
Citation.js: a Format-independent, Modular

Bibliography Tool for the Browser and

Command Line

Lars G. Willighagen1

1Independent researcher, Eindhoven, The Netherlands

Corresponding author:

Lars G. Willighagen1

Email address: lars.willighagen@gmail.com

ABSTRACT

Background. Given the vast number of standards and formats for bibliographical data, any program working

with bibliographies and citations has to be able to interpret such data. This paper describes the development

of Citation.js (https://citation.js.org/), a tool to parse and format according to those standards.

The program follows modern guidelines for software in general and JavaScript in specific, such as version

control, source code analysis, integration testing and semantic versioning.

Results. The result is an extensible tool that has already seen adaption in a variety of sources and use

cases: as part of a server-side page generator of a publishing platform, as part of a local extensible

document generator, and as part of an in-browser converter of extracted references. Use cases range from

transforming a list of DOIs or Wikidata identifiers into a BibTeX file on the command line, to displaying RIS

references on a webpage with added Altmetric badges to generating "How to cite this" sections on a blog.

The accuracy of conversions is currently 27 % for properties and 60 % for types on average and a typical

initialization takes 120 ms in browsers and 1 s with Node.js on the command line.

Conclusions. Citation.js is a library supporting various formats of bibliographic information in a broad

selection of use cases and environments. Given the support for plugins, more formats can be added with

relative ease.

INTRODUCTION

All research extends or uses knowledge from other research. With the primary goal of scholarly publishing

being the distribution of knowledge, it is important that the publications — and the literature they cite — are

distributed in an accessible, identifiable and findable manner (Shotton, 2013). That also allows the analysis

and visualisation of how research cites each other (Shotton, 2013; van Eck and Waltman, 2014). While

traditionally journals required text-based citations, each formatted in their own specific style, the last few

decades the use of Persistent IDentifiers (PIDs) has become commonplace, with Digital Object Identifiers

(DOIs) being the most common for scholarly articles, and International Standard Book Numbers (ISBNs) for

books. These PIDs are then linked to central stores that provide machine-readable bibliographic information,

such as Crossref and DataCite Lammey (2015); Brase (2009); Neumann and Brase (2014).

Since most kinds of PIDs are intended for certain kinds of publication, be it data sets, journal articles,

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27466v2 | CC BY 4.0 Open Access | rec: 11 Jul 2019, publ: 11 Jul 2019

books or code repositories, the bibliographic information is stored in a format intended for that kind

of publication. As a result, there are many different stores and many different formats: Libraries use

Machine-Readable Cataloging (MARC) (Avram, 2003) and similar formats, Wikidata (Malyshev et al.,

2018) and WikiCite (Taraborelli et al., 2017) have their own scheme; DataCite has DataCite eXtensible

Markup Language (XML) and JavaScript Object Notation (JSON) (De Smaele et al., 2017); and Crossref

has Crossref UNIXREF (Crossref, 2018). Similarly, most reference managers have their own formats too:

Zotero and EndNote have their own schemes (Vinckevicius, 2017; EndNote, 2012), and Office Word has

an XML namespace (Microsoft, 2018). On top of that there are a lot of old and new formats created for a

variety of reasons, like BibTeX (Patashnik, 1988), Citation Style Language (CSL) (Zelle, 2012), Research

Information Systems (RIS) (Reference Manager, 2012), and the Bibliographic Ontology (BIBO) (D’Arcus

and Giasson, 2009).

This leads to reduced findability between organisations and disciplines (Godby et al., 2004; Zinn et al.,

2016), and reference managers need to maintain parsers for numerous formats and different types of citable

resources (articles, books, data, software (Smith et al., 2016), etc). The management requires a detailed

description of the source being referenced and preferably link to the full-text too (Hull et al., 2008). A

second requirement is their ability to convert references into citations, according to the norms for formatting

citations in writing (Ron Gilmour, 2011). Reference managers assist in keeping references accessible and

machine-readable, ready to be formatted for use in citation (Fenner et al., 2014).

Existing managers, like Zotero, either require a client desktop program or a server, or have entirely

proprietary backends. This paper introduces Citation.js, a standalone JavaScript library capable of running in

the browser, on a server and as a CLI. It consists of a set of parsers and formatters (see Figure 1) that together

allow for the conversion of different metadata formats via a central format, CSL-JSON (Bennett et al., 2018).

To better suit individual needs, and to minimize unnecessary code which is especially important in the

browser, Citation.js is fully modularised. Formats are bundled in thematic plugins, which can be installed

separately. For formatted bibliographies and citations, CSL templates and locales are used with citeproc-js

(Zelle, 2012; Bennett et al., 2018). This paper describes how Citation.js is developed, documented, tested,

and released.

BACKGROUND

Crosswalks

To convert one data format (or scheme) to another, a crosswalk is used. A crosswalk is a set of mappings

between equivalent properties and entry types in different formats (Pierre and LaPlant, 1998). First of all,

for most properties a simple mapping suffices: title in BibTeX refers to the same concept as it does

in BibJSON and CSL-JSON. On top of that, the property coincides with TI in RIS. This mapping could

come in the form of a JSON Linked Data (JSON-LD) context, as done by CodeMeta (Jones et al., 2017), as

eXtensible Stylesheet Language Transformations (XSLT), as discussed by Godby et al. (2003).

Second, some mappings are context-dependent. For example, consider the CSL-JSON properties

author and reviewed-author in relation to the RIS properties author (AU) and reviewer (usually C4).

Normally, AU maps to author. However, if the entry being converted has the review entry type, AU maps

to reviewed-author while author maps to C4.

Third, the data format of the values needs to be converted. While title in BibTeX can have formatting

in the form of TEX, title in CSL-JSON uses a subset of HTML for formatting, and TI in RIS does not

have formatting at all. Properties can also have different data types. In CSL-JSON, author is a list of

objects, while authors in BibTeX, which describes the same concept, is serialized text delimited by "

2/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27466v2 | CC BY 4.0 Open Access | rec: 11 Jul 2019, publ: 11 Jul 2019

Figure 1. Program setup of Citation.js. Everything within the dotted square is part of Citation.js or its

dependencies. Extraction is separating data from noise, look-up is fetching information based on a Uniform

Resource Locator (URL) or PID, parsing is transforming text-based formats into data structures, and

translation is transforming data structures with different schemas. Two types of output are supported:

citations and citation lists (bibliographies), and machine-readable references.

and ".

