
Vol.:(0123456789)1 3

Metabolomics (2019) 15:125
https://doi.org/10.1007/s11306-019-1588-0

REVIEW ARTICLE

Toward collaborative open data science in metabolomics using
Jupyter Notebooks and cloud computing

Kevin M. Mendez1  · Leighton Pritchard2  · Stacey N. Reinke1  · David I. Broadhurst1 

Received: 30 May 2019 / Accepted: 7 September 2019
© The Author(s) 2019

Abstract
Background  A lack of transparency and reporting standards in the scientific community has led to increasing and widespread
concerns relating to reproduction and integrity of results. As an omics science, which generates vast amounts of data and
relies heavily on data science for deriving biological meaning, metabolomics is highly vulnerable to irreproducibility. The
metabolomics community has made substantial efforts to align with FAIR data standards by promoting open data formats,
data repositories, online spectral libraries, and metabolite databases. Open data analysis platforms also exist; however,
they tend to be inflexible and rely on the user to adequately report their methods and results. To enable FAIR data science
in metabolomics, methods and results need to be transparently disseminated in a manner that is rapid, reusable, and fully
integrated with the published work. To ensure broad use within the community such a framework also needs to be inclusive
and intuitive for both computational novices and experts alike.
Aim of Review  To encourage metabolomics researchers from all backgrounds to take control of their own data science, mould
it to their personal requirements, and enthusiastically share resources through open science.
Key Scientific Concepts of Review  This tutorial introduces the concept of interactive web-based computational laboratory
notebooks. The reader is guided through a set of experiential tutorials specifically targeted at metabolomics researchers,
based around the Jupyter Notebook web application, GitHub data repository, and Binder cloud computing platform.

Keywords  Open access · Reproducibility · Data science · Statistics · Cloud computing · Jupyter

1  Introduction

Historically, journal articles have been the primary medium
for sharing new scientific research. The intent of article
content, and the corresponding review process, is to ensure
adequate evidence of reproducibility; however, a recent
report highlights increasing and widespread concerns relat-
ing to reproduction and integrity of results, with 52% of
responding scientists agreeing there is a significant ‘crisis’
of reproducibility (Baker 2016). We and many others in the
metabolomics community hold the view that a lack of trans-
parency and incomplete reporting has led to significant mis-
interpretation of data and a lack of trust in reported results
(Broadhurst and Kell 2006; Considine et al. 2017; Goodacre
et al. 2007; Spicer et al. 2017; Xia et al. 2013). A mechanism
that may address these concerns is for the scientific com-
munity to take advantage of new online publishing media
and associated data services, encouraging open science that
recognises and aligns with the FAIR (Findable, Accessible,

Kevin M. Mendez and Leighton Pritchard have contributed equally
to this article.

Electronic supplementary material  The online version of this
article (https​://doi.org/10.1007/s1130​6-019-1588-0) contains
supplementary material, which is available to authorized users.

 *	 Stacey N. Reinke
	 stacey.n.reinke@ecu.edu.au

 *	 David I. Broadhurst
	 d.broadhurst@ecu.edu.au

1	 Centre for Metabolomics & Computational Biology, School
of Science, Edith Cowan University, Joondalup 6027,
Australia

2	 Strathclyde Institute of Pharmacy & Biomedical
Sciences, University of Strathclyde, Cathedral Street,
Glasgow G1 1XQ, Scotland, UK

http://orcid.org/0000-0002-8832-2607
http://orcid.org/0000-0002-8392-2822
http://orcid.org/0000-0002-0758-0330
http://orcid.org/0000-0003-0775-9581
http://crossmark.crossref.org/dialog/?doi=10.1007/s11306-019-1588-0&domain=pdf
https://doi.org/10.1007/s11306-019-1588-0

	 K. M. Mendez et al.

1 3

 125   Page 2 of 16

Interoperable, and Reusable) data principles (Wilkinson
et al. 2016).

This concern in metabolomics and other post-genomic
platforms is a consequence of their success. The unprec-
edented rate at which new mathematical algorithms and
computational tools are developed and adopted means that
published findings are increasingly the sole result of com-
putationally intensive data processing (Teschendorff 2019).
Advances in measurement technologies continue to gener-
ate ever increasing volumes of high-throughput data, which
in turn require multidisciplinary expertise as ever more
complex and elaborate statistical methods are used to infer
generalisable biological associations (Pinu et al. 2019) and
sophisticated visualization tools are used to make large data-
sets more understandable (Gehlenborg et al. 2010; Holten
2006). Indeed, recent advances in machine learning algo-
rithms combined with improved visualisation strategies now
allow researchers to integrate and interrogate multi-omic
data sets of a size that was unmanageable 5 years ago (for
example, Lee et al. 2019; Reinke et al. 2018; Rohart et al.
2017). For science to continue to move forward under this
deluge of data while avoiding technical debt and maintain-
ing reproducibility, the processes surrounding research data
management, storage, analysis, and presentation need to be
agile, transparent, reusable, and recoverably attached to pub-
lished work. A further challenge is that, to gain broad adop-
tion and be used by busy practising researchers, frameworks
conforming to these requirements must also be intuitive and
accessible to users who may have limited computational
expertise.

Over the last several years, the metabolomics commu-
nity has made bold strides towards adopting FAIR standards
for data including: development of vendor-independent raw
data formats (such as mzXML) (Pedrioli et al. 2004); open
access data repositories such as MetaboLights (Haug et al.
2012), and Metabolomics Workbench (Sud et al. 2016); open
access online spectral reference libraries such as METLIN
(Smith et al. 2005), mzCloud (https​://www.mzclo​ud.org/),
and MassBank (Horai et al. 2010); and online databases
for metabolite identification and biochemical association
such as HMDB (Wishart et al. 2018). These resources and
others like them are fundamental to the future integrity of
metabolomics as a science. It is well-recognised that open,
interoperable datasets are essential for progress, and the
computational tools and methods that convert, step-by-step,
metabolite data to biochemical meaning also need to be
FAIR (Wilkinson et al. 2016).

Numerous groups within the metabolomics community
actively work to standardise computational workflows and
provide online tools for statistical analysis (some recent
advances are discussed later in this paper). However, a
common characteristic of many computational frameworks
encountered by researchers is a tendency to be prescriptive,

in that they provide a restricted set of well-curated “plug
and play” computational stepping stones that enable only
limited choices within the workflow framework. These
constraints limit the ability of a user to fully exploit the
provided methodologies, or to explore and develop new
analytical approaches. Presentation of analysis steps as plug-
gable “black box” approaches is convenient but diminishes
opportunities for education and understanding of the analy-
sis methods being used. To fully embrace the concept of
‘open data science’ the metabolomics community needs an
open and easily accessible computational environment for
rapid collaboration and experimentation.

The subject of this tutorial review is a practical open-sci-
ence solution to this problem that balances ease-of-use and
flexibility, specifically targeted to novice metabolomic data
scientists. This solution takes the form of ‘computational lab
books’, such as Jupyter Notebooks (Kluyver et al. 2016), that
have a diverse range of overlapping potential applications
in the post-genomic research community (Fig. 1). Firstly,
they enable open collaboration by providing a central plat-
form for researchers to cooperatively develop methodology
and perform data analysis. Secondly, they provide a means
for transparent dissemination of a finished study or product.
In a formal context computational lab books can comprise
supplemental material extending the reach of a publica-
tion that enables readers to rapidly recreate data analyses

Fig. 1   Applications for Jupyter Notebooks in the postgenomic com-
munity. Open virtual notebooks have three main, non-mutually
exclusive, applications. First, they provide an efficient means for
transparent dissemination of methods and results, thereby enabling
alignment with FAIR data principles. Second, they provide a central
and interactive platform that facilitates open collaboration to develop
methodology and perform data analysis. Finally, their interactive and
easily deployable framework can drive experiential learning opportu-
nities for computational novices to develop their own skills and better
understand metabolomics data analysis

https://www.mzcloud.org/

Toward collaborative open data science in metabolomics using Jupyter Notebooks and cloud…

1 3

Page 3 of 16  125

and figures for themselves. In an informal context, they can
provide a polished “showcase” that allows users to interact
with and understand the functionality of underlying algo-
rithms. Finally, the inherent promotion of direct user interac-
tion enables experiential learning opportunities, where the
user develops their understanding and skills through active
experimentation, reflective observation, and abstract con-
ceptualisation (Kolb 1984).

In this review, we provide a brief overview of current data
science frameworks relevant to the metabolomics commu-
nity, corresponding barriers to achieving open science, and
finally a practical solution in the form of the computational
lab notebook, where code, prose and figures are combined
into an interactive notebook that can be published online
and accessed in a modern web browser through cloud com-
puting. We present a set of experiential learning tutorials
introducing the Jupyter Notebook framework, specifically
tailored to the needs of a metabolomics researcher. The
tutorials are designed in a hierarchy of complexity follow-
ing Bloom’s taxonomy of educational learning objectives
(Anderson et al. 2001). Tutorial one introduces the basic
concepts of Jupyter Notebooks. Tutorial two encourages
interactive learning using an existing metabolomics data
science Jupyter notebook. Tutorial three establishes the
framework in which the user can create a Jupyter notebook
on a local computer. Tutorial four teaches the user how to
create a simple notebook for their own data. Tutorial five
explains how to publish and share a new Jupyter notebook
in the cloud. The overarching aim of this document is to
encourage metabolomics researchers from all backgrounds,
possibly with little or no computational expertise, to seize
the opportunity to take control of their own data science,
mould it to their personal requirements, and enthusiastically
share resources through open science.

2 � Background

A glossary of terms has been provided in Table 1 to help
clarify technical terms used in this tutorial.

