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Abstract. Reproducibility is a key tenet of the scientific process that dictates the reliability
and generality of results and methods. The complexities of ecological observations and data pre-
sent novel challenges in satisfying needs for reproducibility and also transparency. Ecological
systems are dynamic and heterogeneous, interacting with numerous factors that sculpt natural
history and that investigators cannot completely control. Observations may be highly dependent
on spatial and temporal context, making them very difficult to reproduce, but computational
reproducibility can still be achieved. Computational reproducibility often refers to the ability to
produce equivalent analytical outcomes from the same data set using the same code and soft-
ware as the original study. When coded workflows are shared, authors and editors provide
transparency for readers and allow other researchers to build directly and efficiently on primary
work. These qualities may be especially important in ecological applications that have impor-
tant or controversial implications for science, management, and policy. Expectations for compu-
tational reproducibility and transparency are shifting rapidly in the sciences. In this work, we
highlight many of the unique challenges for ecology along with practical guidelines for repro-
ducibility and transparency, as ecologists continue to participate in the stewardship of critical
environmental information and ensure that research methods demonstrate integrity.
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Ecologists have long faced a novel challenge not rou-
tinely encountered in less field-oriented sciences:
repeated testing is fundamental to the scientific method
(Popper 1934) yet it is impossible to perfectly repeat
observational studies of the natural world (Vanderbilt
and Blankman 2017). This issue is timely as scientists
across disciplines increasingly recognize the challenges
of reproducing published results, and the threats that
irreproducible results pose to the scientific process
(Munafo et al. 2017). Reproducibility and transparency
issues are particularly important for scientists engaged
in actionable science and ecological applications; this
work often feeds back rapidly and directly on biota,
ecosystems, and people who have stakes in conservation
or management outcomes, in turn affecting perceptions
about the integrity of our field.
For ecologists engaged in observational and field-based

studies, data are often highly dependent on the spatial
and temporal context of the specific system (Huang 2014,
Schnitzer and Carson 2016, LaDeau et al. 2017, Peters
and Okin 2017). The weather does not recycle itself.
Gradual changes over time, regime shifts, and legacies of
past events can greatly influence how natural systems
work, as well as our perceptions about how they work
(Magnuson 1990). With this complexity, ecology has

relied on deep understanding of natural history as a
source of ideas about pattern and process (Anderson
2017), often through long periods of intensive observa-
tion that could be argued as irreproducible. Even if we
could bring back our predecessors, many of their study
systems now bear little resemblance to earlier states.
Such irregularities in the natural world can torment

experimental ecologists. Repeated or replicated
sequences in time are elusive and, likewise, neighboring
populations, communities, or ecosystems observed
within the same day or year can still differ in important
ways that affect the outcomes of studies. Thus, while
broad guidelines for reproducible research in the sciences
are available (Sandve et al. 2013), ecologists face novel
challenges that complicate adoption of such general
practices. These challenges are linked to the heterogene-
ity of the systems we study, as well as the approaches
and information we use. Strategies that increase the
reproducibility of ecological studies are being pursued
(Milcu et al. 2018) and it is important that ecologists
address these issues if we are to continue serving a criti-
cal role in understanding the complex dynamics of the
biosphere in the Anthropocene.

COMPUTATIONAL REPRODUCIBILITY

While field-oriented observations may not ever be
completely or perfectly repeated, replicated, or repro-
duced (Plesser 2018), ecologists still can achieve
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computational reproducibility. It is imperative that we
prepare young researchers for the computational expec-
tations of the future by engaging them in the process
now, and fostering the relationships and career tracks
that reinforce such efforts.
Computational reproducibility frequently refers to the

ability to generate equivalent analytical outcomes from
the same data set using the same code and software (Peng
2011, Stodden et al. 2013, Leek and Peng 2015, Fidler
et al. 2017). One practice is for authors to share both
code and data that generated the specific results shown in
their peer-reviewed publications (Poisot et al. 2016). Such
aids for the peer review process may be essential as analy-
ses become more complex (Ellison 2010), allowing
reviewers and other readers to follow the decision-making
processes of authors in careful reviews of analytical work-
flows. In this publication model, authors should be confi-
dent at the time of manuscript submission that a reviewer
could sit down with the code and data, and generate the
same results that are in the paper; this process requires
not just the raw code and data, but also good documenta-
tion of both (see Practical Guidance for Openness below).
When data are shared without code, an independent
investigator can attempt to regenerate results nearly from
scratch, but typically with considerable costs in time and
effort. When both code and data are published, a reader
can directly test alternative analysis techniques and
improve the existing one by modifying the author’s code.
Thus, sharing code ensures that less time is wasted, for
reviewers, editors, and authors alike, as we adjust to shift-
ing expectations for transparency and reproducibility.
About linking publications more directly with underlying
analyses Donoho (2010), went so far to write: “An article
about computational results is advertising, not scholar-
ship. The actual scholarship is the full software environ-
ment, code and data, that produced the result.”
As in other scientific fields, repeated or replicated

