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Abstract
Generating value from data requires the ability to find, access and make sense of datasets. There are many efforts underway
to encourage data sharing and reuse, from scientific publishers asking authors to submit data alongside manuscripts to data
marketplaces, open data portals and data communities. Google recently beta-released a search service for datasets, which
allows users to discover data stored in various online repositories via keyword queries. These developments foreshadow an
emerging research field around dataset search or retrieval that broadly encompasses frameworks, methods and tools that help
match a user data need against a collection of datasets. Here, we survey the state of the art of research and commercial
systems and discuss what makes dataset search a field in its own right, with unique challenges and open questions. We look at
approaches and implementations from related areas dataset search is drawing upon, including information retrieval, databases,
entity-centric and tabular search in order to identify possible paths to tackle these questions as well as immediate next steps
that will take the field forward.

Keywords Dataset search · Dataset retrieval · Dataset · Information search and retrieval

1 Introduction

Data is increasingly used in decision making: to design
public policies, identify customer needs, or run scientific
experiments [64,173]. For instance, the integration of data
from deployed sensor systems such as mobile phone net-
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works, camera networks in intelligent transportation systems
(ITS) [103] and smart meters [3] is powering a number of
innovative solutions, such as the city of London’s oversight
dashboard [17]. Datasets are increasingly being exposed
for trade within data markets [13,70] or shared via open
data portals [41,80,97,125,144,174] and scientific reposito-
ries [5,57]. Communities such as Wikidata or the Linked
Open Data Cloud [125] come together to create and main-
tain vast, general-purpose data resources, which can be used
by developers in applications as diverse as intelligent assis-
tants, recommender systems and search engine optimization.
The common intent is to broaden the use and impact of the
millions of datasets that are being made available and shared
across organizations [24,148,184]. This trend is reinforced
by advances in machine learning and artificial intelligence,
which rely on data to train, validate and enhance their algo-
rithms [159]. In order to support these uses, we must be able
to search for datasets. Searching for data in principled ways
has been researched for decades [42]. However, many prop-
erties of datasets are unique, with interesting requirements
and constraints, which have been recognized by the recent
release of GoogleDataset Search [141]. There aremany open
problems across dataset search, which the database commu-
nity can assist with.
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Currently, there is a disconnect between what datasets are
available, what dataset a user needs, and what datasets a
user can actually find, trust and is able to use [24,159,167].
Dataset search is largely keyword-based over published
metadata, whether it is performed over web crawls [66,161]
or within organizational holdings [80,97,171]. There are sev-
eral problems with this approach. Available metadata may
not encompass the actual information a user needs to assess
whether the dataset is fit for a given task [106]. Search results
are returned to the user based on filters and experiences
that worked for web-based information, but do not always
transfer well to datasets [68]. These limitations impact the
use of the retrieved data—machine learning can be unduly
affected by the processing that was performed over a dataset
prior to its release [168], while knowing the original pur-
pose for collecting the data aids interpretation and analysis
[185]. In other words, in a dataset search context, approaches
need to consider additional aspects such as data provenance
[27,67,81,112,135,187], annotations [86,124,189], quality
[155,175,195], granularity of content [105], and schema
[4,18] to effectively evaluate a dataset’s fitness for a par-
ticular use. The user does not have the ability to introspect
over large amounts of data, and their attention must be pri-
oritized [11]. In some cases, a user’s need may even require
integrating data from different sources to form a new dataset
[63,155]. Furthermore, using data is sometimes constrained
by licenses and terms and conditions, which may prohibit
such integration, especially when personal data is involved
[136].

In order to realize the full potential of the datasets we are
generating, maintaining and releasing, there is more research
that must be done. Dataset search has not emerged in isola-
tion, but has built on foundational work from other related
areas. In Sect. 2, we outline the basic dataset search problem
and briefly review these areas. Current commercial dataset
search offerings are introduced in Sect. 3, while Sect. 4 pro-
vides anoverviewof ongoingdataset search research. Finally,
Sect. 5 discusses several open problems, while Sect. 6 high-
lights a possible route to take steps to advance the field.

2 Background

To understand the fundamental problem of dataset search, we
define a dataset. The concept of dataset is abstract, admitting
several definitions depending on the particular community
[24,148]. There is a large body of work discussing the nature
of data and its relation to practice and reuse [24,25]. For
example, the statistical data and metadata exchange initia-
tive (SDMX) [162] defines a dataset as ‘a collection of
related observations, organized according to a predefined
structure’. This definition is shared by the DataCube work-
ing group at theWorldWideWeb Consortium (W3C), which

adds the notion of a ‘common dimensional structure’ [179].
Meanwhile, the Organization for Economic Co-operation
and Development (OECD), citing the US bureau and cen-
sus, uses ‘any permanently stored collection of information
usually containing either case level data, aggregation of case
level data, or statistical manipulations of either the case level
or aggregated survey data, for multiple survey instances’
[162]. The Data Catalog Vocabulary, another W3C effort,
[127] includes a dataset class, defined as a ‘collection of
data, published or curated by a single agent, and available
for access or download in one or more formats.’ Finally, for
the MELODA (MEtric for reLeasing Open DAta) initiative,
a dataset is a ‘group of structured data retrievable in a link or
single instruction as a whole to a single entity, with updating
frequency larger than a once a minute’ [131]. Building upon
these proposals, for the purposes of this paper, we will use
the following definition:

Definition 1 Dataset: A collection of related observations
organized and formatted for a particular purpose.

A dataset can be a set of images, or graphs, or docu-
ments, aswell as the classic table of data. Thus, dataset search
involves the discovery, exploration, and return of datasets to
an end-user.However,within thiswork,we focus on alphanu-
meric data (e.g., text, entities, data). While datasets may
also comprise images, or graphs, search techniques for these
modalities contain both alphanumeric search techniques for
metadata and specialized techniques based on the structure
of the data. Thus, to be more general in this survey, we dis-
cuss techniques for alphanumeric data. We note two very
distinct types of dataset search in this work. In what we will
call ‘basic’ dataset search, the set of related observations
are organized for a particular purpose and then released for
consumption and reuse. We see this pattern of interaction
within individual data repositories, such as for research data
(e.g., Figshare [171], Dataverse [5], Elsevier Data Search
[57]), open data portals [41,80,97,125,144,174] and search
engines such as DataMed [161] and Google Dataset Search
[141].Abasic search, using anyof these services, is discussed
in Example 1. Alternatively, a dataset search may involve a
set of related observations that are organized for a particular
purpose by the searcher themselves. This pattern of behavior
is particularly marked in data lakes [62,156], data markets
[13,70], and tabular search [114,198]. Example 2 illustrates
this kind of data search.

Example 1 (Basic dataset search) Imagine you want to write
an article on how Hurricane Sandy impacted the gasoline
prices in New York City in the week after the incident. Con-
sider the two datasets shown in Fig. 1. Dataset A is from
the American Automobile Association (AAA) and dataset
B is from Twitter. Both document the gasoline available
for purchase in New York City in the week after Hurri-
cane Sandy. The choice of which dataset to use depends on
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Fig. 1 Datasets about gasoline availability inNewYorkCity in theweek
after Hurricane Sandy in 2012. a The American Automobile Associa-
tion (AAA) created a structured dataset twice post-Sandy by phoning
every gas station in the NYC area. It was complete, easy to use (CSV),
accurate, clean, and out of date by the time it was released. b The sec-

ond dataset is a collection of tweets to NYC_GAS. It was incomplete,
required natural language processing (NLP) techniques to use, was dirty
with respect to place names and addresses, but up to date and timely
throughout post-hurricane clean-up efforts

the specifics of the information need, potentially the pur-
pose and requirements of algorithms or processing methods,
as well as the user’s tool-set and data literacy. In order to
find the right dataset, a user must issue a query that will
return datasets, not tuples, documents or corpora. Differ-
ences inherent in the datasets should alter their ranking. For
instance, a user who requires easy-to-use data, with fewer
restrictions on timeliness, may feel that the AAA dataset is a
better fit than the other one. A user who wishes to establish
an accurate timeline of gas in NYC would have a different
assessment. These two scenarios have different requirements
and thereforewould assess the datasets differently.Moreover,
both users start filtering results based on content (gaso-
line), but use very different criteria and metrics to rank the
datasets.