2.1 � Software tools and barriers to open science

Many statistical and data science software tools are avail-
able for use in metabolomics data analysis and visualisa-
tion. They can be classified as commercial (requiring a paid
licence) or “free” (as in zero-cost) and, in either case, may
be open-source (the underlying computer code is available
for inspection) or proprietary (closed-source, code unavail-
able for inspection). The primary mode of interaction with
the user may be via scripting, a command line (CLI), or a
graphical (GUI) user interface.

Commercial, proprietary (closed-source) GUI software
packages include Microsoft Excel, Minitab, SPSS, Unscram-
bler, and SIMCA (Umetrics). Tools like these generally
offer the benefits of being user-friendly, stable and reliable
platforms with well-documented resources, and have a high
level of technical customer support. However, proprietary
software can also lack methodological transparency because
the source code is not freely available. When source code
cannot be inspected a researcher’s ability to interrogate
underlying algorithms, demonstrate correctness, diagnose
problems, or improve the tool is limited. If the package
prescribes an analytical workflow it may be difficult, or
even impossible, to embed alternative third-party compu-
tational steps. If additional functionality is required users
are dependent on the software’s developers to implement
this, which may impose an additional expensive commercial
transaction even in cases where the request is approved. It is
also difficult to produce usable graphical interfaces that are
also customisable by the user, so this kind of interface can
be relatively inflexible and so constrain the researcher to a
specific mode of working.

Command-line or script-based proprietary software pack-
ages such as MATLAB, SAS, and Stata overcome some of
the limitations imposed by graphical interfaces and closed-
source code by allowing third party code to be embedded,
and implementation of alternative algorithms and arbitrary
workflows by the researcher. In the case of MATLAB the
source code of some or all of the proprietary tools is read-
able, which improves transparency of methods, and it is pos-
sible for the programmer to develop open custom graphical
interfaces. However, even then open-source commercial
packages can carry a significant financial cost limiting the
ability of researchers, especially those in developing nations
or on smaller budgets, to replicate results, adapt methods,
or collaborate to develop better workflows. We consider
that open-source “free” tools and applications will form the
future basis of shareable research, as they enable the greatest
possible degree of transparency and reproducibility.

Open-source GUI workflows providing simplified or user-
friendly access to underlying programs and analytical tools
have been developed to improve usability for scientists who
have not yet acquired the programming skills necessary to
write their own pipelines and workflows. Within the metab-
olomics community popular applications include: Meta-
boAnalyst (Xia and Wishart 2011), Galaxy-M (Davidson
et al. 2016), and Workflow4Metabolomics (Giacomoni et al.
2015). Galaxy workflows provide a unified data visualisa-
tion and analysis environment that allows seamless (to the
user) integration of multiple open-source software packages,
and tools written in multiple programming languages (Afgan
et al. 2018). These tools allow rapid construction, imple-
mentation, and sharing of standardised workflows, includ-
ing integration with remote and local databases, without the

	 K. M. Mendez et al.

1 3

 125   Page 4 of 16

need for programming skills. This provides a mechanism
to ensure methodological consistency and precise report-
ing standards. Resources such as Galaxy simplify the user
experience and enable flexible use of a wide range of open
source tools.

Despite the many strengths of open-source GUI work-
flows such as Galaxy, they do not always provide users
with a free choice of available data analysis methods. For
example, unless the user has administrative rights on the
server, the browser interface of Galaxy does not permit
direct access to software package management. This restricts

extension, modification, and development of workflows by
the user. Although an arbitrary set of tools can in principle
be “wrapped” by a researcher for use with Galaxy, there may
be in practice only limited support for requests to imple-
ment a tool, especially when working on public servers. It
is possible to implement arbitrary tools and processes in a
locally-managed Galaxy instance with administrative control
of the workflow service, but this requires investment of time,
technical expertise, and local computational capacity, as well
as carrying implications for long-term systems support and
maintenance.

Table 1   Glossary of terms

Paper section Term Definition

1 Data repository A platform (such as Metabolights or Metabolomics Workbench) used to store meta-
data and experimental data

2.1 Command line interface (CLI) A user interface that is used to execute operating system functions using text
2.1 Graphical user interface (GUI) A user interface that is used to execute operating system functions using graphical

icons or other visual indicators
2.1 Integrated development environment (IDE) A software application that provides an interface to write and test code (such as

RStudio, PyCharm and Visual Studio Code). It typically includes basic tools such
as a code editor, compiler, and a debugger

2.1 Containers Self-contained units of software that package code, dependencies, system tools and
system libraries. The purpose is to be reliably transferred between, and deployed
on, various operating systems and infrastructures

2.1 JavaScript object notation (JSON) format A lightweight data-interchange format commonly used for communication between
a browser and server. Internally, Jupyter Notebooks are JSON files with the.ipynb
extension

2.1 Packages Units of shareable code that can be imported and used to provide additional func-
tionality (such as matplotlib and scikit-learn)

2.1 Application programming interface (API) A set of defined functions and protocols for interacting with the software or package
2.1 Kernel The “computational engine” that runs and introspects the code contained in a note-

book document. Jupyter supports a kernel for Python, as well as kernels for many
other languages (such as R, Julia, Kotlin, etc.)

2.2 Version control A documented history of changes made to a file, enabling step-by-step reproduction
and reconstruction of its development

2.2 Code repository A hosted archive (such as those at GitHub and BitBucket) of source code and sup-
porting files.

3 Virtual environment An isolated environment that contains a specific version of Python and dependencies
3.1.1 Distribution (Software) A collection of software bundled together
3.1.1 Markdown A lightweight markup language used to add and format plain text. It is used in Jupy-

ter Notebooks within “Markdown” cells
3.1.3 Configuration file A file used to set the initial settings and parameters for computer applications. It is

used in Binder to build the virtual environment with specific dependencies
3.2.1 Text cell (Markdown cell) A cell in the Jupyter Notebook used to write text (using the Markdown language)
3.2.1 Code cell A cell in the Jupyter Notebook used to run code (such as Python code)
3.2.3 Sandbox (Software development) A software environment typically used to run or test experimental code in isolation

from the rest of the system
3.2.5 Dependencies The packages (and versions) that are required to be installed to use the software. For

Python, these are the packages that need to be imported at the start of the file
3.2.5 Channels (Specific to Anaconda) The location where packages that are installed using conda are stored (such as

conda-forge and bioconda)
3.2.5 README A file (commonly markdown or text) used to communicate information to visitors

about the repository (such as purpose, usage, and contributors)
3.2.5 Root directory The directory (or folder) that is the highest level in a hierarchy

Toward collaborative open data science in metabolomics using Jupyter Notebooks and cloud…

1 3

Page 5 of 16  125

Even with a free choice of tools and algorithms, work-
flows implemented in GUI-based tools like Galaxy are “lin-
ear” in the sense that the browser interface imposes a process
in which data passes through a sequential chain of opera-
tions. These interfaces are not well-suited to representing
complex workflow logic, such as branches and loops that
explore alternative approaches or parameter choices as part
of the same analysis. This can inadvertently encourage a
“black box” one-size-fits-all approach to analysis that may
be of concern when the dataset is non-standard or, for exam-
ple, when a statistical analysis requires customisation due to
assumptions made by the model regarding the distribution
of the input data. Incurious application of standardised GUI
workflows with limited opportunity for experimentation can
lead to inappropriate analytical strategies and unintentional
misreporting of results. The linearity constraint is recog-
nised by the Galaxy developers, who provide a program-
matic Application Programming Interface (API) enabling
automation of complex workflow logic, but this requires
programming ability to use.

Another limitation of GUI workflow-based applications
can be a lack of contextual annotation. With most interfaces
the user must document separately why computational
methods and parameter settings were chosen in a specific
workflow. It is not typically possible through GUI workflow
interfaces to embed the experimental context, explanation
of methods, code, and figures into a single live (interactive)
document. The formal reporting may then be reduced to a
terse listing of steps and parameter values for generating
data, tables and figures, rather than a more readable “liter-
ate programming” account of the analysis. This retrospec-
tive approach is sufficient and appropriate for standardised,
repeated workflows that vary little from experiment to exper-
iment, such as a mass spectrometry deconvolution workflow
that converts a set of raw instrument files into an annotated
table (e.g. XCMS → CAMERA → MetFrag). However, when
a metabolomics scientist moves on to statistical analysis,
multivariate machine learning, and data visualisation to
extract and present a biologically-informative interpreta-
tion of the data, it is desirable to have an integrated, flexible
data analysis environment that includes detailed annotation
of analysis choices.

The most flexible data science solution is to conduct
analyses in one or more high-level open-source program-
ming languages such as C, Fortran, Java, Julia, Perl, Python,
Octave, R, or Scala, that also support sophisticated statistical
tools. Python and R have become especially popular lan-
guages in data science due to the availability of comprehen-
sive, robust, and well-documented code libraries (modules/
packages). Many statistical and machine learning packages
are available for these languages (including bindings to Gal-
axy, which overcomes some of the GUI-based limitations of
that platform), with strong data science community support

(Lantz 2013; Müller and Guido 2017). However, these gen-
eral-purpose languages may present novice (or non) data
scientists with a forbiddingly steep learning curve, especially
in comparison with GUI tools. To be most effective in these
languages a researcher requires a basic understanding of
computer programming to use the available code libraries
in their specific field. There is an initial learning curve, but
knowledge of a programming language is more generally
useful and broadly applicable than familiarity with a specific
software tool’s interface and can impact positively on many
areas of research. Programming is increasingly recognised
as a foundational skill for research and promoted at all levels
from primary to postgraduate education (Passey 2017). The
broad impact of this skillset throughout academic research,
including arts and humanities, is recognised in the growing
influence of training foundations such as The Carpentries
(https​://carpe​ntrie​s.org/) that aim to “[teach] researchers the
computing skills they need to get more done in less time and
with less pain.”