Finally, there might not be a one-to-one mapping between properties. For instance, page in CSL-JSON

maps to both start and end in Citation File Format (CFF) (Druskat et al., 2018). Similarly, page,

issue, volume and ISSN are all top-level properties in CSL-JSON, while the corresponding properties

in Wikidata are proposed to be nested in the journal property.

Since the last two aspects can lead to information loss, crosswalks often need to be one-directional

converters between two formats. To not have to create crosswalks between every possible combination

of supported formats, one could define a central format, similar to the "interoperable core" in the "long

translation path" proposed by Godby et al. (2003). It is however important that the central format can hold

as much information as should be represented in any of the output formats, as to prevent information loss

when converting between two formats.

Existing tools

Bibutils is very similar to Citation.js in that it also is a set of converters with a central format, there the

Metadata Object Description Schema by the Library of Congress (Putnam, 2005). Bibutils is used as a set

of CLI programs, and does not directly allow formatting as citations and bibliographies. More recently,

astrocite was created, a set of parsers that all output CSL-JSON (Sifford, 2019). Astrocite uses Abstract

Syntax Trees (ASTs) and formal grammars, which should make it easier to write, read and maintain parsers.

For drawbacks of formal grammars, see the Outlook.

The impact of reference managers should also not be underestimated. However, most reference managers

have proprietary backends or require human input to use. Even Zotero, which is open source, is only

commonly used via the client or alternatively as a server. While the fact that it has a server already allows

3/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27466v2 | CC BY 4.0 Open Access | rec: 11 Jul 2019, publ: 11 Jul 2019

for many more possibilities than other managers, it remains difficult to run a standalone program, which

Citation.js does allow.

APPROACH

As mentioned, Citation.js converts different bibliographical formats into each other. To achieve interoperability

without too much work, a central format is chosen. All input is converted into this central format, and all

output is created from it, adopting Godby et al. (2003) approach of the "long translation path" with the

"interoperable core". See also Figure 1.

Input is parsed iteratively: for each distinct format along the way from the input to the central format, a

separate parser function is defined. This allow progressive enhancement, easily replacing parts of the parsing

process without touching the rest, and lets users input intermediate formats without second thought.

Parsing iteratively is relatively simple, because all different kinds of input should get turned into a

single type anyway: you do not have to choose what format you need next, you only have to recognize

and parse what you have now. However, a similar process for output does not make as much sense. With

output formatting, there is only one kind of input, the central format, and several kinds of output. If output

formatting should be done iteratively as well, the paths to reach final output formats would have to be defined

separately.

The Approach section is organized as follows. First, methods used while developing the software are

listed. Then, design choices of the code itself, and how to install and use it is explained. Last, the method to

evaluate the results is described.

Software Development

The software was developed using modern standards: version control with Git, semantic versioning for

releases (Preston-Werner, 2013), open source archives on GitHub (https://github.com/larsgw/

citation.js; https://github.com/citation-js) and Zenodo (https://doi.org/10.

5281/zenodo.1005176), browser bundles with browserify (Halliday et al., 2018), compatible code with

Babel (Zhu et al., 2018), integration testing using the Travis-CI service (CI, 2018), code linting (source code

analysis) with ESLint (Zakas et al., 2018) and Standard (Aboukhadijeh et al., 2018), checking RegExp’s for

ReDOS vulnerabilities with vuln-regex-detector (Davis et al., 2018), and detailed documentation

with JSDoc (Williams et al., 2018).

The development process took place with Node.js and npm. First off, any changes would be linted

and tested with the aforementioned tools. Bugs or new features can also warrant the introduction of new

test cases. If the changes work properly, they are then committed into the version control. If the changes

warrant a new release, or if enough changes have piled up for a new release, the change log is updated.

Updating the version in the package metadata automatically triggers the linters and test runners, preventing

accidental mistakes. Afterwards, publishing the package to npm automatically triggers the generation of files

necessary for the package. The scripts used for this are described in https://github.com/larsgw/

citation.js/blob/90cd68c/CONTRIBUTING.md#installing.

Libraries

Apart from tools used for development, Citation.js also uses a number of runtime libraries. Their function

and the reason for using them is explained below.

@babel/polyfill is a runtime library which fills in support for modern APIs on older platforms. It

comes with the use of Babel to transform modern syntax for older platforms (Zhu et al., 2018).

4/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27466v2 | CC BY 4.0 Open Access | rec: 11 Jul 2019, publ: 11 Jul 2019

citeproc is the official CSL formatting library in JavaScript (Bennett et al., 2018; Citation Style Language,

2018).

commander is a utility library, only used for the Command Line Interface (CLI). It parses the command

line arguments and generates documentation (Holowaychuk et al., 2018).

isomorphic-fetch is a specific polyfill, a library filling in support, for the Fetch Application Program-

ming Interface (Fetch API), a modern way of requesting web resources. It works in both Node.js and

browsers (Andrews et al., 2018).

sync-request is a way to request web resources synchronously (Lindesay et al., 2018). While performing

such operations synchronously is advised against in JavaScript, it is still useful for non-production

scientific scripts, and demos.

wikidata-sdk is a utility library for working with the Wikidata API (Lathuilière et al., 2018; Vrandečić

and Krötzsch, 2014)

Implementation

Citation.js employs a number of ways to achieve a balance between function and ease of use. The program

consists of three major parts: the bibliography interface, code handling input parsing, and code handling

output formatting. The bibliography interface itself is quite simple; it mainly acts as a wrapper around the

parsing and formatting parts. These two parts behave in a modularised way, with a common plugin system.

Input parsing

Input parsing works by registered input formats. These registrations include an optional type recognizer

and a synchronous and/or an asynchronous function transforming the input into a format closer to the final

format: CSL-JSON. The new input can then be tested again, and will be parsed iteratively until the final

format is reached. Plugin authors are encouraged to create input parsers with as small steps as possible, to

allow users to input a variety of different formats.

Type recognition is done with a search tree. First of all, types are ordered by the data type of the

input. This is one of: String (unparsed text, identifiers, etc.), SimpleObject (standard JavaScript

Object), Array (a possibly non-uniform list of inputs), ComplexObject (other non-literal values) and

Primitive (numbers, null, undefined). The data type can be inferred from other format specifications

in some cases. Types can also be specified to be a more specific version of something else. For example, a

DOI URL is also a normal URL, but should be parsed differently, namely with content negotiation.