Example 2 (Constructive dataset search) The Centro De
Operacoes Prefeitura Do Rio in Rio de Janeiro, Brazil, is
developing a strategy to prevent andmanagefloods in the city.
The city planners follow a data-informed approach, where
they mash up several data sources, including traffic and pub-
lic transport; utility and emergency services; weather; and
citizen reports [103]. Consider a simple scenario in which
datasets on weather, highlighting rain amounts that could
trigger a flash flood, are integrated on the fly with datasets on
traffic volume and augmented with identification of emer-
gency response services in order to create a dataset that
highlights the current populations at risk during an event.
A recent extension to RapidMiner highlights the opportu-
nities inherent in creating such as dataset, with additional
examples [63].
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2.1 Overview of dataset search

Figure 2 contains a high-level view of the search process and
mappings of the main process steps to topics researched in
related communities.

A general approach to providing search over datasets is
to model the user experience over existing keyword-based
information retrieval search systems, where a user poses a
query and a ranked list of existing datasets is returned.

Querying. In dataset search, a query is typically a keyword or
Contextual Query Language (CQL) expression [163]. Figure
3 shows the search interface for the UK government’s open
data portal [174]. In addition to the keywords search box, the
“Filter by”boxes allow theuser to subset the data according to
predefined categories. As we discuss search techniques from
several different disciplines below, we use the term ‘query’
to mean a semantically and syntactically correct expres-
sion of search for that specific technology. For instance,
within a database, a query would be expressed in SQL,
while in information retrieval, a query would be expressed in
CQL.

Query handling. The information submitted by the user is
used to search over the metadata published about a dataset.
Results are produced based on how similar the metadata is
to the search terms.

Data handling. Publishers populate the metadata about their
dataset, including title, description, language, temporal cov-
erage, etc. They can use vocabularies such as DCAT [127],
schema.org [71] or CSV on theWeb [170] as a starting point.
The goal of these vocabularies is to provide a uniformway of
ensuring consistency of data types and formats (e.g., unique-
ness of values within a single column) for every file, which
can provide basis for validation and prevent potential errors.
Publishers sometimes add descriptions to their datasets to aid
sensemaking [105,140,189]. Either way, this step is mostly
manual and hence resource-intensive,whichmeans thatmore
often than not dataset descriptions are incomplete or do not
contain enough detail. This limits the capabilities of query
handling methods, which attempt to match search terms to
the descriptions.

Results presentation. SearchEngine’sResults Pages (SERPs)
for dataset search currently follow a traditional 10 blue links
paradigm, as can be seen onmany data portals [5,80,97,174].
Basic filtering options, as shown in Fig. 3, are sometimes
available for faceted search. Clicking on a search result usu-
ally takes the user to a preview page that contains metadata, a
free-text summary, and sometimes a sample or visualization
of the data. While Google Dataset Search [66] also follows
a traditional result presentation as a list, they display a split
interface. This presents a large number of search results for
scrolling on the left side and a reduced version of a dataset

Fig. 2 An abstract view of the search process, comprising of query-
ing, query processing, data handling and results presentation, alongside
approaches to each step by different related communities

Fig. 3 Dataset search engine for the UK government’s open data portal,
data.gov.uk. Form inputs create CQL statements to query the underlying
data

preview page with links to one (or multiple) repositories that
hold the respective dataset on the right side.

2.2 Common search architectures

Searches for datasets can be local, e.g., within a single repos-
itory [5,57,156,171] or global. In a similar manner to a
distributed database, given a query Q and a set of datasets
(the sources), the query engine first selects the datasets rel-
evant to the query [160,177] and then chooses between
different approaches: aggregating the datasets locally, using
distributed processing as in Hadoop [188], or query federa-
tion [143].

The dataset search problem can be addressed at various
levels. Services such as Google Dataset Search [141] and
DataMed [161] crawl across the web and facilitate a global
search across all distributed resources. These approaches use
tags found in metadata mark-up, expressed in vocabulary
terms from schema.org [71] or DCAT [127], to structure
and identify the metadata considered important for datasets.
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However, the problem also exists at a local level, includ-
ing open government data portals such as data.gov.uk [174],
organizational data lakes [156], scientific repositories such
as Elsevier’s [57] and data markets [13,70]. Across all these
systems, users are attempting to discover and assess datasets
for a particular purpose. Supporting them requires frame-
works, methods and tools that specifically target data as its
input form and consider the specific information needs of
data professionals.

2.3 Other search sub-communities

Search has been addressed in a range of scenarios, depending
on the types of data and methods used. Relevant sub-
disciplines includedatabases, document search (classic infor-
mation retrieval), entity-centric search (tackled in the context
of the semantic web, knowledge discovery in databases and
information retrieval), and tabular search (which draws upon
methods from broader data management, IR and sometimes
entity-centric search).

Figure 2 lists some of the most important methods used
in these sub-disciplines to implement core search capabili-
ties from query writing and handling to results presentation.
While dataset search is a field in its own right, with distinct
challenges and characteristics, it shares commonalities and
draws upon insights from all these disciplines. In this section,
we provide a very brief review of the focus and tools each
community uses. We focus specifically on those in which the
type of object returned is the same as the underlying data,
e.g., a result set of data from a database of data, or a doc-
ument from a corpus of documents. We neglect approaches
such as question answering [111], which involve additional
processing and reasoning steps.

2.3.1 Databases

The classic pipeline for search within a database begins with
a structured query, followed by parsing the query [38,117,
121]; creating an evaluation plan [116]; optimizing the plan
[37,87]; and executing the plan utilizing appropriate indexes
and catalogues [19].

In addition to the classic database search pipeline, wewish
to draw attention to recent work to uncover more data from
hidden areas of the web: Hidden/Deep web search.

Hidden/deep web search. The hidden, or deep, web refers
to content that lies “behind” web forms typically written
in HTML [28,29,77,100,128], and ranging from medical
research data to financial information and shopping cata-
logues. It has been estimated that the amount of content
available in this way is an order of magnitude larger than
the so-called surface web, which is directly accessible to
web crawlers [77,128].

There have been two main approaches to searching for
data on the deep web. The first uses more traditional tech-
niques to build vertical search engines, whereby semantic
mappings are constructed between each website and a cen-
tralized mediator tailored to a particular domain. Structured
queries are posed on themediator and redirected over theweb
forms using the mappings. Kosmix [154] (later transformed
into WalmartLabs.com) was such a system presenting ver-
tical engines for a large number of domains, ranging from
health, and scientific data to car and flight sales. Sometimes
systems learn the forms’ possible inputs, and create central-
ized mediated forms [77].

A second group of approaches tries to generate the result-
ing web pages, usually in HTML, that come out of web form
searches. Google has proposed a method for such surfacing
of deepweb content by automatically estimating input to sev-
eral millions of HTML forms, written inmany languages and
spanning over hundreds of domains, and adding the resulting
HTML pages into its search engine index [128]. The form
inputs are stored as part of the indexed URL. When a user
clicks on a search result, they are directed to the result of the
(freshly submitted) form.

2.3.2 Information retrieval

Several classes of IR systems existing, including document
search, web search and engines for other types of objects
(e.g., images, people etc.). When working on text, IR uses a
range of statistical and semantic techniques to compute the
relevance of search terms of documents. Specialized search
engines are tailored to the characteristics of the underlying
resources. For example, email search considers aspects such
as sender and receiver addresses, topic or timestamp to define
relevance functions [2]. Due to their specificity and limited
scope of resources, vertical search engines often offer greater
precision, utilize more complex schemas to match searching
scenarios, and tend to support more complex user tasks [120,
180,194].

2.3.3 Entity-centric search

In entity-centric search information is organized andaccessed
via entities of interest, and their attributes and relationships
[15]. A comprehensive overview of the area is available in
[14]. The problem has been tackled mostly by the semantic
web and knowledge discovery communities.

