Python code and click on the “Run” 
button after each step.

Continue adding in the remaining explanatory text and 
Python code using the Tutorial4.html file. After completion 
you will have a Jupyter notebook that takes a metabolomics 
dataset through the process of generating diagnostic plots 
for quality control. Once you are satisfied with the state of 
the notebook, it can be saved by clicking on the floppy disk 
icon (far left on the menu). The notebook can then be closed 
by clicking “File” and then “Close and Halt” from the top 
Jupyter menu. The notebook tab will be closed, showing the 
Jupyter landing page. The Jupyter session can be closed by 
clicking on “Quit” on the Jupyter landing page tab of your 
web browser (this tab may not close automatically).

3.2.5 � Tutorial 5: deploying a Jupyter Notebook on Binder 
via GitHub

Tutorial 5 builds on tutorial 3 and 4. To complete this tuto-
rial, we will create a new GitHub repository. A GitHub 
account is required for this. If you do not already have a 
GitHub account, please follow the instructions on GitHub 
at https​://help.githu​b.com/en/artic​les/signi​ng-up-for-a-new-
githu​b-accou​nt.

To create a new repository, log into the GitHub site (if 
you are not already logged in) and navigate to your profile 
page (https​://githu​b.com/<youru​serna​me>), then click on 
the “Repositories” link at the top of the page. To start a 
new repository, click on the “New” button at the top right 
of the page. This will open a new page titled “Create a new 
repository.” Each repository requires a name, and this should 
be entered into the “Repository name” field; use the name 
“JupyterExample”. Beneath the Repository Name field 
there is an optional Description box, and then below this a 
choice of public or private repository. Ensure that the ‘Pub-
lic’ option is chosen. Select the checkbox to “Initialize this 
repository with a README” (this is a file in which you 
will write useful information about the repository, later). 
Below this is the option to “Add a license” file. There are 
many alternative licences to choose from (https​://choos​ealic​

https://github.com/cimcb/MetabSimpleQcViz
https://github.com/cimcb/MetabSimpleQcViz
https://cimcb.github.io/MetabSimpleQcViz/Tutorial4.html
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ense.com/), and the choice for your own projects may be 
constrained by funder, home organisation, or other legal con-
siderations. We strongly recommend that all projects carry 
a suitable licence, and that you add the MIT License to this 
tutorial repository. Now, to create the repository, click the 
“Create repository” button.

On successful creation of the repository, GitHub will pre-
sent the new repository’s home page (this will be at https​://
githu​b.com/<youru​serna​me>/Jupyt​erExa​mple), with some 
options for “Quick setup”. Under the “Quick setup” notice, 
the LICENSE and README.md file will be shown, and 
clicking on either will open them. The README.md file for 
a repository is automatically displayed on the homepage, but 
in this case, it is empty (we can add text later).

Now we need to add the new Jupyter notebook and the 
Excel data file from tutorial 4 to the repository. We will 
do this using the GitHub “Upload files” interface, though 
there are several other ways to perform this action. To 
use the GitHub interface, click on the ‘Upload files’ but-
ton and either drag files from your computer, or click on 
“choose your files” to select files with a file dialogue box. 
Add the ‘myExample.ipynb’ and ‘data.xlsx’ files from your 
repository root. These files will be placed in the “staging 
area”, visible on the webpage but not yet committed to the 
repository.

GitHub imposes version control as a form of best prac-
tice on the repositories it hosts. One of the features of ver-
sion control best practice is that a description of the changes 
made to a repository should accompany every “commit” to 
that repository. To do this, enter the text “Add data and note-
book via upload” to the top field under “Commit changes.” 
Then, to commit the files to the repository, click on the 
“Commit changes” button.

Now that there is a publicly hosted GitHub repository 
containing a notebook and dataset, we are nearly ready to 
make the notebook available interactively through Binder. 
The final necessary component required is a configuration 
file. This file is vital, as it defines the environment Binder 
will build, with a specified programming language and all 
the necessary packages for the notebook to successfully 
operate. This configuration file is an Anaconda YAML file 
called ‘environment.yml’ and it contains a list of dependen-
cies (the programming language version and a list of pack-
ages used in the notebook) and channels (the location of 
these resources in the Anaconda cloud library). Detailed 
consideration of how to create these files is beyond the scope 
of the tutorial. Upload the environment.yml file from Tuto-
rial 4 (it is also included in the Supplementary File, to cut 
and paste if required) to the repository in the same way that 
the notebook and data files were uploaded.