Types can then provide a list of predicates, testing if input belongs to that format. To avoid code repetition

and make plugin registration code easier to read, certain common tasks can also be accomplished using

shortcuts. These shortcuts include testing text against a RegExp pattern, checking for certain properties and

checking for the value of elements in an array. These properties can also eliminate the need for an explicit

data type: for example, if a RegExp is provided, input can be expected to be a String.

Output formatting

Output formatting is less complicated. Users and developers only have to provide the identifier of the

formatter. Further customization can then be done by providing options, which are automatically forwarded

to the formatter. This allows the CSL plugin to take in options specifying the template and locale, for

example. All formatting producing bibliographies and citations is done with citeproc-js (Bennett et al.,

2018).

5/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27466v2 | CC BY 4.0 Open Access | rec: 11 Jul 2019, publ: 11 Jul 2019

1 let Cite = require('citation-js')

2

3 Cite.plugins.add('bibtex', {

4 input: {

5 '@bibtex/text': {

6 parseType: { ... },

7 parse (text) { ... }

8 },

9 '@bibtex/object': {

10 parseType: { ... },

11 parse (text) { ... }

12 }

13 },

14

15 output: {

16 bibtex (data, options) {

17 ...

18 }

19 },

20

21 config: {

22 labelForm: ['author', 'title', 'issued']

23 }

24 })

25

26 let bibtexConfig = Cite.plugins.config.get('bibtex')

27 bibtexConfig.labelForm = ['author', 'issued', 'year-suffix']

Figure 2. Possible structure of a plugin for BibTeX. In this example package, line 1 loads Citation.js

and lines 2-24 adds the plugin. This plugin consists of two input formats (4-13), one output format (15-19)

and configuration options (21-23). Lines 26-27 show how this configuration would be used. Some code is

omitted for the sake of clarity, and is replaced with ellipsis (...).

Plugin system

Apart from being able to add input and output formats and schemes on their own, it is also possible to add

them in a thematically linked plugin. For example, a BibTeX plugin might consist of a parser for .bib

files, a parser for the resulting BibTeX-schemed JSON, and a output formatter to create BibTeX from other

sources as well. This plugin could then be combined with, for example, a Bib.TXT plugin, resulting in

a JavaScript package or module, which could be published in package managers like npm. Code for this

plugin would look like Fig. 2.

For configuring plugins there is also a config option. As an example a labelForm option is added,

which could control the way the BibTeX output formatter generates labels. Users of this plugin can then

retrieve and modify this configuration. It is also possible to offer internal functions this way, for more

fine-grained control.

Bibliography interface

The methods for parsing input and formatting output are also included in a general class, Cite. Class

instances also have access to opt-in version control — changes are tracked if an explicit flag is passed — and

sorting. The latter currently does not have effect on CSL bibliographies unless set with the nosort option,

as the styles define their own sorting method.

Supported formats

Table 1 shows the formats supported by Citation.js at the moment.

6/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27466v2 | CC BY 4.0 Open Access | rec: 11 Jul 2019, publ: 11 Jul 2019

Table 1. Input and output format support. This table only shows general support. For example, the

"Wikidata" format is both used for Wikidata identifiers and Wikidata API results.

Format BibJSON BibTeX Bib.TXT CSL DOI RIS Wikidata

Input x x x (JSON) x x

Output x x x x

Distribution

Browser use

For in-browser use, there is also a standalone JavaScript file available. This includes dependencies. This

bundle is built automatically when publishing, and is available through a number of Content Delivery

Networks (CDNs) that automatically distribute npm packages. The Cite class can then be imported and

used just as the npm package, barring browser limitations.

For simple use cases like inserting static bibliographies, a separate tool, citation.js-replacer,

was developed. When included on a page, this replaces every HyperText Markup Language (HTML) element

matching a certain selector, with a bibliography.

Figure 3 shows an example of another use case. For example, the basic use can be extended to add

additional information to citations, such as an Altmetric (Adie and Roe, 2013) score icon or Dimensions

citation count (Thelwall, 2018). The output is shown in Figure 4.

npm package

Citation.js is published as an npm package on the main npm registry, as citation-js. Use of the package

is the same anywhere, apart from platform limitations. For example, synchronous requests for web resources,

used to get metadata for DOIs, is limited on Chrome as discussed in Willighagen (2017b). Also, the Node.js

platform, not being a browser, doesn’t have access to the Document Object Model (DOM), and so can’t

easily use HTML elements as input or output.

Separate components, including formats not included in the standard configuration are available under

the @citation-js scope.

Use cases for the npm package include using it when generating content (either at runtime or for static

websites) like PubPub (Shihipar and Rich, 2018), and setting up APIs (Willighagen, 2017a). It is also useful

for converting metadata when text mining. For example, BibJSON is one of the input formats, and can then

be converted to BibTeX or formatted. All references for GitHub projects were created with a simple script

running Citation.js.

CLI use

Simple one-time conversions, with no extensive customization, can also be done with Command Line

Interface (CLI). The command can be installed with npm, which may require root privileges depending your

setup. Alternatively, any commands can be prefixed with npx instead. The command can get input text

from files, command line arguments or via standard in. Output can be configured with a number of options

detailed in the man file, also available by running with the -h, –help option. Any output is then written

to a file or redirected to standard out.

Integrations

The Citation.js npm package can also be used as a library to create integrations with, among other things,

word processing systems. For example, ReLaXed (Zulko et al., 2018) integrates Citation.js into the Pug

7/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27466v2 | CC BY 4.0 Open Access | rec: 11 Jul 2019, publ: 11 Jul 2019

1 <html>

2 <head>

3 <!-- Altmetric widget code --> <script

src="https://d1bxh8uas1mnw7.cloudfront.net/assets/embed.js"></script>→֒

4 <script src="https://cdn.jsdelivr.net/npm/citation-js"></script>

5 </head>

6 <body>

7 <div id="element"></div>

8 <script>

9 window.onload = async function () {

10 let Cite = require('citation-js')

11 let cite = await Cite.async('10.1371/journal.pone.0185809')

12

13 let bibliography = cite.format('bibliography', {

14 format: 'html',

15 append ({DOI}) {

16 return ` `

17 }

18 })

19

20 let element = document.getElementById('element')

21 element.innerHTML = bibliography

22 _altmetric_embed_init()

23 }

24 </script>

25 </body>

26 </html>

Figure 3. Basic use, including appending data to formatted bibliography entries. Here, line 3 loads

the Altmetric widget code, line 4 loads the library, line 10 imports Cite, and line 11 creates an interface for

a bibliography with one entry, with metadata from a DOI. Lines 13-18 render the bibliography, with line 14

setting the output to HTML and lines 15-17 appending an Altmetric widget to the entry. Lines 20-21 show

the output on the page. Lines 9 and 22 are to avoid race conditions in DOM access. Line 3 and 22 initialize

the Altmetric badge. In the example, (Hallmann et al., 2017) is used.