From a semantic web perspective, efforts have been
directed toward creating machine-understandable graph-
based representations of data [79]. Researchers have pro-
posed languages,models and techniques to publish structured
data about entities and link entities to each other to facilitate
search and exploration in a decentralized space, replicating
search and browsing online. The World Wide Web Con-

123



A. Chapman et al.

sortium (W3C) settled on the Resource Description Format
(RDF) as a standard model for representing and exchanging
data about resources, which can refer to conventional web
content (information resources), as well as entities in the
offline world such as people, places and organizations (non-
information resources). Both are identified by International
Resource Identifiers (IRIs). Properties link entities or attach
attributes to them. By reusing and linking IRIs, publishers
signal that they hold data about the same entity, therefore
enabling queries across multiple datasets without any addi-
tional integration effort.

To take advantage of these features, data needs to be
encoded and published as linked data [9], which refers to
a set of technologies and architectures including IRIs, RDF,
RDFS (RDF Schema) and HTTP. The structure of the data is
defined in vocabularies, which can be reused across datasets
to facilitate data interpretation and interlinking. Platforms
such as Linked Open Vocabulary portal1 assist publishers
looking for a vocabulary for their data with search and explo-
ration capabilities over hundreds of vocabularies developed
by different parties.

Interlinking is concerned with two related problems. First
is entity resolution: given two or more datasets, identify
which entities and properties are the same. A general frame-
work of entity resolution is described [40]. It covers the
design of similarity metrics to compare entity descriptions,
and the development of blocking techniques to group roughly
similar entities together to make the process more efficient.
More recent efforts have proposed iterative approaches,
where discovered matches are used as input for comput-
ing similarities between further entities. The second part of
interlinking is referred to as link discovery, where given two
datasets, one has to find properties that hold between their
entities. Properties can be equivalence or equality, as in entity
resolution, or domain specific such as ‘part-of’ [79].

Linked data facilitates entity-centric search. A user can
express a query using a structured language such asSPARQL,
which includes entities, entity classes, as well as properties
and values. Queries are translated into an RDF graph that is
matched against the published data, which is also available as
RDF [197,199]. Similar to before, queries can be answered
locally, against an RDF data store, or globally, using a range
of techniques.

From a knowledge discovery perspective, significant
efforts have been directed toward the construction of knowl-
edge graphs (KGs), which are large collections of intercon-
nected entities, which may or may not be encoded using
linked data. Building KGs requires a range of capabilities,
fromvocabularies to describe the domain of interest to extrac-
tion algorithms to take data from different sources and map
it to graphs, to curation and evolution. Knowledge discovery

1 https://lov.linkeddata.es.

shares many methods and challenges with the semantic web,
the main difference being that the former focuses on build-
ing a (centralized) graph, which enhances the results of data
mining and machine learning processes [23,54,166], while
the latter is about managing information in open, decentral-
ized settings such as the web.

2.3.4 Tabular search

In tabular search, users are interested in accessing data stored
in one or more tables. The overall aim is to discover spe-
cific pieces of information, such as attribute names or extend
tables with new attributes. [190] identified three core tasks
in this context:

1. Augmentation by attribute name—given a populated
table and a newcolumnname (i.e., attribute), populate the
column with values. This is also referred to table exten-
sion elsewhere [28]. One can see this as finding tables
which can be joined.

2. Attribute discovery—given a populated table, discover
new potential column names.

3. Augmentation by example—given a populated table
where some values are missing, fill in the missing val-
ues. This is often referred to as table completion in the
literature [197] and resembles finding tables which can
be unioned.

It is important to distinguish between table and tabular
search. Table search is a sub-task of dataset search, where
the user issues a keyword query and the result is available as
tables, for example in CSV format. Tabular search is about
engaging with one or more tables with the aim to manipulate
and extend them. Information needs, for instance to discover
attributes and tables to extend or complete, are expressed as
tables. One of the challenges in tabular search is to answer
the latent information need of the user.

Table extension. [115] distinguishes between constrained and
unconstrained table extension. Constrained table extension is
essentially the augmentation by previously defined attribute
names. Unconstrained table extension also involves the addi-
tion of new columns to a table, but with no predefined label
for the attribute. One can think of this as attribute discovery
followed by constrained table extension.

A common technique to perform table extension is to dis-
cover existing tables through table similarity—in particular
by measuring schema similarity [51]. In fact, table exten-
sion was introduced by [28] where they defined a special
operator EXTEND that would discover similar web tables
to the given input table. Similarity here is computed with
respect to the schema of the table. The values of the most
similar table are then used to populate the input table’s addi-
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Table 1 Search technology
used across implementations

Entity-centric Information retrieval Database Tabular search

Open data publishing platforms
(e.g., CKAN, Socrata)

•

Data marketplaces •
Linked data search engines • • •
Google DSS • •

tional column. The Infogather system [190] uses a similar
approach, but instead of just calculating the direct similar-
ity between the input table and potential augmenting tables,
it also takes into the account the neighborhood around the
potential augmenting tables. These indirect tables provide
ancillary information that can be better suited for augmenta-
tion than the tables with the highest similarity to the input. Of
interest, [51] have discovered that there seems to be a latent
link structure between web tables. Recent work in table sim-
ilarity has shown that semantic similarity using embedding
approaches can improve performance over syntactic mea-
sures [198].

Table completion. This task also relies heavily on table sim-
ilarity as the mechanism for finding potential values that can
be added to a table. [197] defines the notion of row popula-
tion, which adds new rows to a table. For simplicity, we view
this as a type of table completion in which the values to be
completed form an additional row. Even more broadly, one
could provide a set of columns as a query and have the system
fill in the remaining rows [151]. The task of table completion
can be seen as entity-set completion, where the goal is to
complete a list given a set of seed entities [51,197]. This task
is relevant for a number of other scenarios, including entity-
centric search [16] and knowledge-base completion [49]. The
completion of rows is similar to the broad problem of impu-
tation and dealing with incomplete data [132]. Specific work
in the context of the web has looked at performing impu-
tation through the use of external data [1,123,169]. Much
of that work has used web tables as the data source, and
hidden/deep web techniques as discussed above could be
applied.

3 Current dataset search implementations

There are many functioning versions of dataset search in
production today. In this section, we break down the set of
dataset search services that exist according to their focus
and how they deal with datasets. We distinguish between the
two scenarios discussed in Examples 1 and 2 and between
centralized and decentralized architectures. For the latter, the
search engine needs a way to discover the datasets as well as
handle user queries and present results.

Table 1 matches the implementations discussed to the
technology described in Sect. 2. Note that at this time, we
can find no examples of tabular search being used commer-
cially.

The common theme of current dataset search strategies,
both on the web and within the boundaries of a repository,
is the reliance on dataset publishers tagging their data with
appropriate information in the correct format. Because cur-
rent dataset search only uses the metadata of a dataset, it
is imperative that these metadata descriptions are correct
and maintained. Other, domain-specific solutions function
in similar ways. Especially for scientific datasets there are
initiatives aiming to support the creation of better and more
unified metadata, such as for instance CEDAR by the Meta-
data Center2 or ‘Data in Brief’ submissions supported by
Elsevier.3

In aid of better searches, there are several attempts at
monitoring and working over data portals to provide a meta-
analysis. For instance, the OpenData PortalWatch [138,139]
currently watches 254 open data portals. Once a week, the
metadata from all watched portals is fetched, the quality of
the metadata computed, and the site updated to allow a cohe-
sive search across the open data. Similarly, theEuropeanData
Portal4 harvests metadata of public sector datasets available
on public data portals across European countries, in addition
to educating about open data publishing.