Several freely-available software tools bridge the gap
between GUI interfaces and high-level languages by pro-
viding a user interface for researchers to develop their own
code. For Python and R, integrated development environ-
ments (IDEs) such as PyCharm (Python), RStudio (R), and
more general multi-language IDEs (e.g. Visual Studio Code,
Komodo and Eclipse), provide additional tools for automat-
ing, testing and visualizing the process of writing scripts,
programs and analysis workflows. These IDEs can simplify
the learning and programming experience but are primarily
designed for larger program and application development,
rather than composing and sharing data analysis workflows.
However, IDEs in general are extremely useful even to the
novice programmer, and some prominent examples are spe-
cifically targeted towards data analysis, such as RStudio and
JupyterLab.

Recently, several independent strands of general-purpose
data science software development have been woven into
practical solutions to the various limitations of the above
frameworks. Firstly, RStudio established itself as the ‘go to’
data science IDE for R programming and was extended to
allow integration of R code, narrative text, and figures into
a single notebook interface using “RMarkdown” (Baumer
et al. 2014). The software companies Enthought Inc. and
Anaconda (formerly Continuum Analytics) independently
developed distributions of the Python programming lan-
guage to include core scientific computing packages. Ana-
conda later extended their distribution to include R. In 2015,
the non-profit Project Jupyter was established (Kluyver
et al. 2016) to “develop open-source software, open-stand-
ards, and services for interactive computing across dozens
of programming languages” (Project Jupyter 2019). Their
main product is Jupyter Notebook, a browser-based interac-
tive data science notebook environment. Jupyter Notebook

https://carpentries.org/

	 K. M. Mendez et al.

1 3

 125   Page 6 of 16

allows seamless integration of code, narrative text, and fig-
ures into a single live executable and editable document,
recorded in the open-standard and language-independent
JavaScript Object Notation (JSON) format. Notebooks may
be written in a single programming language, or a combina-
tion of multiple languages. Jupyter Notebooks can use ker-
nels for new or more specialised languages (such as Kotlin,
GAP, Haskell, etc.), which gives them an advantage of being
agnostic to programming language. Finally, integration of
Jupyter Notebooks with the Docker (www.docke​r.com) vir-
tualization platform enables operating system level work-
ing environments to be packaged into virtual “containers”,
which allows collections of notebooks and the supporting
third-party tools and software to be deployed as public, self-
contained, reproducible interactive services using cloud
computing.

2.2 � Collaboration through cloud computing

Open and dynamic collaboration on projects is critical to
effective working but remains a significant challenge for
researchers. There is a real and present need for efficient
sharing and management of files that allows easy access,
use, and version control (a documented history of the
changes made to a file, enabling step-by-step reproduction
and reconstruction of its development) for all collaborators.
Widely-used collaboration mechanisms such as sharing code
via email or online blogs are cumbersome, frequently lead-
ing to conflicts between the work of different researchers
as they work on the same files at the same time in different
locations. Cloud services including Box, Google Drive, and
Dropbox have become essential tools for scientists by pro-
viding shared online data and document storage. Tools such
as Microsoft Office Online and Google Suite provide real-
time collaboration tools enabling true simultaneous editing
of a single document by multiple authors, and services like
Dropbox are able to track edits and prompt users to keep
local copies of files up to date. Both approaches allow users
to step back through document history as a rudimentary
form of version control. They reduce practical barriers to
collaborative working and reduce frustration and conflicts
resulting from two or more people editing different copies
of the same file at the same time. Collaborative working on
metabolomic data analysis workflows would benefit from
adoption of similar approaches.

The source code hosting facilities Bitbucket, GitHub
and SourceForge are currently the dominant platforms for
sharing and collaborating on (particularly open-source)
software. GitHub has become the largest source code host-
ing facility in the world, with over 36 million users and
100 million repositories (GitHub 2019). These facilities
offer many benefits including: free public (and private)
source code repositories; enforced best practice through

version control; and additional administrative and project
management services that foster collaboration, including
project webpages and wikis, issue tracking, code reviews,
and task management. This makes GitHub and similar
services a practical option for development, publication
and distribution of Jupyter Notebooks, together with their
associated source code and test data.

Services such as GitHub and BitBucket allow col-
laborators to view and edit static code and view static
notebooks, but code cannot be executed directly on their
servers. To run Jupyter Notebooks and associated source
code, the user must either download and run a local copy
of the files, or upload and run the notebook “in the cloud”
using a cloud infrastructure provider such as Amazon
Web Services, Google Colab, Openstack, or Microsoft
Azure. The process of enabling the practical use of this
shared resource can therefore require a level of compu-
tational expertise that may be a deterrent to casual users
and restrict uptake by non-expert data-curious scientists.

The PhenoMeNal portal (http://pheno​menal​-h2020​.eu)
is an elegant solution to this problem for the metabolomics
community. PhenoMeNal (Peters et al. 2019) is an easy-
to-use, cloud-based metabolomics research environment
led by EMBL’s European Bioinformatics Institute. The
PhenoMeNal App Library includes over 50 widely used
metabolomics data analysis tools that can be accessed
either through Jupyter or Galaxy and deployed using a
cloud infrastructure provider. This curated software library
allows the community to maintain consistency across
workflows but, in common with other GUI tools and cen-
trally-managed workflow approaches, it can be restrictive.

A comparable but completely general public service
is provided by the Binder team at mybinder.org (Project
Jupyter et al. 2018). Binder is an open-source web service
that allows users to share notebooks by creating a tem-
porary cloud-based copy of the GitHub repository that
contains them. This enables reproducible sharing of inter-
active and editable Jupyter or Rstudio notebooks as a vir-
tual machine running in the cloud. The user can start and
access a new virtual machine running live notebooks by
following a single web link. In use, the notebooks appear
to the user as if they were any other Jupyter notebook
running on their own computer, with all the necessary
dependencies, supplementary code and data pre-installed.
Using the Binder framework gives researchers the power
to reproduce and thoroughly test published results, or
apply the analyses to their own data by running the source
code interactively in their browser. In this tutorial review
we take the reader through a process of using, writing, and
deploying Jupyter Notebooks on Binder to help them take
control of their own data science, and share their work
through open science approaches.

http://www.docker.com
http://phenomenal-h2020.eu

Toward collaborative open data science in metabolomics using Jupyter Notebooks and cloud…

1 3

Page 7 of 16  125

3 � Experiential learning tutorials

The remainder of this review provides readers with an
experiential learning opportunity (Kolb 1984) using an
example interactive metabolomics data analysis workflow
deployed using a combination of Python, Jupyter Note-
books, and Binder. We assume that the initial stage of
data-processing for the computational workflow (con-
verting raw instrument files into an annotated data table)
has already been completed, and that a deconvolved, but
not necessarily annotated, data table has been created
and checked for errors. These assumptions are made to
make the learning objectives presented manageable, not
as a directive for obfuscating the complete metabolomics
workflow. It is possible, and encouraged, to include all
data processing steps in interactive notebooks. The tutorial
takes the reader through the process of using interactive
notebooks to produce a shareable, reproducible data analy-
sis workflow that connects the study design to reported
biological conclusions in an interactive document, using
data from two previously published metabolomics studies.
This workflow includes a discrete set of interactive and
interlinked procedures: data cleaning, univariate statistics,
multivariate machine learning, feature selection, and data
visualisation (Fig. 2).

The following five tutorials have been pedagogically
designed to lead the reader through increasing levels of
cognitive complexity, according to Bloom’s revised tax-
onomy (Anderson et al. 2001):

(1)	 Launch and walk through a published Jupyter notebook
using Binder in the cloud to duplicate a set of results.

(2)	 Interact with and edit the content of a published Jupy-
ter notebook using Binder in the cloud to understand
workflow methods.

(3)	 Install Python and use published Jupyter Notebooks on
the researcher’s computer to apply and experiment with
workflow methods locally.

(4)	 Create a metabolomics Jupyter notebook on a local
computer.

(5)	 Deploy the Jupyter notebook from Tutorial 4 on Binder
in the cloud via GitHub.

Fig. 2   Metabolomics data analysis workflow. The workflow imple-
mented in Tutorials 1 and 2 represents a typical metabolomics data
science workflow for a binary classification outcome. The following
steps are included: data import, data cleaning based on pooled QC
relative standard deviation, PCA to visually inspect data reproduc-
ibility, univariate statistics, multivariate machine learning (PLS-DA
including cross validation, feature selection, and permutation test-
ing). The flow diagram is coloured by primary operation type (yel-
low = data import/export; green = data visualisation; blue = data pro-
cessing)

▸

	 K. M. Mendez et al.

1 3

 125   Page 8 of 16

3.1 � Overview of Jupyter/GitHub/Binders

Before beginning the tutorial, we review some fundamental
concepts behind Jupyter Notebooks, GitHub, and Binder,
as understanding these can aid successful independent
execution of this open-science approach (Fig. 3). All code
embedded in each of the example notebooks is written in
the Python programming language and is based upon exten-
sions of popular open source packages with high levels of
community uptake and support. These include: Numpy for
matrix-based calculations (van der Walt et al. 2011); Pandas
for high level data table manipulation (McKinney 2017);
Scikit-learn for machine learning (Pedregosa et al. 2011);
and Matplotlib (Hunter 2007), Bokeh (Bokeh Development
Team 2018), Seaborn (Waskom et al. 2018), and BeakerX
(Beaker X Development Team 2018) for data visualisation.
Additionally, we deploy a simple package called ‘cimcb-
lite’, developed by the authors for this publication, that inte-
grates the functionality of the above packages into a set of
basic methods specific to metabolomics. A tutorial on the
Python programming language itself is beyond the scope of
this publication, but we hope that the code presented is suffi-
ciently well-documented in each notebook to be understood.
Many excellent publications can be consulted for an in-depth
introduction to using Python for data science (Jones 2013;
Ramalho 2015; The Carpentries 2019; VanderPlas 2016).