Hallmann, C. A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., … de Kroon, H. (2017). More than

75 percent decline over 27 years in total flying insect biomass in protected areas. PLOS ONE, 12(10), e0185809.

https://doi.org/10.1371/journal.pone.0185809

Figure 4. Result of the code in Fig. 3. Bibliography consisting of Hallmann et al. (2017) in APA style.

Note the Altmetric badge at the end.

templating language to generate citations when creating Portable Document Format (PDF) documents,

and the npm package citation-js-showdown was created as a demo on how to introduce syntax for

citations in Markdown.

Evaluation

Coverage

Coverage of types and properties was determined by creating two spreadsheets, one with all of the CSL

types and one with all of the CSL variables. Then, columns where created for other supported formats and

filled in with the corresponding type or property in that format. The amount of mappings were counted as a

percentage of the total possible mappings, i.e. the total amount of types or properties, available in CSL.

This method of counting skews the perspective as not all properties and types can plausibly be mapped,

8/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27466v2 | CC BY 4.0 Open Access | rec: 11 Jul 2019, publ: 11 Jul 2019

either because no equivalent term exists in the other format, or because the existence is currently unknown to

the authors. This is explained in more detail in the results.

Impact

To collect dependent projects, the GitHub Dependency Networks was used, which lists other GitHub

repositories listing Citation.js as a dependency. To find dependent repositories on different hosting platforms,

a search on the respective hosting platforms and Google was carried out. Additionally, projects known to the

authors to use the library were listed. Of those lists, a diverse set of projects was extracted by hand, followed

by a check to see if and how Citation.js is used.

For download counts, npm-stat.com was chosen because of its ability to collect download statistics

over specific, multi-year time frames.

Performance

Performance statistics were gathered by recording runtime performance in the Chrome DevTools and the

Firefox Developer Tools while importing Citation.js in the browser. The results were obtained with the

default settings for each of the platforms. In Chrome, this was achieved by using guest mode, while no custom

settings were used for Firefox and Node was used without command-line options affecting performance.

The sizes of the different components was determined with the disc tool (Kennedy et al., 2019).

RESULTS

Coverage
A important aspect of Citation.js, other than parsing and formatting specific syntaxes, is the mappings

between different formats. Since creating mappings between each formats is often unnecessarily much

work, CSL-JSON was chosen as a central format. To review the existing mappings, the number of mapped

properties and entry types relative to CSL-JSON were counted. Table 2 shows those results.

While the numbers may seem low, note that not every CSL-JSON property can be mapped: the intentions

behind at least three properties are contested (Wiernik, 2018), the values of two other properties can usually

be derived from other fields, ten properties are specific to references and may not apply to resource-describing

schemas, and twenty properties could be reduced to just eight with linked data. Additionally, a number of

properties have limited documentation and usage, making it difficult to determine what the exact meaning is.

On top of that, the other formats may not have enough well-defined properties to map either. The

BibTeX and BibJSON mappings, the latter being based on BibTeX, are limited by the low number of known

properties and types. Without an authoritative list of properties, examples from a range of sources were used

to define a mapping, which consequently lacked lesser-used properties. The Wikidata mapping has the most

potential for expansion due to the large number of described properties. In fact, a recent Citation.js update

nearly doubled the number of mapped properties to 46 (59%). At that point, the CSL specification becomes

a limiting again.

The number of mapped RIS properties is actually higher than expected; the RIS mapping has a lot of

one-to-many and many-to-one mappings, which makes it inconsistent while artificially raising the number

of mapped properties. Since there is no authoritative document other than an Internet-Archived spreadsheet

linked to on Wikipedia (Reference Manager, 2012), the current mapping is partially based on the Zotero

translator for RIS.

Apart from property and type mappings, value conversion affect the accuracy of results as well. For

example, since BibTeX does not encode information about how names are built up, such information has to

be estimated. While this is seems to be going fine for Western names, other naming systems may not work

9/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27466v2 | CC BY 4.0 Open Access | rec: 11 Jul 2019, publ: 11 Jul 2019

Table 2. Mapping statistics. The number of CSL-JSON properties and types mapped to different formats.

See Table S1.

CSL-JSON Wikidata Wikidata (>0.4.4) BibTeX RIS BibJSON

Properties 78 24 (31%) 46 (59%) 21 (27%) 42 (54%) 20 (27%)

Types 35 31 (89%) 31 (89%) 11 (31%) 30 (86%) 11 (31%)

Figure 5. Download counts since package creation. Graph from npm-stat.com, data from npm. See

Data S1.

as well. The same goes for how RIS encodes names: a first name, a last name and an optional suffix. Note

however, that Zotero, which uses CSL, is not particularly geared towards any naming schemes other than the

most simple, as noted by D’Arcus (2008). Also, style guides themselves may not have rules for non-Western

names either (Qiu, 2008; Puniamoorthy et al., 2008).

Impact

Since Citation.js was published as an npm module, it has been used independently of the authors in a variety

of use cases. With the GitHub Dependency graph, Google and via Twitter a number of those uses can be

identified, listed in Table 3. The download count is also increasing, as can be seen in Figure 5. Between the

first version in October 2016, and the 26 April 2019, our package was downloaded a total of 26,718 times.

Performance

The performance of the Citation.js package has been analyzed on a number of different platforms. Between

browsers, compiling the script and importing the library takes about 120 ms, compiling itself taking a little

less than half of that. Node.js on the other hand takes about 1 s to initialize, both when the source consisting

of multiple files is imported, and when a bundle is imported. This is possibly because Chrome caches

compiled JavaScript reducing the compiling times from around 50 ms to about 8 ms, as is explained in Alle

(2018).