3.1 Basic, centralized search

3.1.1 Open government data portals

Open data portals [41,80,97,125,144,174] allow users to
search over the metadata of available datasets. One of the
most popular portal software is CKAN [41]. It is built using
Apache Solr,5 which uses Lucene to index the documents.
In this scenario, the documents are the datasets’ metadata
provided by the publishers, expressed in CKAN. From a
search point of view, datasets and their metadata are reg-

2 https://metadatacenter.org/.
3 https://www.journals.elsevier.com/data-in-brief.
4 https://www.europeandataportal.eu.
5 http://lucene.apache.org/solr/.
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istered to the portal by their owners and there is no need to
discover the datasets in the wild or come up with a com-
mon way to describe them. There are several competitors
to CKAN, such as Socrata and OpenDataSoft, but from a
dataset search point of view they have many similarities—
they assume the datasets are available and accompanied by
metadata encoded in the same way. Implemented this way,
dataset search has many limitations, which are mostly due to
the quality of the metadata accompanying the datasets and to
the lack of appropriate capabilities to match keyword-based
queries andmetadata and come upwith ameaningful ranking
[68]. In many cases the metadata does not describe the full
potential of the data, so some relevant datasets may not be
presented as a result to a query simply because appropriate
keywords were not used in the description.

3.1.2 Enterprise search

Proprietary data portals are not much different from an archi-
tecture point of view. In 2016, Google introduced Goods, an
enterprise dataset search system, to manage datasets origi-
nating from different departments within the company with
no unified structure or metadata [74]. In this catalog, related
datasets are clustered based on the structure of the dataset
or gathering frequency. Members of a group then become a
single entry in the catalog. This helps to structure the catalog
and also reduces the workload of metadata generation and
schema computing. Within the Goods system each dataset
entry has an overview of the dataset presented on a profile
page. Using this profile, users can judge the dataset’s useful-
ness to their task. Keyword queries are then laid on top of
this structure, producing a ranked result list of datasets as an
output. Search functionality was built based on an inverted
index of a subset of the dataset’s metadata. In the absence of
the information on the importance of each resource, Halevy
et al. [74] propose to rank the datasets based on heuristics
over the type of a resource, precision of keyword match, if
the dataset is used by other datasets and if the dataset contains
an owner-sourced description.

3.1.3 Scientific data portals

Several commercial portals provide access to scientific
datasets, including Elsevier [57], Figshare [171] and Data-
verse [5]. They operate in a similar way to the other types
of systems described in this section, offering keyword- or
faceted search over metadata records of a centralized pool of
datasets that is compiled with the help of data publishers.

3.1.4 Data marketplaces

Finally, data marketplaces exist as a way for organizations
to realize value for their data [13,70]. From a search point of

view, they match user queries to dataset descriptions, which
may include a bespoke set of metadata attributes related to
accessibility or price. The greatest challenge in this case is
in finding a query handling approach that can give the user
an estimate of the value of the data without computing the
result.

3.2 Basic, decentralized search

3.2.1 Search over linked data

As noted in Sect. 2, linked data facilitates dataset search at
web scale. This is exemplified in approaches such as [76],
where new linked datasets are discovered during query exe-
cution, by following links between datasets and continuously
adding RDF data to the queried dataset. There is also a
large body of the literature and prototypical implementations
for searching linked data in a native semantically hetero-
geneous and distributed environment [50,60,83,129,178],
where semantic links are used to come up with an estimate
of the importance of each dataset and rank search results.

3.2.2 Google Dataset Search

Following their work on Goods, in 2018 Google introduced
a vertical web search engine tailored to discover datasets on
the web [141]. This system uses schema.org [71] and DCAT
[127]. Based on the Google Web Crawl, they crawl the web
for all datasets described with the use of the schema.org
Dataset class, as well as those describing their datasets
using DCAT, and collect the associated metadata. They fur-
ther link the metadata to other resources, identify replica
and create an index of enriched metadata for each dataset.
The metadata is reconciled to the Google knowledge graph
and search capabilities are built on top of this metadata.
The indexed datasets can be queried via keywords and CQL
expressions [163].

3.2.3 Domain-specific search

Some search services focus on datasets from particu-
lar domains. They propose bespoke metadata schemas to
describe the datasets and implement crawlers to discover
them automatically. For instance, DataMed, a biomedical
search engine uses a suite of tags, DATS, to allow a crawler
to automatically index scientific datasets for search [161].
The Open Contracting Partnership released a Open Contract-
ing Data Standard that identifies information needed about
contracts to allow their crawler to access and catalogue con-
tracting datasets [147].
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3.3 Constructive search

Many private companies have understood that data is a com-
modity that can be effectively monetized. Some companies,
such as Thomson Reuters, have been collecting data to create
datasets for sale for decades.6 In the same time, companies
such as OpenCorporates use public data sources, with prove-
nance, to gather information on legal entities. This dataset
is then made publicly available.7 Similarly, Researchably
compiles information from scientific publications and makes
interest-specific datasets for sale to biotech companies.8 In
all of these cases, the data exists in a scattered manner and
the company provides value by gathering, organizing and
releasing it as a constructed dataset.

Data marketplaces can offer similar services as well.
Unlike the previous examples, they provide a catalog of
datasets for users to purchase.While the user is able to down-
load an entire dataset from themarketplace, it is also possible
to access subsets of the data as needed to construct a new
dataset.

4 Survey of dataset search research

This section surveys the current work related to dataset
search. To organize it, we utilize the headings from Fig. 2,
corresponding to the search process.

4.1 Querying

Creating queries. Users interact with datasets in a different
manner than they interact with documents [99]. While this
study is limited to social scientists, it indicates that users
have a higher investment in the results and are thus willing
to spend more time searching. Moreover, the relationship
of the dataset to the task at hand may play a larger role in
dataset search; e.g., two datasets about cars could fit within a
user’s ability to understand and utilize, butmay have different
results depending on the goal of the task.

Data-centric tasks can be categorized into two categories:
(1) Process-oriented tasks in which data is used for some-
thing transformative, such as using data in machine learning
processes; and (2) Goal-oriented tasks in which data is,
e.g., used to answer a question [106]. While the boundaries
between the two categories are somewhat fluid and the same
user might engage in both types of tasks, the primary dif-
ference between them lies in the ‘user information needs’,
i.e., the details users need to know about the data in order to

6 https://www.thomsonreuters.com/en.html.
7 https://opencorporates.com/.
8 https://www.researchably.com/.

interactwith it effectively. For process-oriented tasks, aspects
such as timeliness, licenses, updates, quality, methods of data
collection and provenance have a high priority. For goal-
oriented tasks, intrinsic qualities of data such as coverage
and granularity play a larger role. As yet, beyond the user fil-
tering by certain characteristics, there is no way to state the
task needs in the query. There has not yet been a movement
away from keywords and CQL to query datasets.

Query types. As stated earlier, most queries for datasets use
keywords or CQL over the metadata of the dataset. A formal
query language that supports dataset retrieval does not yet
exist. Instead, specific query interfaces are created for the
underlying data type, e.g., [90] provides a SQL interface over
text data and [138] for temporal and spatial data. Current
implementations provide platform specific faceted search to
allow basic filtering for categories such as publisher, format,
license or topics (for instance [174]).

4.2 Query handling

As stated in Sect. 2, most dataset searches operate over the
dataset’s metadata. Unfortunately, low metadata quality (or
missing metadata) affects both the discovery and the con-
sumption of the datasets within OpenData Portals [175]. The
success of the search functionality depends on the publishers
knowledge of the dataset and the quality of the descriptions
they provide.

Moving away from just searching over the metadata,
[172] use the data type and column information for map-
ping columns in a query to the underlying table columns,
while [151] allow keyword queries over columns. Similarly,
[72] describe how to map structured sources into a semantic
search capability. This is taken further in [198] by providing
the ability to pose a keyword query over a table. Meanwhile,
in [33], queries are broken up in a federated manner, and
executed over distinct, heterogeneous datasets in their native
format, allowing for easy alteration of the queries and sub-
stitution of the underlying datasets being queried.

4.3 Data handling

While the “handling” that typically needs to occur for dataset
search at the moment is collection and indexing of metadata,
there is research in additional data handling that can improve
the effectiveness of search.

Quality and entity resolution. There are several efforts deal-
ing with metadata quality [139,175]. One solution proposed
to tackle the metadata quality problem includes cross-
validatingmetadata bymerging feeds from identified entities
[82]. Using self-categorized information [110] as facets is
another. Attempts to better represent the underlying data [21]
do have an affect on search. This includes better links with
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other data [56]. Other approaches, such as [8], investigate
how to detect dataset coverage and bias that could affect any
algorithms that use the dataset as input.