Digital object identifiers (DOI) are widely used to iden-
tify academic and government information in the form of

journal articles, research reports and data sets. It is also pos-
sible to assign a DOI to open access software. Specifically,
researchers are able to make the work shared on GitHub cit-
able by archiving with a data archiving tool such as Zenodo
(www.zenod​o.org) (Sicilia et al. 2017). A detailed tutorial is
available (Open Science MOOC 2018). This archiving tool
will ‘fix’ in time a given repository (e.g. Jupyter notebook
and meta data), so that it can be associated with a particular
static publication, while allowing the programmer to further
develop the notebook on GitHub. The tutorials in this paper
are archived with the handle https​://doi.org/10.5281/zenod​
o.33626​24 (https​://doi.org/10.5281/zenod​o.33626​24).

3.1.1 � Jupyter Notebook

Jupyter Notebook (jupyter.org) is a powerful, open-source,
browser-based tool for interactive development and presen-
tation of data science projects. Each notebook consists of a
collection of executable cells, and each cell contains either
text formatted using the Markdown language (Gruber 2004)
or executable code (usually Python or R). When a ‘code
cell’ is executed any graphical or text output (numerical
results, figures or tables) is presented within the document
immediately below the cell. Figure 4 shows an example of
a notebook after execution. A popular way to get started
with Jupyter Notebooks is to install the Anaconda distri-
bution (anaco​nda.com), for which graphical installers are
available on Windows, macOS and Linux operating systems
(anaco​nda.com/distr​ibuti​on/). After installation a local Jupy-
ter server can be launched using the Anaconda-Navigator
application. To run a specific local Jupyter notebook with
Anaconda-Navigator the user can navigate to the appropri-
ate local folder using the browser-based interface, and click
on the desired notebook file (which can be identified by the
.ipynb suffix).

3.1.2 � GitHub

GitHub (githu​b.com) is a cloud-based web service that helps
programmers store, manage, and share their code (and asso-
ciated data files), as well as track and control changes to their
code (version control). It is free to sign up and host a public
code repository, which makes GitHub especially popular
with open-source projects and a good choice for distributing
Jupyter Notebooks, project-specific code and documenta-
tion. Jupyter Notebooks stored publicly on GitHub can be
downloaded and run on a local machine using Anaconda
or linked to a cloud-based platform. To complete all the
steps of this tutorial a (free) GitHub account is required.
An account at GitHub may be created by clicking “sign up”
on the GitHub home page (githu​b.com) and following the
instructions.

FAIR
Data
Analysis

Experiment Jupyter
NotebookAcquire raw data

Store data locally

Tidy data

Clean data

Annotate data

Deconvolve data

Visualisations

Outputs

Markdown

Code

Share Data

N
am

e

Repository set up

Ju
py

te
r f

ile
C

on
fig

 fi
le

R
ea

dm
e

fil
e

M
ak

e
pu

bl
ic

GitHub

Create Binder repository

Link from GitHub

Binder badge to GitHub

Shareable Binder link

Binder

Private

Open-access

G
itH

ub

M
et

ab
oL

ig
ht

s

M
et

ab
ol

om
ic

s

W
or

kb
en

ch

Pr
iv

at
e

cl
ou

d

Em
ai

l

H
ar

d
dr

iv
e

Account set up

Share repository

Fig. 3   Key elements required for FAIR data analysis, using Jupyter
Notebooks and Binder deployment. A fishbone diagram describing
the detailed requirements for FAIR data analysis in metabolomics.
Experimental data are derived from typical metabolomics workflows
and formatted appropriately for analysis. Data need to be shared,
either privately (for pre-publication collaboration) or publicly (for
open dissemination). The Jupyter Notebook contains all code, mark-
down comments, outputs, and visualisations corresponding to the
study. The Jupyter Notebook and other required files (such as Readme
and configuration files) are compiled into a public GitHub repository.
Finally, Binder is used to easily deploy and share the Jupyter Note-
book

http://www.zenodo.org
https://doi.org/10.5281/zenodo.3362624
https://doi.org/10.5281/zenodo.3362624
https://doi.org/10.5281/zenodo.3362624
http://anaconda.com
http://anaconda.com/distribution/
http://github.com
http://github.com

Toward collaborative open data science in metabolomics using Jupyter Notebooks and cloud…

1 3

Page 9 of 16  125

3.1.3 � Binder

Binder (mybin​der.org) is an open source web service that
allows users to deploy a GitHub repository comprising a
collection of Jupyter Notebooks (with configuration files that
describe the required computing environment) as a tempo-
rary cloud-based virtual machine. The Binder deployment
is accessible by web browser and includes the programming
language and all necessary packages and data. As with all
publicly-accessible cloud storage care must be taken if data
are sensitive or private. Researchers can launch the virtual
machine in their browser but, because the user environ-
ment is temporary, once the session is closed all new results
are lost. If changes are made, the user must download any
changed files or output they wish to keep.

3.2 � Tutorials

3.2.1 � Tutorial 1: launching and using a Jupyter Notebook
on Binder

This tutorial demonstrates the use of computational note-
books for transparent dissemination of data analysis work-
flows and results. The tutorial steps though a metabolomics
computational workflow implemented as a Jupyter Notebook

and deployed on Binder. The workflow is designed to ana-
lyse a deconvolved and annotated metabolomics data set
(provided in an Excel workbook) and is an example of the
standard data science axiom: Import, Tidy, Model, and
Visualise.

The Jupyter notebook for this tutorial is named Tutorial1.
ipynb and is available at GitHub in the repository https​://
githu​b.com/cimcb​/Metab​Workf​lowTu​toria​l. This repository
can be downloaded (cloned) to the researcher’s own com-
puter, or run on the Binder service. In the text we assume
that the tutorial is being run using the Binder service. To
open the notebook on Binder, go to the tutorial homepage:
https​://cimcb​.githu​b.io/Metab​Workf​lowTu​toria​l and click
on the topmost “Launch Binder” icon to “launch the tuto-
rial environment in the cloud”. It will take a short while for
Binder to build and deploy a new temporary virtual machine.
Once this is ready the Jupyter notebook landing page will
show the files present in this copy of the GitHub repository
(Supplementary Fig. 1).

The tutorial workflow analysis interrogates a published
dataset used to discriminate between samples from gastric
cancer and healthy patients (Chan et al. 2016). The dataset is
available in the Metabolomics Workbench database (http://
www.metab​olomi​cswor​kbenc​h.org, Project ID PR000699).
For this tutorial, the data are stored in the Excel workbook

Fig. 4   Example Jupyter Notebook Screenshot. At the top of the page,
there is the Jupyter menu bar and ribbon of action buttons. The main
body of the notebook then displays text and code cells, and any out-
puts from code execution. This screenshot taken near the end of Tuto-
rial 1 when the partial least squares discriminant analysis model is
being evaluated. Three plots are generated, showing comparisons of
the performance of the model on training and holdout test datasets:

a violin plot showing the distribution of known positive and nega-
tive in both training and test sets, and the class cut-off (dotted line);
probability density functions for positive and negative classes in the
training and test sets (the training set datapoints are rendered as more
opaque); ROC curves of model performance on training (with 95%
CI) and test set

http://mybinder.org
https://github.com/cimcb/MetabWorkflowTutorial
https://github.com/cimcb/MetabWorkflowTutorial
https://cimcb.github.io/MetabWorkflowTutorial
http://www.metabolomicsworkbench.org
http://www.metabolomicsworkbench.org

	 K. M. Mendez et al.

1 3

 125   Page 10 of 16

GastricCancer_NMR.xlsx using the Tidy Data framework
(Wickham 2014): each variable is a column, each observa-
tion is a row, and each type of observational unit is a table.
The data are split into two linked tables. The first, named
‘Data’, contains data values related to each observation. i.e.
metabolite concentrations M1 … Mn, together with meta-
data such as: ‘sample type’, ‘sample identifier’ and ‘outcome
class’. The second, named ‘Peak’, contains data that links
each metabolite identifier (Mi) to a specific annotation and
optional metadata (e.g. mass, retention time, MSI identifica-
tion level, number of missing values, quality control meas-
ures, etc.). The Excel file can also be downloaded from the
Binder virtual machine for inspection on your own machine
by selecting the checkbox next to the filename and clicking
on the Download button in the top menu (Supplementary
Fig. 1).

To begin the tutorial, click on the Tutorial1.ipynb file-
name (Supplementary Fig. 1). This will open a new tab in
your browser presenting the Jupyter notebook (Supplemen-
tary Fig. 2). At the top of the page there is a menu bar and
ribbon of action buttons similar to those found in other GUI-
based software, such as Microsoft Word. The interface is
powerful, and it is worth taking time to become familiar with
it, but for this tutorial only the “Run” button and the “Cell”
and “Kernel” drop down menus are required.

The rest of the page is divided into “code cells” and “text
cells”. The “text cells” briefly outline the context and com-
putation of the “code cells” beneath them. Code and text
cells can be distinguished by their background colour (code
cells are slightly grey, text cells are slightly red), by the text
formatting (code cells have a fixed-width font, text cells have
word processor-like formatting), and the “In []:” marker text
is present next to each code cell.