We are now ready to build and launch a Binder virtual 
machine for this repository. To do this, open https​://mybin​
der.org in a modern web browser. The landing page presents 

a set of fields to be completed for Binder to build a virtual 
machine. The minimal requirement is to specify a GitHub 
repository URL in the “GitHub repository name or URL” 
field Enter the path to the home page of your repository 
(https​://githu​b.com/<youru​serna​me>/Jupyt​erExa​mple) in 
this field, and click on the ‘Launch’ button. Binder will use 
the configuration file in the root directory to build and store 
a Docker image for your repository. This process often takes 
several minutes.

Once the Binder repository is built, the URL shown in 
the field “Copy the URL below and share your Binder with 
others” (here: https​://mybin​der.org/v2/gh/<youru​serna​me>/
Jupyt​erExa​mple/maste​r) can be shared with colleagues. 
A button to launch the Binder can also be added into the 
README file on GitHub (we also strongly recommend 
this). Anyone using this URL in their browser, will be pro-
vided with an individual interactive session (1 CPU, 2 GB 
RAM running on Google Cloud) making available the note-
books of your repository in an interactive and editable form.

Congratulations, you have created your first Binder note-
book! Now share it with your colleagues!

It is important to remind users that data uploaded to a 
public GitHub repository is indeed public. If the user wants 
to share Jupyter Notebooks but not any associated metabo-
lomics data (or other sensitive data) then clear instructions 
on how to securely access and download the data needs to be 
included in the notebook text, and the location of that down-
loaded data be included in the requisite notebook code block 
(this could be a local hard drive, or uploaded to Binder while 
in session). If institutional security concerns preclude using 
a collaborative workspace such as Binder, then alternative 
cloud solutions such as Microsoft Azure can be investigated. 
Before doing so it is probably best that to consult with your 
institute IT representative.

4 � Summary

Due to the rate at which data are generated and new analy-
sis and visualisation methods are developed, the omics 
sciences have become highly vulnerable to irreproducibil-
ity. In attempt to ameliorate this, the metabolomics com-
munity has made several efforts to align with FAIR data 
standards in the areas of open data formats, data reposi-
tories, online spectral libraries, and metabolite databases. 
While there are also a number of open options for data 
analysis, these tend to exist as prescriptive and inflexible 
workflows that inadvertently enable users to apply data 
science methods without fully understanding their under-
lying principles and assumptions. For FAIR data science to 
exist in metabolomics, presentation of methods and results 
needs to be rapid, transparent, reusable, and recoverably 
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attached to published work. Furthermore, any framework 
enabling this must be intuitive and accessible to compu-
tational novices.

In this tutorial review, we have illustrated one pos-
sible solution for achieving open, transparent, yet intui-
tive data science within the metabolomics community. 
Jupyter Notebooks are an open-source, interactive web 
tool for creating seamless integration of text, code, and 
outputs (tables, figures) into a single live executable 
document. When used alongside data repositories, such 
as GitHub, and open cloud-based deployment services, 
such as Binder, these computational notebooks can greatly 
enhance transparent dissemination of data science meth-
ods and results during the publication process. In addition 
to the benefit of increased transparency, computational 
notebooks provide a valuable tool for open collaboration. 
Rather than exchanging multiple individual data, code, 
methods, and results files, computational notebook envi-
ronments provide a single mechanism for collaborators 
(both within and beyond a single research group) to share 
and interact with the data science workflow. Moreover, this 
interactive nature, combined with the ability to provide 
extensive documentation, provides a valuable opportunity 
for enhanced learning in the computer programming and 
data science contexts. Given that they are increasingly rec-
ognised as being foundational to contemporary research, 
it is imperative that scientists continue to enhance these 
skills over the duration their career. This open and interac-
tive framework enables scientists to continue to learn and 
also keep up-to-date with latest data science methods and 
trends without reinstalling the wheel.
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