In the context of constructive dataset search, theMannheim
Search Join Engine [114,115] and WikiTables [20] use a
table similarity approach for table extension but also look
at the unconstrained task. In both cases, a similarity ranking
between the input and augmentation tables is used to decide
which columns should be added. Interestingly, theMannheim
system also consolidates columns from different potential
augmentation tables before performing the table extension.

Summarization and annotation. To help both search and
user understanding, summaries and annotations are addi-
tional metadata that can be generated about the underlying
dataset [105]. For instance, [136] deal with the problem that
the underlying dataset cannot be exposed, but good sum-
maries may help the user undertake the task of data access.
Meanwhile, [124] use annotations to help support search-
ing over data types and entities within a dataset, while [93]
provide better labeling for numerical data in tables.

4.4 Results presentation

Ranking Datasets. Intuitively datasets require different rank-
ing approaches due to their unique properties, which is
also indicated in initial exploratory studies with users (e.g.,
[99,106]). Noy et al. [141] describe that links between
datasets are still rare, which makes traditional web-based
ranking difficult. There is some work that looks at ranking
datasets. For instance, after performing a keyword query over
tables, a ranking on the returned tables is attempted [198]. In
a more advanced method, Van Gysel et al. [176] use an unsu-
pervised learning approach to identify topics of a database
that can then be used in ranking. Finally, [118] rank datasets
containing continuous information.

Interactions. Interactive query interfaces allow ad-hoc data
analysis and exploration. Facilitating users exploration
changes the fundamental requirements of the supporting
infrastructure with respect to processing and workload [91].
Choosing a dataset greatly depends on the information
provided alongside it. A number of studies indicate that stan-
dard metadata does not provide sufficient information for
dataset reuse [105,140]. Recent studies have discussed tex-
tual [105,172] or visual [183] surrogates of datasets that aim
to help people identify relevant documents and increase accu-
racy and/or satisfaction with their relevance judgments.

There has been additional research in how to help users
interact with datasets for better understanding. For instance,
there is the many-answer problem: users struggle to spec-
ify exact queries without knowing the data and their need to
understand what is available in the whole result set to for-
mulate and refine queries [126]. Currently dataset search is

mainly performed over metadata, so the users understanding
of what the dataset contains before download is limited by
the quality, comprehensiveness and nature of metadata. A
number of frameworks or SERP designs have been proposed
as research prototypes for data search and exploration, such
as TableLens [152], DataLens [126], the relation browser
[130] for sensemakingwith statistical data, or summarization
approaches of aggregate query answers in databases [181].
Navigational structures can support the cognitive representa-
tion of information [157], and we see a large space to explore
interfaces that allow more complex interaction with datasets
such as sophisticated querying [89] (e.g., taking a dataset as
input and searching for similar ones) or being able to follow
links between entities in datasets.

Interaction characteristics for dataset search have been
subject to several recent humandata interaction studies.Mov-
ing beyond search as a technological problem, Gregory et
al. [68] show that there are also social considerations that
impact a user when searching. In a comparison between doc-
ument retrieval and dataset retrieval, Kern and Mathiak [99]
show that users are more reliant on metadata when perform-
ing dataset search. While looking at dataset users of varying
abilities [26] show that the amount of tool support can impact
a user’s ability to effectively discover and use a dataset.
Finally, in a framework for Human Interaction with Struc-
tured data [106] discuss three major aspects that matter to
data practitioners when selecting a dataset to work with: rel-
evance, usability and quality. Users judge the relevance of
datasets for a specific task based on the dataset’s scope (e.g.,
geographical and temporal scope) [95,138], basic statistics
about the dataset such as counts and value ranges, and infor-
mation about granularity of information in the data [105].
The documentation of variables and the context from which
the dataset comes from also play a key role. Data quality
is intertwined with a user’s assessment of “fitness for use”
and depends on various factors (dimensions or characteris-
tics) such as accuracy, timeliness, completeness, relevancy,
objectivity, believability, understandability, consistency, con-
ciseness, availability and verifiability [105]. Provenance is
a prevalent attribute to judge a datasets quality as it gives
an indication of the authoritativeness, trustworthiness, con-
text and original purpose of a dataset, e.g., [84,105,135].
In order to judge a dataset’s usability for a given task, the
following attributes have been identified as important: for-
mat, size, documentation, language (e.g., used in headers or
for string values), comparability (e.g., identifiers, units of
measurement), references to connected sources, and access
(e.g., license, API) [84,105,184]. These are attributes inde-
pendent of a dataset’s content or topical relevance which can
influence whether a user is actually able to engage with the
dataset.
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Table 2 Mapping of Dataset search open problems to possible solution areas. We identify relevant works from other search sub-communities that
could be used as inspiration for solving current dataset search problems

Query languages Query handling Query handling Results presentation
Beyond keyword Differentiated access Extra knowledge Interactivity

Entity-based [6,43,73] [45,102] [122,149,153] [142,192,193]

IR [10,134] [78,98,104,165]

Databases [44,59] [18,55,88,96,150] [1,21,36,53,62,86,123,126,133,137,145,169,191,200] [32]

Hidden/deep web [30,113,164] [154] [52,107,119] [101]

Tabular [63,196] [114,115,190]

5 Open problems

In this survey, we have organized the literature into a frame-
work that reflects the high-level steps necessary to implement
a dataset search system.We have considered current research
explicitly targeting dataset search challenges. In this sec-
tion, we discuss several cross-cutting themes that need to
be explored in greater detail to advance dataset search.

Issues of discoverability of open data were recognized by
theEuropeanCommissionwhich oversees the process of data
publishing within Europe. In 2011 they defined six barriers
that challenge the reuse and true openness of data, which also
apply to dataset search [58]:

– a lack of information that certain data actually exists and
is available;

– a lack of clarity of which public authority holds the data;
– a lack of clarity about the terms of reuse;
– data which is made available only in formats that are
difficult or expensive to use;

– complicated licensing procedures or prohibitive fees;
– exclusive reuse agreements with one commercial actor
or reuse restricted to a government-owned company.

In addition to these challenges, we identify several addi-
tional problems that need attention. In order to tackle these
problems, we look at similar solutions used by other search
sub-areas, as described in Sect. 2.3. We map the problems
we have identified in Dataset Search to solutions utilized in
other search techniques that could help make headway in
each problem area, as summarized in Table 2.

5.1 Query languages: moving beyond keywords

Existing dataset search systems, whether it is Google’s
Dataset Search or vertical engines such as those used within
data repositories, use query languages and concepts from
information retrieval. Information needs are expressed via
keyword queries, or, in the case of faceted search, via a series
of filters modeled after metadata attributes such as domain,
format or publisher. Studies in tabular search point to the

need for alternative interfaces, which allow users to start
their search journey with a table and then add to it as they
explore the results. In addition to having different ways to
capture information needs, it would also be beneficial to pro-
vide query languages that are able to combine information
adaptively across multiple tables. This would be especially
useful for tasks such as specifying data frames or generating
comprehensive data-driven reports [69].

This connects dataset search to the area of text databases
[90] and the deep web. However, much of that work has
looked at verticals instead of search across datasets coming
from multiple domains. The problem here is to be able to
identify relevant tables for the input query, join them appro-
priately, and do subsequent query processing.

Existing research has primarily focused on structured
queries (SQL, SPARQL) over the metadata of the datasets,
without considering the actual content of the dataset. There
is thus a need for richer query languages that are able to
go beyond the metadata of datasets and are supported by
indexing systems. Our understanding of the level of expres-
siveness of these languages is still fairly limited. The W3C
CSV on the Web working group [170] has made a proposal
for specifying the semantics of columns and values in tables,
but the approach requires mappings between a column and
the intended semantic meaning, which are typically specified
manually. Recently, the Source Retrieval Query Language
(SRQL) has been proposed that facilitates declarative search
for data sources based the relations of the underlying data
[31].