As shown in Fig. 6 and Table 4, time taken to import the library mainly consists of importing

10/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27466v2 | CC BY 4.0 Open Access | rec: 11 Jul 2019, publ: 11 Jul 2019

Table 3. Different uses of Citation.js found in the wild. Some of these projects contributed valuable

feedback to the development of Citation.js.

User Use Parsing Formatting

wcite (Voß, 2019) CLI tool for managing a Wikidata bibliog-

raphy

Wikidata Yes

Reference Extractor

(Zelle and Zumstein,

2018)

Browser tool extracting references from

Word documents

No Yes

PubPub (Shihipar and

Rich, 2018)

Live server-side generation of citations (with

REST API)

No CSL, BibTeX

service-based-

antipatterns (Boceck

et al., 2019)

Live in-browser generation of citations No CSL, BibTeX

ds.korea.ac.kr,

ccv.brown.edu

Static site generation of lists of publications BibTeX/DOI CSL

dabai.compute.dtu.dk Live in-browser generation of lists of publi-

cations

Wikidata CSL

schol-js, RelaxedJS

(Czerwinski, 2018;

Zulko et al., 2018)

Document generation Yes Yes

Ovide, Fonio

(de Mourat and Rabot,

2019; de Mourat et al.,

2019)

Experimental publishing platform BibTeX CSL

PolarisOS (Ribeyre

et al., 2019)

Library management system and repository No CSL

@babel/polyfill. This is because adding the polyfills requires repeated feature detection. After

that the actual code is imported in two parts. In the first part, where core functionality like the Cite interface

is loaded, the main culprit is addTypeParser, with 0.13 ms per call on average. In the second part,

loading output-related code, importing citeproc-js takes the longest with a single call of 2.82 ms. Note

that that Firefox uses Just-In-Time (JIT) compilation, compiling pieces of code when they are used a lot.

While code execution is one part, one should also look into the file size. This is especially important

in the browser, which has to fetch the library when loading the page. The biggest part is citeproc-js,

accounting for almost half of the file size. Additionally, built-in CSL templates and locales should also be

counted. A complete overview can be found in Table 4.

DISCUSSION

Converting between formats and standardized crosswalks with linked data

Converting input data like parsed BibTeX, BibJSON or Wikidata API results into another format and back

can get very repetitive in terms of code. Yet, there are still cases where special handling is needed. Since

different formats call for different needs, each plugin has developed its own system to deal with this. Unifying

11/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27466v2 | CC BY 4.0 Open Access | rec: 11 Jul 2019, publ: 11 Jul 2019

Figure 6. Initialization performance results on different platforms. Actual timings may vary

depending on the device, operating system and cache. Note that Chrome (a) starts with 40 ms of compiling

time that is cached on subsequent runs. Firefox (b) compiles JIT, while the code is running. Both graphs

show three parts, one loading polyfills from @babel/polyfill taking up half the loading time, followed

by two parts mainly loading core functionality and plugins respectively. Profiling data is available as Data

S2 and S3.

this into a single, performant, reusable and developer-friendly system would be preferable.

Jones et al. (2017) use a JSON-LD context for this. While a JSON-LD context would scale very well

without a central format, most cases restrict the usefulness. Consider the page property in CSL-JSON,

mapping to the first and last properties in CFF. If the nested values were deserialized, this could be

expressed in JSON-LD contexts. However, in the first example it cannot, since JSON-LD cannot distinguish

between parts of strings.

Alternatively, a custom system could be developed that defines as much mapping as possible to and from

a central format, with special cases for context-dependent mappings and one-to-many mappings. It would be

difficult to do this entirely language-agnostic, since serialization and deserialization usually requires some

amount of scripting.

CSL-JSON as a central format

As mentioned in the Background, an important feature of the central format is that it can hold any information

needed for the output formats—if it cannot, information loss can occur. Citation.js currently uses CSL-JSON

as a central format, as it has a (mostly) well-defined list of properties and entry types, an authority to clear

up any confusion, and relatively good support for most metadata while still being simple to work with.

However, CSL-JSON is not perfect, and information loss is definitely possible. This is currently the case

12/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27466v2 | CC BY 4.0 Open Access | rec: 11 Jul 2019, publ: 11 Jul 2019

Table 4. Browser bundle breakdown. Running time is the time it takes to import that part of the script

with browserify require in the Chrome data set. Note that a big part of the plugin-csl "own" code is

serialized styles and locales from the CSL repository. Minified the code is 702 kB, which is reduced to 177

kB with gzip and 164 kB with Brotli, both with default compression levels.

Part
Size

Running time
Own Dependencies Total

Citation.js

Backport 5.9 kB - 5.9 kB 5.9 ms

core 99.7 kB 33.9 kB 133.5 kB 8.3 ms

plugin-bibjson 7.6 kB - 7.6 kB 3.5 ms

plugin-bibtex 42.9 kB - 42.9 kB 2.6 ms

plugin-csl 87.0 kB 461.8 kB 548.9 kB 3.2 ms

plugin-doi 6.6 kB - 6.6 kB 0.6 ms

plugin-ris 11.1 kB - 11.1 kB 0.5 ms

plugin-wikidata 22.1 kB 40.4 kB 62.4 kB 2.2 ms

name 16.6 kB - 16.6 kB 1.1 ms

date 7.3 kB - 7.3 kB 0.2 ms

Additional
@babel/polyfill - 197.3 kB 197.3 kB 32.0 ms

browserify - 6.8 kB 6.8 kB 0.2 ms

Total 306.8 kB 740.1 kB 1046.8 kB 60.3 ms

with the software entry type, which does not exist in CSL 1.0.1, and is represented by the book type by

convention. When converting Wikidata input consisting of a computer program to RIS output, the fact that it

is in fact a computer program is lost, even though both formats support it as an entry type.

A solution for this would be to extend the format to allow for the missing entry type or property, assuming

the specification authors agree. Otherwise, a custom extension could be made. Doing that for every future

shortcoming may not be sustainable though, since it effectively creates a new poorly-supported standard to

add to the mix. Choosing a different format is among the possibilities, but we have not found a suitable

candidate; even Wikidata, which is intended to cover everything, is changing constantly and even if a proper

specification is created, the question remains whether the bulk of the publication data is up to date.

If no suitable format is found, one might add additional mappings to common formats, to cover properties

missing from the central format. Then, find a path for every property through the crosswalks to get to the

end format. That way, one could bypass the central format in specific cases only, keeping an easy mapping

for common properties.