To run a single code cell, first select it by clicking any-
where within the cell, which will then be outlined by a green
box (if you select a text cell, this box is blue—Supplemen-
tary Fig. 3). Once a cell is selected, the code in the cell
can be executed by clicking on the “Run” button in the top
menu. Multiple cells can also be run in sequence by choos-
ing options from the dropdown list in the “Cell” menu item.
The options include “Run All” (runs all the cells in the note-
book, from top to bottom), and “Run all below” (run all cells
below the current selection). These can be used after chang-
ing the code or values in one cell to recalculate the contents
of subsequent cells in the notebook.

The “computational engine” that executes the code con-
tained in a notebook document is called the kernel, and it
runs continually in the background while that notebook
is active. When you run a code cell, that code is executed
by the kernel and any output is returned back to the note-
book to be displayed beneath the cell. The kernel stores
the contents of variables, updating them as each cell is
run. It is always possible to return to a “clean” state by

choosing one of the “Restart Kernel” options from the
“Kernel” menu item’s dropdown list. Selecting “Restart &
Run All” from the “Kernel” dropdown menu will restart
the kernel and run all cells in order from the start to the
end of the notebook.

Beginning from a freshly-loaded Tutorial1.ipynb note-
book in the Binder, clicking on “Cell->Run All” or “Kernel-
>Restart & Run All” will produce a fully executed notebook
that matches the output in the static supplementary html file
Tutorial1.html (cimcb​.githu​b.io/Metab​Workf​lowTu​toria​l/
Tutor​ial1.html). Choosing “Restart and Clear Outputs” from
the “Kernel” dropdown menu, will reset the notebook and
clear all data from memory and remove any outputs, restor-
ing its original state.

The tutorial can be completed by reading the text cells
in the notebook and inspecting, then running, the code in
the corresponding code cells. This is an example of “Lit-
erate Programming” that weaves traditional computing
source code together with a human-readable, natural lan-
guage description of the program logic (Knuth 1984). The
notebook interface makes notable advances on the original
proposition for literate programming that are used in this
tutorial, the most significant of which is that the output of
running the code is also incorporated into the document. The
browser interface allows for further enhancements, such as
hyperlinks to external webpages for explanations and fur-
ther reading about technical terms, embedded interactive
spreadsheet-like representation of large datasets (e.g. sec-
tion 2. Load Data and Peak Sheet), and embedded interactive
graphical output (e.g. section 4. PCA Quality Assessment).

3.2.2 � Tutorial 2: interacting with and editing a Jupyter
Notebook on Binder

The second tutorial is interactive and showcases the utility
of computational notebooks for both open collaboration and
experiential education in metabolomics data science. Tuto-
rial 2 is accessed on GitHub through the same process as
described for Tutorial 1. To open the notebook on Binder,
go to the tutorial homepage: https​://cimcb​.githu​b.io/Metab​
Workf​lowTu​toria​l and click on the topmost “Launch Binder”
icon to “launch the tutorial environment in the cloud”, then
click the Tutorial2.ipynb link on the Jupyter landing page.
This will present a new tab in your browser containing the
second tutorial notebook. The functionality of this notebook
is identical to Tutorial 1, but now the text cells have been
expanded into a comprehensive interactive tutorial. Text
cells, with a yellow background, provide the metabolomics
context and describe the purpose of the code in the follow-
ing code cell. Additional coloured text boxes are placed
throughout the workflow to help novice users navigate and
understand the interactive principles of a Jupyter Notebook:

http://cimcb.github.io/MetabWorkflowTutorial/Tutorial1.html
http://cimcb.github.io/MetabWorkflowTutorial/Tutorial1.html
https://cimcb.github.io/MetabWorkflowTutorial
https://cimcb.github.io/MetabWorkflowTutorial

Toward collaborative open data science in metabolomics using Jupyter Notebooks and cloud…

1 3

Page 11 of 16  125

3.2.2.1  Action (red background labelled with ‘gears’
icon)  Red boxes provide suggestions for changing the
behaviour of the subsequent code cell by editing (or sub-
stituting) a line of code. For example, the first red cell
describes how to change the input dataset by changing the
path to the source Excel file.

3.2.2.2  Interaction (green background with ‘mouse’
icon)  Green boxes provide suggestions for interacting with
the visual results generated by a code cell. For example, the
first green box in the notebook describes how to sort and
colour data in the embedded data tables.

3.2.2.3  Notes (blue background with ‘lightbulb’ icon)  Blue
boxes provide further information about the theoretical rea-
soning behind the block of code or a given visualisation.
This information is not essential to understand Jupyter Note-
books but may be of general educational utility and interest
to new metabolomics data scientists.

To complete the tutorial, first execute the notebook by
selecting the “Restart & Run All” option in the “Kernel”
dropdown menu. Move through the notebook one cell at a
time reading the text and executing the code cells. When
prompted, complete one (or multiple) modifications sug-
gested in each ‘action’ box, and the click “Run all below”
from the “Cell” dropdown menu, observing the changes in
cell output for all the subsequent cells. Further guidance is
included in the notebook itself.

It is possible to save the edited notebook to the Binder
environment, but any changes made to the notebook during
the tutorial are lost when the Binder session ends. To keep
changes made to the tutorial notebook or its output, modi-
fied files must be downloaded to your local computer before
you end the session. Modified files can also be downloaded
from the Jupyter landing page. To download files, click the
checkbox next to each file you wish to download, and then
click the ‘Download’ button from the top menu.

3.2.3 � Tutorial 3: downloading and installing a Jupyter
Notebook on a local machine

Jupyter Notebooks can be run on a standard laptop or desk-
top computer in a number of different ways, depending on
the operating system. The Anaconda distribution provides a
unified, platform-independent framework for running note-
books and managing Conda virtual environments that is con-
sistent across multiple operating systems, so for convenience
we will use the Anaconda interface in these tutorials.

To install the Anaconda distribution, first download
the Python 3.x Graphical Installer package from the Ana-
conda webpage (https​://www.anaco​nda.com/distr​ibuti​on/)
then open the installer and follow the instructions to com-
pete the installation (https​://docs.anaco​nda.com/anaco​nda/

insta​ll/). Be sure to download the installer package specific
to your computer’s operating system (e.g. macOS, Micro-
soft Windows or Linux). When the process is completed,
the “Anaconda Navigator” application will be installed in
your applications folder.

To start Jupyter on your machine first launch the Ana-
conda Navigator application. This will display a home
screen with a sidebar menu on the left-hand side and the
main area showing a panel of application icons, with short
descriptions. Locate the Jupyter Notebook application and
icon in this panel and click the “launch” button under the
icon. This will start a Jupyter web server and open the
Jupyter landing page in your default web browser. To run
an existing Jupyter notebook, navigate to the appropriate
folder on your computer’s filesystem in the Jupyter landing
page, and click on the notebook (.ipynb) file you wish to
open. To end a Jupyter session, click on the “quit” button
in the top right-hand corner of the Jupyter landing page.
Quit now if you have been working along.

To run the Tutorial notebooks, we need to download
the tutorial repository containing those notebooks from
GitHub and set up a local “virtual environment” that con-
tains the programming libraries and software tools neces-
sary to run the code cells in the notebooks.

To download the notebook and associated files from the
Github repository page (https​://githu​b.com/cimcb​/Metab​
Workf​lowTu​toria​l), click on the green button labelled
“clone or download” and choose the option to “Download
ZIP”. Save the zip file (MetabWorkflowTutorial-master.
zip) in a convenient location. Extract the zip file to create
a new folder in the same location as the .zip file, called
“MetabWorkflowTutorial-master”. The contents of this
folder are the files visible in the repository at the GitHub
site. We will refer to this folder as the “repository root”,
or just “root”.

The Jupyter Notebooks in the repository require several
Python packages to be installed in order to be run suc-
cessfully. It would be possible to install these on the local
computer so that they are visible to, and accessible by, all
notebooks on the computer. However, it is often the case
that different repositories and projects require alternative,
incompatible versions of these packages. So, in practice, it
is not usually possible to install a single set of packages that
meets the needs of all the projects that a user would want to
run. A technical solution to this is to create a new “virtual
environment” that contains only the packages necessary for a
project to run, and keeps them separate (“sandboxes” them)
from any other projects. Environments can be created when
required, and deleted when no longer necessary, without
affecting other projects or the operation of the computer.
It is good practice to create a new virtual environment for
each project, and typical that multiple such environments are
set up, and exist simultaneously on the same computer. The

https://www.anaconda.com/distribution/
https://docs.anaconda.com/anaconda/install/
https://docs.anaconda.com/anaconda/install/
https://github.com/cimcb/MetabWorkflowTutorial
https://github.com/cimcb/MetabWorkflowTutorial

	 K. M. Mendez et al.

1 3

 125   Page 12 of 16

Anaconda Navigator application provides an interface for
creating and managing these virtual environments.

To create a new virtual environment for the tutorial,
first open the Anaconda Navigator application and click on
“Environments” in the left-hand sidebar. The main panel
will change to list any virtual environments that have been
created using Anaconda. If no environments have been cre-
ated only “base (root)” will be listed. To the right of each
virtual environment Anaconda Navigator lists the packages
that have been installed in that environment.

It is common to create a new environment “from scratch”
by specifying individual packages in the Anaconda Navi-
gator, but for this tutorial we will use a configuration file
called “environment.yml” that is part of the GitHub reposi-
tory. This file describes all the packages that are necessary
to reproduce an environment for running the tutorial note-
books. To create a new environment from this configura-
tion file, click on “Import” (at the bottom of the main panel
of Anaconda Navigator) and navigate to the repository root
folder. By default Anaconda Navigator expects configuration
files with “.yaml” or “.yml” file extensions, so only the file
named “environment.yml” should be highlighted in the file
dialog box. Select this file and click “Open”. The “Import
new environment” dialogue box will have autocompleted
the “Name:” field for the new environment (“MetabWork-
flowTutorial”). To complete creation of the new environ-
ment, click on the “Import” button. Anaconda Navigator
will show a progress bar in the main panel as it creates the
new environment.