5.1.1 Entity-centric search building blocks

Entity-centric search naturally fits within the needs of dataset
search. Datasets themselves are often built of entities, and as
such need the ability to specify an entity as a query, a set of
entities, or a type of entity. Moreover, the notion of similarity
[198] among entities should be expanded so that the entities
themselves are not the focus of the match, but the number of
similarities within the dataset.
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5.1.2 Database building blocks

Querying datasets will likely require new adaptations to
query languages and methods. In addition to the explo-
ration of a structured query language that can operate over
datasets natively, other mechanisms to define queries should
be explored. For instance, the overlap of programming lan-
guages and database query languages in which programming
language concepts are used to define queries over databases
with different levels of capabilities [44] or over MapReduce
frameworks [59], could be one such rich area to explore.

5.1.3 Tabular search building blocks

Tabular search provides an interesting view on the poten-
tial query language requirements for dataset search, where
instead of keywords, the input is a table itself. This also
makes novel user interfaces possible, for example, to pro-
vide assistance during the creation of spreadsheets [196].

5.2 Query handling: differentiated access

Most dataset search systems today either work within the
confines of a single organization or on publicly available
datasets that publish metadata according to a specified
schema. However, there is demand to be able to pool infor-
mation stemming from different organizations, for example,
to be able to build cohorts for health studies from across clin-
ical studies [46,136]. Providing such differentiated access is
critical for the emerging notion of data trusts,9 which pro-
vide the legal, technical and operational structures to share
data between organizations.

We must facilitate an organizational as well as technical
space to share data between both public and private enti-
ties. Thus, there are critical issues to be solved with respect
querying over datasets with differing legal, privacy and even
pricing properties. Without being able to search over these
hidden datasets, access to a majority of data will be pre-
vented. Here, aspects of using the provenance of data could
be leveraged at query time [187]. We note that this is not just
an issue for private data. Public data also have different prop-
erties (e.g., licenses) that users want to effectively integrate
in their searches.

At an implementation level, further investigation into inte-
grating security techniques in the query handling process is
necessary, for example, searching over encrypted datasets
[12,109] or using digests to minimize disclosure while still
enabling search [136]. All of this must be done while also
considering that the demands of reuse may change the under-
lying requirements and bottlenecks of query processing [61].

9 https://theodi.org/article/what-is-a-data-trust/.

5.2.1 Information retrieval building blocks

In the context of dataset retrieval, the basic concepts support-
ing general web search are not sufficient, which indicates a
need for a more targeted approach for dataset retrieval, treat-
ing it as a unique vertical [28,65].

5.2.2 Database building blocks

The relational algebra that underpins our processing within
a database [42] has no equivalent yet in dataset search.
Recently, Apache released information about the query pro-
cessing system used for many of the Apache products
including Hive and Storm, and Begoli et al. [18] inves-
tigated how the relational algebra can be applied to data
contained within the various data processing frameworks in
the Apache suite. Alternatively, other recent work in query
processing attempts to handle non-relational operators via
adaptive query processing [96].

Techniques such as those found in [150] suggest using a
hybrid version of approximate query processing over sam-
ples and precomputation. Solutions such as ORCHESTRA
[88] that were built to manage shared, structured data with
changing schemas, cleaning, and queries that utilize prove-
nance and annotation information (discussed in more detail
below) need to be adapted to the dataset search problem.
Other work from the probabilistic database area could also be
of assistance. For instance [55] calculates the top-k results for
queries over a probabilistic database by taking into account
the lineage of each tuple. This usage of provenance to influ-
ence the overall ranking of the end result could informdataset
ranking.

Focusing on constructive dataset search, in which datasets
are generated on-the-fly based on a user’s needs and query,
the work in data integration is particularly important. Query-
ing sources in an integrated fashion [75,108] becomes a
foundational component of constructive dataset search.

5.3 Data handling: extra knowledge

In order to support the differentiated access and advanced
exploratory interfaces articulated above, dataset search
engines will need to become more advanced in their inges-
tion, indexing and cataloging procedures. This problem
divides into two areas: incorporation of external knowledge
in the data handling process and better management and
usage of dataset-intrinsic information. As described in [141],
links between datasets are still rare,making identification and
usage of extra knowledge difficult.

Incorporating external knowledge, whether through the
use of domain ontologies, external quality indicators or
even unstructured information (i.e., papers) that describe the
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datasets, is a critical problem. A concrete example of this
problem: many datasets are described through code books
that are written in natural language. These datasets are nearly
useless without integration of external information about the
codebooks themselves.

Utilizing dataset-intrinsic information, is necessary to
more fully capture the richness of each dataset, and allow
users to express a richer set of criteria during search. Within
this space, there are open problems related to data pre-
processing. How to do quality assessment on the fly? What
kinds of indexes around quality need to be created? Moving
beyond quality, in general, the automatic creation and main-
tenance of metadata that describes datasets is difficult. Users
rely up onmetadata to chose appropriate datasets.Open prob-
lems for metadata include:

1. identifying the metadata that is of highest value to users
w.r.t. datasets;

2. tools to automatically create and maintain that metadata;
3. automatic annotation of dataset with metadata—linking

them automatically to global ontologies.

In addition to pre-processing, current dataset search sys-
tems primarily rely on information retrieval architectures
(e.g., indexing into ElasticSearch) to index and perform
queries. Here, lessons learned from database architectures
could be applied. This is particularly the case as we have
seen the importance of lessons learned from relational query
engines being applied in the case of distributed data envi-
ronments [7]. Thus, we think an important open problem is
what the most effective architectures are for dataset search
systems.

5.3.1 Entity-centric search building blocks

One can apply the Linked Data paradigm to solve dataset
search by converting datasets to RDF and following the full
cycle, as described in [110]. However, for data publishers, it
is often still very expensive to execute this full cycle. Fur-
thermore, there is debate on whether certain datasets should
have anRDF representation at all, as their original formats are
perhaps more suited to the tools that are required for them
(e.g., geospatial datasets). A middle-ground solution is to
consider datasets as resources and encode only their descrip-
tion in RDF, for example, using the Data Catalog Vocabulary
(aW3C recommendation) [127]. Then, theLinkedData cycle
can be applied to these descriptions, ultimately enabling the
querying of datasets. The main challenge is the generation
and maintenance of these descriptions, with some works
tackling the problem of extracting specific properties from
specific formats, like [138] for extracting spatio-temporal

properties, and, e.g., [94] for identifying the numerical prop-
erties in CSV tables.

5.3.2 Database building blocks

As noted in [11], users do not have the “attention” to intro-
spect deeply into large and changing datasets. Instead, we
can draw upon several areas of research from the database
community, including data profiling and data quality.

Naumann’s recent survey [137] provides a good overview
of data profiling activities based on how data-users approach
the task, and what resources are available for it. Of particu-
lar note for dataset search is the work on outlier detection
[53,126] as a way to provide indications to an end-user
about the scope, spread and variety of a dataset during
search. In particular, we note the techniques found in [200]
are interesting for dataset search in that they split a large
dataset into many smaller datasets and create an approximate
representation of it for more accurate sampling of these sub-
pieces. Finally, [62] establishes a tool that can comb through
semi-structured log datasets to pull information into multi-
layered structured datasets. All of these techniques may aid
users in exploring and making sense of dataset. Given that
a dataset is by definition a collection of pieces, imputa-
tion of missing pieces needs great scrutiny. As discussed in
Sect. 4, imputation efforts are underway [1,21,123,169] but
draw heavily from web techniques. The imputation methods
from the data management community should be consid-
ered.

The work on profiling contains expressions of data clean-
liness and coverage, completeness and consistency. These
properties are classic data quality metrics, and help the user
form a picture of whether the data is fit for use. Automatic
understanding of data quality in order to either populate
metadata or answer metadata queries in a lazy manner will
require techniques that can automatically determine com-
plex datatypes such as [191]. Currently, though, the research
in each of these areas has been focused on its relationship
to describing or working within a specific artifact, not as a
component for a search. To do this, the structures and content
for each area need to be computable in a timely manner and
presented in a way that can be taken advantage of by a search
system. For instance, data quality is a traditionally resource
expensive task that is often domain-specific. Generic, albeit
possibly less accurate methods must be developed to com-
pute data quality estimations that can be accessed and used
during search [36,133].