Scraping from source versus fetching from central stores

When getting data from, for example, the Wikidata API or scraped from a web page, that data may be

incomplete. However, if part of the data you get is the DOI linked to the entity queried, you could amend that

data with data fetched from a central store like Crossref or DataCite. Due to difficulties with prioritizing data

sources and non-trivial merging conflicts this has not been implemented yet, although linked-data formats

such as Resource Description Framework (RDF) and JSON-LD would be possibilities. Additionally, if the

user specifically requests data from a specific API, it can be assumed they want that specific data to be used.

13/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27466v2 | CC BY 4.0 Open Access | rec: 11 Jul 2019, publ: 11 Jul 2019

OUTLOOK

Use of formal grammars for parsing

Apart from more common formats like JSON, XML and YAML (YAML Ain’t Markup Language), Citation.js

has to parse a number of text formats with syntax specific to that format, like BibTeX and RIS. While one can

use standard or even built-in parsers for common formats, that is usually not possible for the latter formats.

To solve this, one can employ formal grammars, which can be translated into code parsing and validating

input. Examples of libraries working with grammars are PEG.js (Majda et al., 2018) and nearley.js (Kartik

et al., 2018). Creating grammars has the benefits of not having to write and maintain code validating and

parsing input, and having a readable grammar instead of a complex program file.

However, there are also drawbacks. Generating these grammars requires an extra build step, which in

the case of Citation.js cannot be integrated with the preceding step due to a lack of appropriate tooling. On

top of that, early tests have shown generated code to have poor performance or large size, and in the case of

nearley.js requires a runtime library. Therefore, it may be preferable to write custom parsers in some cases.

For example for RIS, which has no balanced brackets or quotes, and does not need much more than simply

iterating over the individual lines.

Use of GraphQL for API queries

With REpresentational State Transfer (REST) APIs comes the problem of over-fetching and under-fetching:

when fetching a resource it may contain too much unneeded information, require additional calls to the API,

or both. This causes unnecessary load on both the client and the server, as both have to process more calls

with more network bandwidth. One case where this is especially relevant is Wikidata, which in its linked-data

nature does not expose the name of the authors or journals it links to; to retrieve that, additional requests

are needed. To overcome this a better way of generating those requests locally could be implemented, or a

GraphQL server could be developed by allowing the client to specify exactly what data it needs (Facebook,

2018).

Support for additional formats

Apart from the formats currently supported in Citation.js (see Table 1), there are plans to include more

formats such as EndNote import files, MARC XML (Avram, 2003), the Zotero API JSON schema and

Office XML. These will be published in thematic plugins. For example, formats used to describe software

projects are joined in the plugin @citation-js/plugin-software-formats. These formats will

also include linked data scraped from web pages.

CONCLUSIONS

Citation.js has been introduced as a library that supports bibliographic information in various formats, from

multiple sources. The use of JavaScript ensures it can be used in a wide variety of use cases in the web

browser, on the command line, and in a server environment. The tool is developed using modern approaches

and released via the npm network and archived on GitHub and Zenodo. In addition to machine-readable

formats such as BibTeX and RIS, the support for CSL templates ensures that citations and bibliographies can

be formatted in many textual representations. Additional content can be easily added to those representations,

such as Altmetric icons. The support for plugins allows additional formats to be integrated with relative

ease, and without the need of a central repository managing those plugins.

14/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27466v2 | CC BY 4.0 Open Access | rec: 11 Jul 2019, publ: 11 Jul 2019

ACKNOWLEDGMENTS

Thanks to JS.org for providing the (sub)domain name for the homepage of Citation.js. Thanks to the

many people submitting bug reports, pull requests, and other kinds of feedback during the development of

Citation.js.

REFERENCES

Aboukhadijeh, F., Flettre, D., developerjin, Yang, A., Unnebäck, L., Lavieri, D., Sta. Cruz, R., Cousens,

D., Greenkeeper, Comnes, B., Littauer, R., Nassri, A., Liu, W., Colvin, J., Barros, R., Robin, Emanuele,

Spac, J., Watson, T., Mathur, T., Varela, P., Reggi, T., Wuyts, Y., Chen, S., M., A., Horst, B., Charlie, and

Prigara, E. (2018). standard/standard. https://github.com/standard/standard.

Adie, E. and Roe, W. (2013). Altmetric: enriching scholarly content with article-level discussion and metrics.

Learned Publishing, 26(1):11–17.

Alle, M. (2018). Improved code caching. https://v8.dev/blog/improved-code-caching.

Andrews, M., Tschinder, D., Knuth, E., Josiah, Cirkel, K., Melnikow, P., Evans, R., Giles, S., and

Simeon (2018). matthew-andrews/isomorphic-fetch. https://github.com/matthew-andrews/

isomorphic-fetch.

Avram, H. D. (2003). Machine-readable cataloging (MARC) program. In Encyclopedia of Library and

Information Science, volume 3, pages 1712–1730. CRC Press, second edition.

Bennett, F., Adam, Sifford, D., Maloney, C., Ruf, D., Mower, M., C-P, F., SM, M., and Zelle, R. M. (2018).

Juris-m/citeproc-js. https://github.com/Juris-M/citeproc-js.

Boceck, T., Popp, M., and JREB (2019). xjreb/service-based-antipatterns.

Brase, J. (2009). DataCite - A Global Registration Agency for Research Data. In 2009 Fourth International

Conference on Cooperation and Promotion of Information Resources in Science and Technology, pages

257–261, Beijing, China. IEEE.

CI, T. (2018). Travis CI - Test and Deploy Your Code with Confidence. https://travis-ci.org/.

Citation Style Language (2018). CSL Processors - Developers. https://citationstyles.org/

developers/#/csl-processors.

Crossref (2018). UNIXREF query output format. http://support.crossref.org/hc/en-us/

articles/214936283-UNIXREF-query-output-format.

Czerwinski, J. (2018). schol-js/schol.

D’Arcus, B. (2008). Non-Western Name Ordering in Bibliographies.

Davis, J. C., Coghlan, C. A., Servant, F., and Lee, D. (2018). The impact of regular expression denial of

service (ReDoS) in practice: an empirical study at the ecosystem scale. In Proceedings of the 2018 26th

ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of

Software Engineering, pages 246–256, Lake Buena Vista, FL, USA. ACM Press.

de Mourat, R., Plique, G., and Pichon, A. (2019). medialab/fonio.

de Mourat, R. and Rabot, S. (2019). peritext/ovide.