Once the environment has been created, click on the
“Home” icon in the left-hand sidebar. In the main panel,
the dropdown should now read “Applications on [Metab-
WorkflowTutorial]”, which indicates that the MetabWork-
flowTutorial environment which was just created is now
active. If “MetabWorkflowTutorial” is not visible, click on
the dropdown menu and select that environment. Click on
the “Launch” button under Jupyter Notebook in the main
panel, to launch Jupyter in your web browser.

The Jupyter landing page will start in your home folder.
To use the tutorial notebooks, navigate to the repository root.
The notebooks for Tutorial 1 and 2 can now be run on your
own computer, just as on Binder, by selecting the appro-
priate notebook file. However any output or changes to the
contents of a notebook file will now be saved persistently in
the local computer and can be reused at any time.

As an alternative you may wish to try to create a vir-
tual environment and launch Jupyter in your web browser
through a terminal window (command window). To do this
open the terminal window (type ‘terminal’ in your comput-
er’s search box), then type the following five lines of code:

git clone https://github.com/cimcb/
MetabWorkflowTutorial

cd MetabWorkflowTutorial
conda env create -f environment.yml
conda activate MetabWorkflowTutorial
jupyter notebook

Line one creates an exact copy of the github file directory
on your local machine in the folder ‘MetabWorkflowTuto-
rial’. Line two moves you into that folder. Line three creates
the virtual environment called “MetabWorkflowTutorial”
using the contents of the environment.yml file. Line four
activates the virtual environment. Line five launches a local
Jupyter notebook server and opens the Jupyter landing page
in your web browser, from which you can run the tutorials.

To close the local Jupyter notebook server press
“<control>c” twice in the terminal window and it will ask
you to confirm the action. You may then close the virtual
environment by typing:

conda deactivate

When you no longer need the virtual environment, the
following will delete it from your computer:

conda remove –name MetabWorkflowTuto-
rial –all

If you created a virtual environment using Anaconda
Navigator you will have to delete the environment before
creating a fresh version.

3.2.4 � Tutorial 4: creating a new Jupyter Notebook
on a local computer

Tutorial 4 builds on tutorial 3. Please ensure that the Ana-
conda Python distribution is installed on your computer.

In this tutorial we will create a new Jupyter notebook
that demonstrates the use of visualisation methods available
in Anaconda Python without the need to install additional
third-party packages. We will upload a generic metabo-
lomics data set and write code to produce four graphical
outputs:

(1)	 A histogram of the distribution of QCRSD across the
data set.

(2)	 A kernel density plot of QCRSD vs. D-ratio across the
data set.

(3)	 A PCA scores plot of the data set labelled by sample
type.

(4)	 A bubble scatter plot of molecular mass vs. retention
time, with bubble size proportional to QCRSD

The data set included in this tutorial is previously unpub-
lished, and of arbitrary biological value. It describes serum

https://github.com/cimcb/MetabWorkflowTutorial
https://github.com/cimcb/MetabWorkflowTutorial

Toward collaborative open data science in metabolomics using Jupyter Notebooks and cloud…

1 3

Page 13 of 16  125

data acquired using a C18+ LC–MS platform consisting of
3084 unidentified peaks and 91 samples. Of the 91 sam-
ples, 23 are pooled QCs injected every 5th sample across
the experimental run. The Peak table contains informa-
tion on the molecular mass, retention time of each detected
metabolite, and the associated QCRSD and D-ratio values
calculated following recommended quality control proce-
dures (Broadhurst et al. 2018). The data are presented in an
Excel file using the previously-described “tidy data” format.

Tutorial 4 is available in a GitHub repository at https​://
githu​b.com/cimcb​/Metab​Simpl​eQcVi​z. Download and unzip
the repository to a folder on your own computer, using the
method described in Tutorial 3 (the location of this folder
will now be the “repository root”). This copy (clone) of the
repository is for reference only as we will be recreating the
contents of this directory under a different name as we move
through this tutorial and Tutorial 5.

First create a new Jupyter notebook. To do this, start the
Anaconda Navigator application if it is not already open.
Ensure that “[base (root)]” is selected in the “Applications
on” dropdown list of the main panel, then launch Jupyter
Notebook. This will start a new Jupyter notebook server in
your browser and show files from the home directory on the
landing page. Navigate to the repository root (the “Metab-
SimpleQcViz” folder). To create a new notebook, click on
the “New” button in the top right corner of the page. This
will list supported Jupyter Notebook languages in the drop-
down. Select “Python 3” from this list. A new tab will open
in your browser, showing a blank notebook called “Untitled”
(at the top of the page). Rename the notebook by clicking on
the text “Untitled” and replacing it with “myExample”. This
will create a new file in the repository called “myExample.
ipynb”

When the “myExample.ipynb” notebook is launched, it
contains a single empty code cell. We will use this cell to
add a title to the notebook. To do this we need to convert the
cell type to be a Markdown cell, then type a header in the
cell, and execute it. First, select the empty cell by clicking
anywhere within the cell. To convert the cell type, click on
the dropdown field marked “Code” in the top menu bar and
select “Markdown”. The “In[]:” prompt should disappear
from the left-hand side of the cell. Now click inside the cell
to see the flashing cursor that indicates the cell is ready to
accept input. Type “# Tutorial 4” and click on the “Run” but-
ton in the top menu. The formatting of the first cell should
change, and a new code cell should appear beneath it.

In the new code cell, we will place Python code that:

1.	 Imports the Pandas package (necessary to load the Excel
spreadsheet).

2.	 Loads the dataset into variables called “data” and
“peak”.

3.	 Report the number of rows and column in the tables.

4.	 Displays the first few lines of the resulting table.

The required code is provided in the static supplementary
html file Tutorial4.html (https​://cimcb​.githu​b.io/Metab​Simpl​
eQcVi​z/Tutor​ial4.html) and “Tutorial4.ipynb” notebook and
can be copy-and-pasted or typed in manually, as preferred.
When the code is complete, click on the “Run” button again
to execute the cell. On completion, two tables should be
visible below the code cell (one for “data”, one for “peak”),
and a new empty code cell should be placed beneath this.

Next we add the code required to draw a histogram of the
RSD values across all the detected peaks in this data set.
Using the Tutorial4.html file as a guide, add in the required
explanatory text and Python code and click on the “Run”
button after each step.

Continue adding in the remaining explanatory text and
Python code using the Tutorial4.html file. After completion
you will have a Jupyter notebook that takes a metabolomics
dataset through the process of generating diagnostic plots
for quality control. Once you are satisfied with the state of
the notebook, it can be saved by clicking on the floppy disk
icon (far left on the menu). The notebook can then be closed
by clicking “File” and then “Close and Halt” from the top
Jupyter menu. The notebook tab will be closed, showing the
Jupyter landing page. The Jupyter session can be closed by
clicking on “Quit” on the Jupyter landing page tab of your
web browser (this tab may not close automatically).

3.2.5 � Tutorial 5: deploying a Jupyter Notebook on Binder
via GitHub

Tutorial 5 builds on tutorial 3 and 4. To complete this tuto-
rial, we will create a new GitHub repository. A GitHub
account is required for this. If you do not already have a
GitHub account, please follow the instructions on GitHub
at https​://help.githu​b.com/en/artic​les/signi​ng-up-for-a-new-
githu​b-accou​nt.

To create a new repository, log into the GitHub site (if
you are not already logged in) and navigate to your profile
page (https​://githu​b.com/<youru​serna​me>), then click on
the “Repositories” link at the top of the page. To start a
new repository, click on the “New” button at the top right
of the page. This will open a new page titled “Create a new
repository.” Each repository requires a name, and this should
be entered into the “Repository name” field; use the name
“JupyterExample”. Beneath the Repository Name field
there is an optional Description box, and then below this a
choice of public or private repository. Ensure that the ‘Pub-
lic’ option is chosen. Select the checkbox to “Initialize this
repository with a README” (this is a file in which you
will write useful information about the repository, later).
Below this is the option to “Add a license” file. There are
many alternative licences to choose from (https​://choos​ealic​

https://github.com/cimcb/MetabSimpleQcViz
https://github.com/cimcb/MetabSimpleQcViz
https://cimcb.github.io/MetabSimpleQcViz/Tutorial4.html
https://cimcb.github.io/MetabSimpleQcViz/Tutorial4.html
https://help.github.com/en/articles/signing-up-for-a-new-github-account
https://help.github.com/en/articles/signing-up-for-a-new-github-account
https://github.com/%3cyourusername%3e
https://choosealicense.com/

	 K. M. Mendez et al.

1 3

 125   Page 14 of 16

ense.com/), and the choice for your own projects may be
constrained by funder, home organisation, or other legal con-
siderations. We strongly recommend that all projects carry
a suitable licence, and that you add the MIT License to this
tutorial repository. Now, to create the repository, click the
“Create repository” button.

On successful creation of the repository, GitHub will pre-
sent the new repository’s home page (this will be at https​://
githu​b.com/<youru​serna​me>/Jupyt​erExa​mple), with some
options for “Quick setup”. Under the “Quick setup” notice,
the LICENSE and README.md file will be shown, and
clicking on either will open them. The README.md file for
a repository is automatically displayed on the homepage, but
in this case, it is empty (we can add text later).

Now we need to add the new Jupyter notebook and the
Excel data file from tutorial 4 to the repository. We will
do this using the GitHub “Upload files” interface, though
there are several other ways to perform this action. To
use the GitHub interface, click on the ‘Upload files’ but-
ton and either drag files from your computer, or click on
“choose your files” to select files with a file dialogue box.
Add the ‘myExample.ipynb’ and ‘data.xlsx’ files from your
repository root. These files will be placed in the “staging
area”, visible on the webpage but not yet committed to the
repository.