In order to facilitate understanding of the contents of a
dataset, summarization can be used, as done in [145] over
probabilistic databases. Provenance, another tools that could
help users understand a dataset, has an unsolved problem of
moving across granularity levels. A tuple within a dataset
may have provenance associated with it, as may the table,
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and the entire dataset itself. The challenge is in under-
standing how the aggregation of tuple-provenance would
affect the search results compared to dataset-provenance.
Finally, using annotations to improve the data [86] will
be needed. Interesting extensions could include using user
feedback to facilitate ranking of datasets based on the
searcher’s criteria, or utilizing the context under which the
annotations were created to change how annotations impact
ranking.

5.3.3 Hidden/deep web building blocks

An inherent challenge in dataset search over the web is to
be able to identify particular resources as datasets of inter-
est (and ignore, for example, natural language documents).
This challenge will be also present in any forthcoming
approach in searching for datasets on the deep web. More-
over, any such approach will build on some combination of
the twomain directions for surfacing deepweb data. Building
vertical engines for the hidden web has the difficulties of pre-
defining all interesting domains, identifying relevant forms
in front of datasets on the web and investigating automatic
(or semi-automatic) approaches to create mappings; a task
which seems extremely hard on a web scale. Hence, learn-
ing/computingweb form inputsmight be theoptionof choice.
Nevertheless, in cases where there are complex domains
that involve many attributes and involved inputs, e.g., air-
line reservations, when the datasets change frequently, e.g.,
financial data, orwhen forms use the http POSTmethod [128]
virtual integration remains an attractive direction.

5.3.4 Tabular search building blocks

The majority of work in tabular search addresses web tables,
not uploaded datasets. These tables have the benefit of gen-
erally being better described and often general-knowledge
related, e.g., column names are human readable and not
codes, or the tables are embedded in larger documents (e.g.,
HTML tables). In addition, a majority of work treats what
are termed ‘entity-centric tables’, which are tables in which
each row represents a single entity. Datasets can be much
more general, for example, containing multiple tables in one
file.

5.4 Result presentation: interactivity

As previously discussed, existing data search systems follow
similar approaches to search showing a ranked list of search
results with some additional faceted searching in place. At
a tactical level, ranking approaches specifically tailored to
dataset search should be developed. Importantly, this should
take into account the kinds of rich indexes suggested in the
prior section. Here, the challenges are that typical approaches

to improving ranking in information retrieval such as learn-
ing to rank are difficult given that many data search engines
do not have the kind of level of user traffic needed for learn-
ing to rank algorithms [176]. In addition, the integration of
dataset search and entity search is an important openproblem.
For example, when searching for a chemical we could also
display associated data, but we currently know little about
what data that should be. Beyond standard search paradigms,
supporting conversational search over data and embedding
search into the actual data usage process deserves significant
attention, particularly since dataset search is often needed in
the context of a variety of tasks [167].

5.4.1 Information retrieval building blocks

As pointed out by Cafarella et al. [28] structured data on the
web is similar to the scenario of ranking of millions of indi-
vidual databases. Tables available online contain amixture of
structural and related content elements which cannot easily
be mapped to unstructured text scenarios applied in gen-
eral web search. Tables lack the incoming hyperlink anchor
text and are two-dimensional—they cannot be efficiently
queried using the standard inverted index. For those reasons
PageRank-based algorithms known from general web search
are not applicable to the same extent to the dataset/table
search, particularly as tables of widely-varying quality can
be found on a single web page.

Search for datasets is often complex and shows character-
istics of exploratory search tasks, involving multiple queries,
iterations and refinement of the original information need, as
well as complex cognitive processing [106]. There are many
possible reasons that users have diverse interaction styles,
from context and domain specificity [68] to uncertainty in
the search workflow itself [26]. It is important to note that
users have different interaction styles with respect to “getting
the data”. These interactions range from question answering
to “data return” to exploration [68,106]. From an interaction
perspective, dataset search is not as advanced as web or doc-
ument search. Contextual or personalized results, which are
common on the web [182] are practically non-existent for
dataset search. Additionally, as mentioned, dataset search
relies on limited metadata instead of looking at the dataset
itself which limits interaction. While many classifications
for information seeking tasks exist [22], there is no widely
used classification of data-centric information seeking tasks
yet that could be used to model interaction flows in dataset
search.

5.4.2 Database building blocks

Provenance [27,67,81,187] is likely to be a key element in
assisting the user in choosing a dataset of interest. Until now,
provenance has been used to facilitate trust in an artifact
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[47,48] or automatically estimate quality [85]. New meth-
ods must be developed to facilitate translation of this large
graph into a format that a user who is evaluating whether
or not to use a dataset can interpret and utilize [34]. The
logic and possible new operators behind dataset search will
open up new areas for determining why and why not to
consider provenance of the dataset query results themselves
[35,81,112].

The presentation of data models has been a topic in
database literature [89] as well as exploration strategies of
result spaces beyond the 10blue links paradigm.For instance,
the use of sideways and downwards exploration of web table
queries by [39]. Challenges and directions for search results
presentation and data exploration as part of the search process
are discussed on a mostly speculative basis in the literature
and include representing different types of results in amanner
that express the structure of the underlying dataset (tables,
networks, spatial presentations, etc) [89].

An overview of search results can enhance orientation
and understanding of the information provided [157], which
allows to get an awareness of the dataset result space as a
whole. Making a large set of possible results more informa-
tive to the user has been explored for databases [181]. At the
same time being able to investigate the dataset on a column,
row and cell level to match both process and content oriented
requirements on the search result can be necessary [151,170].

Within the scope of constructive dataset search, the work
of [186] is essential to appropriately annotate and cite the
results of queries.

In the next section, we discuss one foundation that is cru-
cial for addressing these open problems, benchmarks.

6 The road forward: benchmarks

One of the most widely recognized problems of dataset
search is the lack of benchmarks. For instance, the Bio-
CADDIE project, which attempts to index for discovery
scientific datasets, has a pilot project to recommend appro-
priate datasets to users based on similar topic, size, usage,
user background and context [92]. In order to do this, the
pilot participants are creating a topic model across scien-
tific articles, and using user query patterns to identify similar
users. While this is an interesting start, and acknowledges
that there are a myriad of overlapping concerns that impact
dataset search, from content to the user’s ability, there is no
way yet to measure whether the solution works. For this, a
clear benchmark is needed. In this section we will outline the
state of the art with respect to the evaluation of different parts
of the dataset search pipeline, which were discussed earlier
in this work.

Step one is identifying the set of metrics that are appro-
priate to dataset search. Do they mimic the online and offline

metrics of information retrieval? At first blush, session aban-
donment rate, session success rate and zero result rate from
information retrieval online metrics appear relevant, while
click-through rate may need some adjustment for the context
of datasets. Meanwhile, most of the offline metrics, from the
set of precision-based metrics, to recall, fall-out, discounted
cumulative gain, etc. are obviously still necessary.

However, there are dataset-specific metrics that may need
to be considered. For instance, “completeness” could be an
interesting new metric to consider. Many tasks involving
datasets require the stitching of several datasets to create
a whole that is fit for purpose. Is the right set, that cre-
ates a “complete” offering returned? How do we measure
that the appropriate set of datasets for a given purpose were
returned. For instance, in the context of information retrieval
on an Open Data Platform, [95] found that some user queries
require multiple datasets which are equally relevant in oppo-
sition to a ranked result list of resources with single resource
per rank. The question of how such result list should be
returned to the user remains open, and creates an interest-
ing case within benchmark creation. To facilitate interactive
dataset retrieval studies we would need to have a clearer
understanding of selection criteria for datasets, a taxonomy
of data-centric tasks and annotated corpora of information
tasks for datasets, queries and connected relevant datasets as
search results.