De Smaele, M., Starr, J., Ashton, J., Birt, N., Dietiker, S., Elliott, J., Fenner, M. Hatfield Hart, A., Hugo,

W., Jakobsson, S., Bernal Martínez, I., Rücknagel, J. Yahia, M., Ziedorn, F., and Zolly, L. (2017).

DataCite Metadata Schema Documentation for the Publication and Citation of Research Data v4.1.

https://schema.datacite.org/meta/kernel-4.1/index.html.

Druskat, S., Chue Hong, N., Haines, R., and Baker, J. (2018). Citation File Format (CFF) - Specifications.

https://doi.org/10.5281/zenodo.1003149.

D’Arcus, B. and Giasson, F. (2009). The bibliographic ontology (bibo). Bibliographic Ontology Specification.

15/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27466v2 | CC BY 4.0 Open Access | rec: 11 Jul 2019, publ: 11 Jul 2019

EndNote (2012). EndNote X6 Help User Guide (For Macintosh). https://web.archive.

org/web/20180127234028/http://endnote.com/sites/en/files/support/

endnotex6machelp.pdf.

Facebook (2018). GraphQL. https://facebook.github.io/graphql/June2018/.

Fenner, M., Scheliga, K., and Bartling, S. (2014). Reference Management. In Bartling, S. and Friesike, S.,

editors, Opening Science: The Evolving Guide on How the Internet is Changing Research, Collaboration

and Scholarly Publishing, pages 125–137. Springer International Publishing, Cham.

Godby, C. J., Smith, D., and Childress, E. R. (2003). Two Paths to Interoperable Metadata. International

Conference on Dublin Core and Metadata Applications, 0(0):19–27.

Godby, C. J., Young, J. A., and Childress, E. (2004). A Repository of Metadata Crosswalks. D-Lib Magazine,

10(12).

Halliday, J., Suarez, A., Kooi, R., Aboukhadijeh, F., Denicola, D., McCarthy, J., Lindesay, F., Popp, A.,

Stock, T., Lorenz, T., Duff, J., Shtylman, R., Kennedy, H., Harband, J., Patrick, Mao, S., Anatoliy,

Metcalf, C., McConnell, C., Kastner, D., Govett, D., Wright, J., Ewald, J., Parodi, A., Comnes, B.,

Macabiau, C., Gozalishvili, I., and Hanson, J. (2018). browserify/browserify. https://github.com/

browserify/browserify.

Hallmann, C. A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W., Müller, A.,

Sumser, H., Hörren, T., Goulson, D., and de Kroon, H. (2017). More than 75 percent decline over 27

years in total flying insect biomass in protected areas. PLOS ONE, 12(10):e0185809.

Holowaychuk, T., Li, Z., Abe, T., Koutnik, R., Geraghty, T., Lukasavage, T., Allen, D., Agius, A., Petersen,

J., Neeman, I., De Bollivier, S., Nichols, A., Lyons, P., Sorohan, B., Geisendörfer, F., Yaroshevich, A.,

Franzoia, A., Ruf, D., George, J., Robertson, J., Hamlet, J., Brooks, M., Thomas, R., Vanesyan, R., Ilia,

Buathier, Q., and Nitta, A. (2018). tj/commander.js. https://github.com/tj/commander.js.

Hull, D., Pettifer, S. R., and Kell, D. B. (2008). Defrosting the Digital Library: Bibliographic Tools for the

Next Generation Web. PLOS Computational Biology, 4(10):e1000204.

Jones, M. B., Boettiger, C., Mayes, A. C., Slaughter, P., Niemeyer, K., Gil, Y., Fenner, M., Nowak, K.,

Hahnel, M., Coy, L., Allen, A., Crosas, M., Sands, A., Hong, N. C., Cruse, P., Katz, D., and Goble,

C. (2017). CodeMeta: an exchange schema for software metadata. https://doi.org/10.5063/

schema/codemeta-2.0.

Kartik, Radvan, T., Stewart, A., Corbin, J. T., Windels, R., Marinov, B., Emanuel, K., Viet, L. Q., Itzhaky,

S., alex, Litvin, N., Olmsted, S., Hunter, C., Edelman, J., Kanefsky, B., Jake, Aukia, J., Kemp, K. J.,

Ljunglöf, P., Rose, R., Hildebrandt, S., Trefz, A., Rosenzweig, A., Gunderson, B., Meadors, C., Bertolini,

F., Victorio, F., and Quigley, J. (2018). kach/nearley. https://github.com/kach/nearley.

Kennedy, H., Matuzak, M., MacWright, T., Wuyts, Y., Pourkhomami, P., Næss, B., Dickinson, C., Conlen,

M., Antoni, M., Lysenko, M., Verbaten, J., Chiniquy, R., Williams, S., and Nguyen, T. (2019). hughsk/disc.

Lammey, R. (2015). CrossRef text and data mining services. Science Editing, 2(1):22–27.

Lathuilière, M., Voß, J., Simantov, M., Willighagen, L., Roberts, L., and offirmo (2018). maxlath/wikidata-sdk.

https://github.com/maxlath/wikidata-sdk.

Lindesay, F., Joppi, D. H., Kannan, S., Irving-Beer, A., Double, C., Dascalescu, D., Zaharee, D., Hoffmann,

D., Krems, J. O., Hong, J., Bílek, K., Willighagen, L., and Zoltu, M. (2018). Forbeslindesay/sync-request.

https://github.com/ForbesLindesay/sync-request.

Majda, D., Ryuu, F.-z., Breault, A., Ruciński, R., felix, https://github.com/josephfrazier, Sampson, A.,

Tavakoli, A., Vrána, J., Blank, J., Pirsch, F., Ramjiawan, A., Mimms, A., Almad, Neculau, A., Kutil,

B., Hearon, C., Davies, J., Doersing, N., Brandt, P., Lukasavage, T., and chunpu (2018). pegjs/pegjs.

https://github.com/pegjs/pegjs.