GitHub imposes version control as a form of best prac-
tice on the repositories it hosts. One of the features of ver-
sion control best practice is that a description of the changes
made to a repository should accompany every “commit” to
that repository. To do this, enter the text “Add data and note-
book via upload” to the top field under “Commit changes.”
Then, to commit the files to the repository, click on the
“Commit changes” button.

Now that there is a publicly hosted GitHub repository
containing a notebook and dataset, we are nearly ready to
make the notebook available interactively through Binder.
The final necessary component required is a configuration
file. This file is vital, as it defines the environment Binder
will build, with a specified programming language and all
the necessary packages for the notebook to successfully
operate. This configuration file is an Anaconda YAML file
called ‘environment.yml’ and it contains a list of dependen-
cies (the programming language version and a list of pack-
ages used in the notebook) and channels (the location of
these resources in the Anaconda cloud library). Detailed
consideration of how to create these files is beyond the scope
of the tutorial. Upload the environment.yml file from Tuto-
rial 4 (it is also included in the Supplementary File, to cut
and paste if required) to the repository in the same way that
the notebook and data files were uploaded.

We are now ready to build and launch a Binder virtual
machine for this repository. To do this, open https​://mybin​
der.org in a modern web browser. The landing page presents

a set of fields to be completed for Binder to build a virtual
machine. The minimal requirement is to specify a GitHub
repository URL in the “GitHub repository name or URL”
field Enter the path to the home page of your repository
(https​://githu​b.com/<youru​serna​me>/Jupyt​erExa​mple) in
this field, and click on the ‘Launch’ button. Binder will use
the configuration file in the root directory to build and store
a Docker image for your repository. This process often takes
several minutes.

Once the Binder repository is built, the URL shown in
the field “Copy the URL below and share your Binder with
others” (here: https​://mybin​der.org/v2/gh/<youru​serna​me>/
Jupyt​erExa​mple/maste​r) can be shared with colleagues.
A button to launch the Binder can also be added into the
README file on GitHub (we also strongly recommend
this). Anyone using this URL in their browser, will be pro-
vided with an individual interactive session (1 CPU, 2 GB
RAM running on Google Cloud) making available the note-
books of your repository in an interactive and editable form.

Congratulations, you have created your first Binder note-
book! Now share it with your colleagues!

It is important to remind users that data uploaded to a
public GitHub repository is indeed public. If the user wants
to share Jupyter Notebooks but not any associated metabo-
lomics data (or other sensitive data) then clear instructions
on how to securely access and download the data needs to be
included in the notebook text, and the location of that down-
loaded data be included in the requisite notebook code block
(this could be a local hard drive, or uploaded to Binder while
in session). If institutional security concerns preclude using
a collaborative workspace such as Binder, then alternative
cloud solutions such as Microsoft Azure can be investigated.
Before doing so it is probably best that to consult with your
institute IT representative.

4 � Summary

Due to the rate at which data are generated and new analy-
sis and visualisation methods are developed, the omics
sciences have become highly vulnerable to irreproducibil-
ity. In attempt to ameliorate this, the metabolomics com-
munity has made several efforts to align with FAIR data
standards in the areas of open data formats, data reposi-
tories, online spectral libraries, and metabolite databases.
While there are also a number of open options for data
analysis, these tend to exist as prescriptive and inflexible
workflows that inadvertently enable users to apply data
science methods without fully understanding their under-
lying principles and assumptions. For FAIR data science to
exist in metabolomics, presentation of methods and results
needs to be rapid, transparent, reusable, and recoverably

https://choosealicense.com/
https://github.com/%3cyourusername%3e/JupyterExample
https://github.com/%3cyourusername%3e/JupyterExample
https://mybinder.org
https://mybinder.org
https://github.com/%3cyourusername%3e/JupyterExample
https://mybinder.org/v2/gh/%3cyourusername%3e/JupyterExample/master
https://mybinder.org/v2/gh/%3cyourusername%3e/JupyterExample/master

Toward collaborative open data science in metabolomics using Jupyter Notebooks and cloud…

1 3

Page 15 of 16  125

attached to published work. Furthermore, any framework
enabling this must be intuitive and accessible to compu-
tational novices.

In this tutorial review, we have illustrated one pos-
sible solution for achieving open, transparent, yet intui-
tive data science within the metabolomics community.
Jupyter Notebooks are an open-source, interactive web
tool for creating seamless integration of text, code, and
outputs (tables, figures) into a single live executable
document. When used alongside data repositories, such
as GitHub, and open cloud-based deployment services,
such as Binder, these computational notebooks can greatly
enhance transparent dissemination of data science meth-
ods and results during the publication process. In addition
to the benefit of increased transparency, computational
notebooks provide a valuable tool for open collaboration.
Rather than exchanging multiple individual data, code,
methods, and results files, computational notebook envi-
ronments provide a single mechanism for collaborators
(both within and beyond a single research group) to share
and interact with the data science workflow. Moreover, this
interactive nature, combined with the ability to provide
extensive documentation, provides a valuable opportunity
for enhanced learning in the computer programming and
data science contexts. Given that they are increasingly rec-
ognised as being foundational to contemporary research,
it is imperative that scientists continue to enhance these
skills over the duration their career. This open and interac-
tive framework enables scientists to continue to learn and
also keep up-to-date with latest data science methods and
trends without reinstalling the wheel.

Acknowledgements  This work was partly funded through an Austral-
ian Research Council funded LIEF Grant No. (LE170100021).

Author contributions  All authors contributed equally to this work.
KMM developed the code for the Python cimcb-lite package. KMM
& DIB developed the tutorial Jupyter notebook code. LP and SNR
edited the learning tutorials to align to current pedagogical best prac-
tices. KMM wrote the initial draft of the review section. All authors
edited the manuscript.

Data and software availability  The metabolomics and metadata used
in this paper were retrieved from Metabolights (https​://www.ebi.
ac.uk/metab​oligh​ts/) study identifier: MTBLS290, and Metabolomics
Workbench (https​://www.metab​olomi​cswor​kbenc​h.org/) project id:
PR000699. This data were converted from the original data format to
a clean format compliant with the Tidy Data framework, this is avail-
able at the CIMCB GitHub project page (https​://githu​b.com/CIMCB​).

All software developed for this paper is available at the CIMCB
GitHub project page (https​://githu​b.com/CIMCB​).

Compliance with ethical standards 

Conflict of interest  The authors have no disclosures of potential con-
flicts of interest related to the presented work.

Research involving human and animal participants  No research involv-
ing human or animal participants was performed in the construction
of this manuscript.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

Afgan, E., Baker, D., Batut, B., van den Beek, M., Bouvier, D., Cech,
M., et al. (2018). The Galaxy platform for accessible, reproducible
and collaborative biomedical analyses: 2018 update. Nucleic Acids
Research, 46, W537–W544.

Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K.
A., Mayer, R. E., Pintrich, P. R., et al. (2001). A taxonomy for
learning, teaching, and assessing: A revision of Bloom’s taxon-
omy of educational objectives (abridged ed.). White Plains, NY:
Longman.

Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nature,
533, 452–454.

Baumer, B., Cetinkaya-Rundel, M., Bray, A., Loi, L. and Horton, N.J.
(2014) R markdown: Integrating a reproducible analysis tool into
introductory statistics, Technology Innovations in Statistics Edu-
cation, 8

Beaker X Development Team (2018). Beaker X. Retrieved May 1,
2019, from http://beake​rx.com/.

Bokeh Development Team (2018). Bokeh: Python library for interac-
tive visualization. Retrieved May 1, 2019, from http://www.bokeh​
.pydat​a.org.

Broadhurst, D., Goodacre, R., Reinke, S. N., Kuligowski, J., Wilson, I.
D., Lewis, M. R., et al. (2018). Guidelines and considerations for
the use of system suitability and quality control samples in mass
spectrometry assays applied in untargeted clinical metabolomic
studies. Metabolomics, 14, 72.

Broadhurst, D. I., & Kell, D. B. (2006). Statistical strategies for avoid-
ing false discoveries in metabolomics and related experiments.
Metabolomics, 2, 171–196.

Chan, A. W., Mercier, P., Schiller, D., Bailey, R., Robbins, S., Eurich,
D. T., et al. (2016). (1)H-NMR urinary metabolomic profiling for
diagnosis of gastric cancer. British Journal of Cancer, 114, 59–62.

Considine, E. C., Thomas, G., Boulesteix, A. L., Khashan, A. S., &
Kenny, L. C. (2017). Critical review of reporting of the data analy-
sis step in metabolomics. Metabolomics, 14, 7.

Davidson, R. L., Weber, R. J. M., Liu, H., Sharma-Oates, A., & Viant,
M. R. (2016). Galaxy-M: A Galaxy workflow for processing and
analyzing direct infusion and liquid chromatography mass spec-
trometry-based metabolomics data. GigaScience, 5, 10.

Gehlenborg, N., O’Donoghue, S. I., Baliga, N. S., Goesmann, A.,
Hibbs, M. A., Kitano, H., et al. (2010). Visualization of omics
data for systems biology. Nature Methods, 7, S56–S68.

Giacomoni, F., Le Corguillé, G., Monsoor, M., Landi, M., Pericard, P.,
Pétéra, M., et al. (2015). Workflow4Metabolomics: A collabora-
tive research infrastructure for computational metabolomics. Bio-
informatics (Oxford, England), 31, 1493–1495.

GitHub (2019). About GitHub. Retrieved April 30, 2019, from https​
://githu​b.com/about​.