The availability of benchmarks upon which solutions
across the query processing pipeline for dataset search can
be tested is essential. Any benchmark created for dataset
search needs to, explicitly or implicitly, highlight the rela-
tionships that exist between the user, the task at hand and
the properties of the dataset or it’s metadata. Unlike classic
web retrieval, there are added dimensions for dataset search.
It is not enough for a user to find the information appropri-
ate based on its content; for dataset search, the user and the
specific task requirements must be satisfied. The result list
presented to the user must be understandable and explorable,
due to the added complexity of interpreting and using data.

Several benchmarks have already been created that cover
tasks related to dataset search. These benchmarks include:
managing RDF datasets [146]; information retrieval over
Wikipedia tables [198]; assignment of semantic labels toweb
tables [158]. Further efforts in this area are needed in order to
truly understand and make progress on the underlying tech-
nology.

Moreover, the availability of benchmarks will enable per-
formance evaluations across search architectures, enabling a
better ability for tool users to choose an appropriate solution
for their specific needs. Ultimately, through benchmarks, and
performance evaluations, we should be able to design data
search systems that assist a user, for example, who needs to
search for a dataset to do a particular classification task, and
let that user clearly understand which methods will provide
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the best results on the returned dataset or which risks might
be associated with using a particular dataset.

7 Conclusions

The topic of data-driven research will only grow; we are at
the start of a journey in which datasets are used for anal-
ysis, decision making and resource optimization, am. Our
current needs for dataset search require us to give due atten-
tion to this problem. The current state of the art is focused
on tuple, document or webpage. Datasets are an interesting
entity to themselves with some properties shared with docu-
ments, tuples and webpages, and some unique to datasets.

In this work, we highlight that dataset search can be
achieved through two different mechanisms: (1) issue query,
return dataset; (2) issue query, build dataset.However, dataset
search itself is in its infancy. Techniques from many other
fields, including databases, information retrieval, and seman-
tic web search, can be applied toward the problem of dataset
search. The creation of an initial service, Google Dataset
Search, that allows for automatic indexing of datasets, and
Google-style search over that indexed informationmarks this
problem as important. Moreover, it highlights the research
that still needs to be performed within the dataset retrieval
domain, including: formal query language(s), dealing with
social and organizational restrictions when processing a
query, providing additional information to support query pro-
cessing, facilitating user exploration and interaction with a
result set made up of datasets. This is an exciting time with
respect to dataset search, in which there is a high need for
datasets of all sorts, combined with burgeoning tools for
dataset search, like Google Dataset Search, that provide the
necessary infrastructure. However, further research is needed
to fully understand and support dataset search.
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Jonker, W., Petković, M. (eds.) Secure Data Management, pp.
82–98. Springer, Berlin (2008)

49. Dalvi, B.B., Cohen, W.W., Callan, J.: Websets: extracting sets of
entities from the web using unsupervised information extraction.
In: Proceedings of the Fifth ACM International Conference on
Web Search and Data Mining, WSDM ’12, pp. 243–252. ACM,
New York, NY, USA (2012). https://doi.org/10.1145/2124295.
2124327

50. d’Aquin, M., Ding, L., Motta, E.: Semantic Web Search Engines,
pp. 659–700. Springer, Berlin (2011)

51. Das Sarma, A., Fang, L., Gupta, N., Halevy, A., Lee, H., Wu,
F., Xin, R., Yu, C.: Finding related tables. In: Proceedings of
the 2012 ACM SIGMOD International Conference on Manage-
ment ofData, pp. 817–828. ACM (2012). https://doi.org/10.1145/
2213836.2213962

52. Deng, S.: Deep web data source selection based on subject
and probability model. In: 2016 IEEE Advanced Information
Management, Communicates, Electronic and Automation Con-
trol Conference (IMCEC). IEEE (2016). https://doi.org/10.1109/
imcec.2016.7867557

123

https://doi.org/10.1145/3183713.3190662
https://doi.org/10.1145/2501511.2501516
https://doi.org/10.1145/2501511.2501516
https://doi.org/10.1016/j.websem.2017.09.003
https://doi.org/10.1145/2623330.2630803
https://doi.org/10.1002/asi.22634
https://doi.org/10.1002/asi.22634
https://doi.org/10.1145/3025453.3025738
https://doi.org/10.1145/1142473.1142534
https://doi.org/10.1145/1142473.1142534
https://doi.org/10.14778/1453856.1453916
https://doi.org/10.14778/1453856.1453916
https://doi.org/10.14778/3229863.3240492
https://doi.org/10.1145/1739041.1739138
https://doi.org/10.1109/ICDE.2018.00094
https://doi.org/10.1109/ICDE.2018.00094
https://doi.org/10.1016/S0306-4379(00)00015-6
https://doi.org/10.1016/S0306-4379(00)00015-6
https://doi.org/10.14778/3137765.3137798
https://doi.org/10.1109/IRI.2011.6009558
https://doi.org/10.1145/1559845.1559901
https://doi.org/10.1145/2834123
https://doi.org/10.14778/3021924.3021935
https://doi.org/10.14778/3021924.3021935
https://ckan.org/
https://doi.org/10.1017/S095679681700017X
https://doi.org/10.1017/S095679681700017X
https://doi.org/10.1186/s12911-018-0682-y
https://doi.org/10.1186/s12911-018-0682-y
https://doi.org/10.1016/j.jbi.2016.10.022
https://doi.org/10.1016/j.jbi.2016.10.022
https://doi.org/10.1145/2124295.2124327
https://doi.org/10.1145/2124295.2124327
https://doi.org/10.1145/2213836.2213962
https://doi.org/10.1145/2213836.2213962
https://doi.org/10.1109/imcec.2016.7867557
https://doi.org/10.1109/imcec.2016.7867557


A. Chapman et al.

53. Dong, B.,Wang, H.W.,Monreale, A., Pedreschi, D., Giannotti, F.,
Guo, W.: Authenticated outlier mining for outsourced databases.
IEEE Trans. Dependable Secur. Comput. (2017). https://doi.org/
10.1109/TDSC.2017.2754493

54. Dong, X.L.: Challenges and innovations in building a product
knowledge graph. In: Proceedings of the 24th ACM SIGKDD
International Conference onKnowledgeDiscovery andDataMin-
ing,KDD ’18, pp. 2869–2869.ACM,NewYork,NY,USA (2018).
https://doi.org/10.1145/3219819.3219938

55. Dylla, M., Miliaraki, I., Theobald, M.: Top-k query process-
ing in probabilistic databases with non-materialized views. In:
2013 IEEE 29th International Conference on Data Engineer-
ing (ICDE), pp. 122–133 (2013). https://doi.org/10.1109/ICDE.
2013.6544819

56. Ellefi, M.B., Bellahsene, Z., Dietze, S., Todorov, K.: Dataset
recommendation for data linking: an intensional approach. In:
International Semantic Web Conference, pp. 36–51. Springer
(2016)

57. Elsevier scientific repository (2018). https://datasearch.elsevier.
com/

58. European Commission, D.A.: Commission’s open data strategy,
questions and answers. Memo/11/891 (2011)

59. Fegaras, L.: An algebra for distributed big data analytics.
J. Funct. Program. 27, e27 (2017). https://doi.org/10.1017/
S0956796817000193

60. Freitas, A., Curry, E., Oliveira, J.G., O’Riain, S.: Querying hetero-
geneous datasets on the linked data web: challenges, approaches,
and trends. IEEE Internet Comput. 16(1), 24–33 (2012)

61. Galakatos, A., Crotty, A., Zgraggen, E., Binnig, C., Kraska,
T.: Revisiting reuse for approximate query processing. Proc.
VLDB Endow. 10(10), 1142–1153 (2017). https://doi.org/10.
14778/3115404.3115418

62. Gao, Y., Huang, S., Parameswaran, A.: Navigating the data
lake with datamaran: automatically extracting structure from log
datasets. In: Proceedings of the 2018 International Conference
on Management of Data, SIGMOD ’18, pp. 943–958. ACM,
New York, NY, USA (2018). https://doi.org/10.1145/3183713.
3183746

63. Gentile, A.L., Kirstein, S., Paulheim, H., Bizer, C.: Extending
rapidminer with data search and integration capabilities. In: Sack,
H., Rizzo, G., Steinmetz, N., Mladenić, D., Auer, S., Lange, C.
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