16/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27466v2 | CC BY 4.0 Open Access | rec: 11 Jul 2019, publ: 11 Jul 2019

Malyshev, S., Krötzsch, M., González, L., Gonsior, J., and Bielefeldt, A. (2018). Getting the Most Out of

Wikidata: Semantic Technology Usage in Wikipedia’s Knowledge Graph. In Vrandečić, D., Bontcheva,

K., Suárez-Figueroa, M. C., Presutti, V., Celino, I., Sabou, M., Kaffee, L.-A., and Simperl, E., editors, The

Semantic Web – ISWC 2018, volume 11137, pages 376–394. Springer International Publishing, Cham.

Microsoft (2018). DocumentFormat.OpenXml.Bibliography Namespace. https://docs.microsoft.

com/en-us/dotnet/api/documentformat.openxml.bibliography.

Neumann, J. and Brase, J. (2014). DataCite and DOI names for research data. Journal of Computer-Aided

Molecular Design, 28(10):1035–1041.

Patashnik, O. (1988). BibTeXing. http://mirrors.ctan.org/biblio/bibtex/base/

btxdoc.pdf.

Pierre, M. S. and LaPlant, W. P. (1998). Issues in Crosswalking Content Metadata Standards - National

Information Standards Organization. Technical report, NISO Standards.

Preston-Werner, T. (2013). Semantic Versioning 2.0.0. https://semver.org/.

Puniamoorthy, N., Jeevanandam, J., and Narayanan Kutty, S. (2008). Give south Indian authors their true

names. Nature, 452:530.

Putnam, C. (2005). Bibutils—bibliography conversion utilities. The Scripps Research Institute, February.

Qiu, J. (2008). Scientific publishing: Identity crisis. Nature, 451(7180):766–767.

Reference Manager (2012). RIS Format Specifications. https://web.archive.org/web/

20120526103719/http://refman.com/support/risformat_intro.asp.

Ribeyre, C., Louis-Marie, and MyScienceWork (2019). Mysciencework/polarisos.

Ron Gilmour, E. A. (2011). Reference Management Software: a Comparative Analysis of Four Products.

Issues in Science and Technology Librarianship.

Shihipar, T. and Rich, T. (2018). PubPub: Open publishing. https://pubpub.org.

Shotton, D. (2013). Publishing: Open citations. Nature, 502(7471):295–297.

Sifford, D. (2019). dsifford/astrocite.

Smith, A. M., Katz, D. S., and Niemeyer, K. E. (2016). Software citation principles. PeerJ Computer Science,

2:e86.

Taraborelli, D., Pintscher, L., Mietchen, D., and Rodlund, S. (2017). WikiCite 2017 report. https:

//doi.org/10.6084/m9.figshare.5648233.v3.

Thelwall, M. (2018). Dimensions: A competitor to Scopus and the Web of Science? Journal of Informetrics,

12(2):430–435.

van Eck, N. J. and Waltman, L. (2014). CitNetExplorer: A new software tool for analyzing and visualizing

citation networks. Journal of Informetrics, 8(4):802–823.

Vinckevicius, A. (2017). Zotero to CSL extension and mappings. https://aurimasv.github.io/

z2csl/typeMap.xml.

Voß, J. (2019). wikicite/wcite.

Vrandečić, D. and Krötzsch, M. (2014). Wikidata: a free collaborative knowledgebase. Communications of

the ACM, 57(10):78–85.

Wiernik, B. (2018). Inconsistencies with genre and medium. https://discourse.

citationstyles.org/t/inconsistencies-with-genre-and-medium/1475.

Williams, J., Mathews, M., Frank, J., Wrzeszcz, R., Blank, B., Colter, M., Schaub, T., Hayes, L., Haagsman,

E., Pozin, K., Kim, M., Phasmal, Harrtell, B., Kerns, B., Chambers, D., Schonning, N., Droogmans, P.,

Taylor, R., Tutt, B., Parks, C., Locke, K., Dubeau, L.-D., Voyer, V., Nicksay, A., Kienzle, S., Nison, M.,

and Wytrębowicz, T. (2018). jsdoc3/jsdoc. https://github.com/jsdoc3/jsdoc.

Willighagen, L. (2017a). Citation.js: Endpoint on RunKit. https://larsgw.blogspot.com/2017/

17/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27466v2 | CC BY 4.0 Open Access | rec: 11 Jul 2019, publ: 11 Jul 2019

08/citationjs-endpoint-on-runkit.html.

Willighagen, L. (2017b). Make a synchronous redirectable CORS request

in Chrome. https://stackoverflow.com/questions/45238537/

make-a-synchronous-redirectable-cors-request-in-chrome.

Zakas, N. C., Volodin, I., Katz, T., Singh, G., Nagashima, T., alberto, Mills, B., Partington, K., Ficarra, M.,

Cataldo, K., Kaya, B. Y., Myers, I. C., Schreck, M., VanSchooten, I., DuVall, M., Pedrotti, M., Balocco,

V., Aliaksei, Rajavuori, J., Anson, D., Cochard, G., Allardice, J., Fang, P., Hom, V., Pool, J., Harband, J.,

@scriptdaemon, and Vidal, J. R. (2018). eslint/eslint. https://github.com/eslint/eslint.

Zelle, R. M. (2012). CSL 1.0.1 Specification. http://docs.citationstyles.org/en/1.0.1/

specification.html.

Zelle, R. M. and Zumstein, P. (2018). rmzelle/ref-extractor.

Zhu, H., Smyth, L., Ng, B., Haverbeke, M., Masad, A., Tschinder, D., Stepanyan, I., Jamie, Ridgewell,

J., Ribaudo, N., Sauleau, S., Yavorsky, A., Hanson, A., McCarthy, J., Burzyński, M., Donovan, B.,

Goldman, S., DiGioia, J., Zilberman, M., Franco, J., Bynens, M., Kappert, L., Kushwaha, P., Bedford,

G., Newman, B., Gonçalves, A. A. S., Cataldo, K., and Abramov, D. (2018). babel/babel. https:

//github.com/babel/babel.

Zinn, C., Trippel, T., Kaminski, S., and Dima, E. (2016). Crosswalking from CMDI to Dublin Core and

MARC 21. In LREC.

Zulko, Drew, Townsend, T., Ruf, D., Li, J., Mitra, N., Forrest, G., Koska, K., David, and ldrovira (2018).

Relaxedjs/relaxed. https://github.com/RelaxedJS/ReLaXed.

18/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27466v2 | CC BY 4.0 Open Access | rec: 11 Jul 2019, publ: 11 Jul 2019

	References