Goodacre, R., Broadhurst, D., Smilde, A. K., Kristal, B. S., Baker,
J. D., Beger, R., et al. (2007). Proposed minimum reporting

https://www.ebi.ac.uk/metabolights/
https://www.ebi.ac.uk/metabolights/
https://www.metabolomicsworkbench.org/
https://github.com/CIMCB
https://github.com/CIMCB
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://beakerx.com/
http://www.bokeh.pydata.org
http://www.bokeh.pydata.org
https://github.com/about
https://github.com/about

	 K. M. Mendez et al.

1 3

 125   Page 16 of 16

standards for data analysis in metabolomics. Metabolomics, 3,
231–241.

Gruber, J. (2004). Markdown. Retrieved April 30, 2019, from https​://
darin​gfire​ball.net/proje​cts/markd​own/.

Haug, K., Salek, R. M., Conesa, P., Hastings, J., de Matos, P., Rijnbeek,
M., et al. (2012). MetaboLights—An open-access general-purpose
repository for metabolomics studies and associated meta-data.
Nucleic Acids Research, 41, D781–D786.

Holten, D. (2006). Hierarchical edge bundles: Visualization of adja-
cency relations in hierarchical data. IEEE Transactions on Visu-
alization and Computer Graphics, 12, 741–748.

Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., et al.
(2010). MassBank: A public repository for sharing mass spectral
data for life sciences. Journal of Mass Spectrometry, 45, 703–714.

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Comput-
ing in Science & Engineering, 9, 90–95.

Jones, M. (2013). Python for biologists. Scotts Valley: CreateSpace
Independent Publishing Platform.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M.,
Frederic, J., et al. (2016). Jupyter Notebooks—a publishing format
for reproducible computational workflows in Loizides. In F. A.
S. Birgi (Ed.), Positioning and power in academic publishing:
Players, agents and agendas (pp. 87–90). Amsterdam: IOS Press.

Knuth, D. E. (1984). Literate programming. The Computer Journal,
27, 97–111.

Kolb, D. (1984). Experiential learning: Experience as the source of
learning and development. Englewood Cliffs, NJ: Prentice Hall.

Lantz, B. (2013). Machine learning with R (1st ed.). Birmingham:
Packt Publishing.

Lee, A. H., Shannon, C. P., Amenyogbe, N., Bennike, T. B., Diray-
Arce, J., Idoko, O. T., et al. (2019). Dynamic molecular changes
during the first week of human life follow a robust developmental
trajectory. Nature Communications, 10, 1092.

McKinney, W. (2017). Python for data analysis (2nd ed.). Newton:
O’Reilly Media Inc.

Müller, A. C., & Guido, S. (2017). Introduction to machine learn-
ing with Python: A guide for data scientists (1st ed.). California:
O’Reilly Media Inc.

Open Science MOOC. (2018). Make your code citable using GitHub
and Zenodo: A how-to guide. Retrieved August 14, 2019, from
https​://genr.eu/wp/cite/.

Passey, D. (2017). Computer science (CS) in the compulsory educa-
tion curriculum: Implications for future research. Education and
Information Technologies, 22, 421–443.

Pedregosa, A. F., Varoquaux, A. G., Gramfort, A. A., Michel, A. V.,
Thirion, A. B., Grisel, A. O., et al. (2011). Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12,
2825–2830.

Pedrioli, P. G., Eng, J. K., Hubley, R., Vogelzang, M., Deutsch, E.
W., Raught, B., et al. (2004). A common open representation of
mass spectrometry data and its application to proteomics research.
Nature Biotechnology, 22, 1459–1466.

Peters, K., Bradbury, J., Bergmann, S., Capuccini, M., Cascante, M., de
Atauri, P., et al. (2019). PhenoMeNal: processing and analysis of
metabolomics data in the cloud. GigaScience, 8, giy149.

Pinu, F. R., Beale, D. J., Paten, A. M., Kouremenos, K., Swarup, S.,
Schirra, H. J., et al. (2019). Systems biology and multi-omics inte-
gration: Viewpoints from the metabolomics research community.
Metabolites, 9, 76.

Project Jupyter (2019). Jupyter. Retrieved March 19, 2019, from https​
://jupyt​er.org/.

Project Jupyter, Bussonnier, M., Forde, J., Freeman, J., Granger,
B., Head, T., Holdgraf, C., Kelley, K., Nalvarte, G., Osheroff,
A., Pacer, M., Panda, Y., Perez, F., Ragan-Kelley, B. and Will-
ing, C. (2018) Binder 2.0—Reproducible, interactive, sharable

environments for science at scale, SCIPY 2018, Proceedings of
the 17th Python in Science Conference, pp. 113–120.

Ramalho, L. (2015). Fluent python: Clear, concise, and effective pro-
gramming. Sebastopol, CA: O’Reilly Media Inc.

Reinke, S. N., Galindo-Prieto, B., Skotare, T., Broadhurst, D. I.,
Singhania, A., Horowitz, D., et al. (2018). OnPLS-based multi-
block data integration: A multivariate approach to interrogat-
ing biological interactions in asthma. Analytical Chemistry, 90,
13400–13408.

Rohart, F., Gautier, B., Singh, A., & Lê Cao, K.-A. (2017). mixOm-
ics: An R package for ‘omics feature selection and multiple data
integration. PLoS Computational Biology, 13, e1005752.

Sicilia, M.-A., García-Barriocanal, E., & Sánchez-Alonso, S. (2017).
Community curation in open dataset repositories: Insights from
Zenodo. Procedia Computer Science, 106, 54–60.

Smith, C. A., O’Maille, G., Want, E. J., Qin, C., Trauger, S. A., Bran-
don, T. R., et al. (2005). METLIN: A metabolite mass spectral
database. Therapeutic Drug Monitoring, 27, 747–751.

Spicer, R. A., Salek, R., & Steinbeck, C. (2017). A decade after the
metabolomics standards initiative it’s time for a revision. Scientific
Data, 4, 170138.

Sud, M., Fahy, E., Cotter, D., Azam, K., Vadivelu, I., Burant, C., et al.
(2016). Metabolomics Workbench: An international repository for
metabolomics data and metadata, metabolite standards, protocols,
tutorials and training, and analysis tools. Nucleic Acids Research,
44, D463–D470.

Teschendorff, A. E. (2019). Avoiding common pitfalls in machine
learning omic data science. Nature Materials, 18, 422–427.

The Carpentries (2019). Lessons. Retrieved May 20, 2019, from https​
://softw​are-carpe​ntry.org/lesso​ns/.

van der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The NumPy
array: A structure for efficient numerical computation. Computing
in Science & Engineering, 13, 22–30.

VanderPlas, J. (2016). Python data science handbook: Essential tools
for working with data. Sebastopol, CA: O’Reilly Media Inc.

Waskom, M., Botvinnik, O., O’Kane, D., Hobson, P., Ostblom, J.,
Lukauskas, S., Gemperline, D.C., Augspurger, T., Halchenko,
Y., Cole, J.B., Warmenhoven, J., Ruiter, J.d., Pye, C., Hoyer, S.,
Vanderplas, J., Villalba, S., Kunter, G., Quintero, E., Bachant, P.,
Martin, M., Meyer, K., Miles, A., Ram, Y., Brunner, T., Yarkoni,
T., Williams, M.L., Evans, C., Fitzgerald, C., Brian and Qalieh, A.
(2018). mwaskom/seaborn: v0.9.0. Retrieved May 1, 2019, from
https​://doi.org/10.5281/zenod​o.13132​01.

Wickham, H. (2014). Tidy data. Journal of Statistical Software, 59,
1–23.

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G.,
Axton, M., Baak, A., et al. (2016). The FAIR guiding principles
for scientific data management and stewardship. Scientific Data,
3, 160018.

Wishart, D. S., Feunang, Y. D., Marcu, A., Guo, A. C., Liang, K.,
Vazquez-Fresno, R., et al. (2018). HMDB 4.0: The human
metabolome database for 2018. Nucleic Acids Research, 46,
D608–D617.

Xia, J., Broadhurst, D. I., Wilson, M., & Wishart, D. S. (2013). Transla-
tional biomarker discovery in clinical metabolomics: An introduc-
tory tutorial. Metabolomics, 9, 280–299.

Xia, J., & Wishart, D. S. (2011). Metabolomic data processing, analy-
sis, and interpretation using MetaboAnalyst. Current Protocols in
Bioinformatics, 34(1), 10–14.

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://genr.eu/wp/cite/
https://jupyter.org/
https://jupyter.org/
https://software-carpentry.org/lessons/
https://software-carpentry.org/lessons/
https://doi.org/10.5281/zenodo.1313201

	Toward collaborative open data science in metabolomics using Jupyter Notebooks and cloud computing
	Abstract
	Background
	Aim of Review
	Key Scientific Concepts of Review

	1 Introduction
	2 Background
	2.1 Software tools and barriers to open science
	2.2 Collaboration through cloud computing

	3 Experiential learning tutorials
	3.1 Overview of JupyterGitHubBinders
	3.1.1 Jupyter Notebook
	3.1.2 GitHub
	3.1.3 Binder

	3.2 Tutorials
	3.2.1 Tutorial 1: launching and using a Jupyter Notebook on Binder
	3.2.2 Tutorial 2: interacting with and editing a Jupyter Notebook on Binder
	3.2.2.1 Action (red background labelled with ‘gears’ icon)
	3.2.2.2 Interaction (green background with ‘mouse’ icon)
	3.2.2.3 Notes (blue background with ‘lightbulb’ icon)

	3.2.3 Tutorial 3: downloading and installing a Jupyter Notebook on a local machine
	3.2.4 Tutorial 4: creating a new Jupyter Notebook on a local computer
	3.2.5 Tutorial 5: deploying a Jupyter Notebook on Binder via GitHub

	4 Summary
	Acknowledgements
	References