studies in ecology and environmental science are rela-
tively uncommon (Schnitzer and Carson 2016), as are
published tests involving computational reproducibility.
With professional reward systems focused on novelty
throughout the sciences, there have been few incentives
for scientists to repeat each other’s work, leading to
unsettling questions about the reliability of results and
conclusions. However, we now live in era where problems
can be caught and prevented by embracing the goal of
reproducibility in our work habits, peer review systems,
and overall culture (Reichman et al. 2011, Michener and
Jones 2012, Hampton et al. 2013, Borregaard and Hart
2016). Key aspects of computational reproducibility can
be achieved using open source tools for tasks such as
data integration, data wrangling, statistics and model-
ing, handling of multiple users, visualization, workflow
pipelines (e.g., Kepler, noWorkflow for Python), creation
of process metadata (e.g., RDataTracker), and version
control. Such tools are now widely accessible (Jones
et al. 2006, Hampton et al. 2015, Borregaard and Hart
2016, Ellison 2017, Rocchini et al. 2017) and attitudes

and norms increasingly favor data reuse (Curty et al.
2017).

TRANSPARENCY

Simultaneously, computational reproducibility can aid
in transparency (Lowndes et al. 2017). In ecological
applications such as natural resource management and
policy issues, high transparency may be essential for sci-
entists and scientific institutions to maintain public trust
(Reichman et al. 2011, Michener and Jones 2012, Mich-
ener 2015, Schimel and Keller 2015). With scripted anal-
yses and detailed metadata accompanying data sets,
methods and decisions are explicitly documented and
can be shared at any point in the project. Scripted analy-
ses require researchers to document their workflows
from the very beginning, making the products easier to
share later on, sometimes even prior to completion if
necessary. This upfront work can greatly minimize post-
project workloads aimed at publicizing and sharing the
data products (Gil et al. 2016) or addressing inquiries
about contentious results. Computational reproducibil-
ity, with data and code available to readers, obviates the
need for stakeholders to challenge researchers and man-
agers for access to these resources, for example, through
legal mechanisms such as the Freedom of Information
Act (Huettmann 2005). Such legal mechanisms are
important tools for increasing transparency of the demo-
cratic process, but the logistics can be burdensome to all
parties. Meanwhile, if we can foster the relationships,
skills, and activities that coincide with publishing of data
and code, we might also suppress some of the anxieties
(e.g., fear of a “data disaster” or analysis error) that
relate to mental health of young researchers (Evans
et al. 2018, Woolston 2018).
Yet again, ecology has particulars in how sensitive

topics, such as endangered species, are handled when
facilitating transparency. A researcher who encounters a
small population of rare orchids might effectively con-
demn a species to extinction by revealing its location.
Similarly, a broad-scale environmental study may identify
specific locations with otherwise unforeseen hazards that
compromise property values, or conversely suggest eco-
nomic opportunities that attract international attention.
Publishing location specifics may exaggerate the con-

sequences of the “digital divide” across diverse cultures
that have variable access to computing tools (Ess and
Sudweeks 2001), disadvantaging local people if they lack
capacity to access or interpret such data. Difficult ethical
issues are raised by publishing scientific information that
is not equally accessible, particularly in light of interna-
tional declarations on human rights to the “benefits of
science,” an aspect of the international human rights
framework that remains unfulfilled (Duke et al. 2011).
Fortunately, ecologists have developed standard prac-

tices for protecting organisms and environments that
may be applied in sensitive situations. For example, it is
customary to obfuscate the location of endangered
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species or the location of intake pipes for municipal
drinking water supplies when publishing data. While
these practices are common for such issues of endan-
gered species and human safety, other situations involv-
ing potentially sensitive information may have fewer
guidelines. Complicating matters, researchers and policy
makers have recently debated a new idea: that only stud-
ies based on open data can be used in decision making.
The outcome of this debate could have widespread
impact, including situations where useful scientific infor-
mation could be excluded from decision-making pro-
cesses if the work does not meet the evolving standards
of openness. We encourage authors to be mindful of the
changes in data policies, transparency, and reproducibil-
ity that are upon us, and to consult with experienced
data managers and editors when they anticipate poten-
tial for ethical dilemmas arising from data publication.

RAPID SCIENTIFIC PROGRESS

Many calls for open data and open software have been
less focused on reproducibility and transparency, and
more focused on the opportunities for rapid scientific
advancements associated with open science (Nielsen
2011). When data and methods are easily accessible for
repurposing, researchers can build directly on previous
research (Carpenter et al. 2009), avoid blind alleys, and
not “reinvent the wheel” (Hampton et al. 2015). Further,
open data and open methods enable the repurposing of
existing data toward new questions not originally envi-
sioned at the time data were collected (Carpenter et al.
2009). Additional benefits include increased opportuni-
ties for teamwork and rapid formation of research teams
(Milojevic 2014), as well as enhanced citation rates (Piwo-
war and Vision 2013, McKiernan et al. 2016). Further,
because empirical relationships of the past may not neces-
sarily hold in the future (Gustafson 2013), vigilance is
required to continually confront data sets with the best
available information as well as models; these endeavors
to update the state of the science on a topic can be greatly
accelerated if the data and methods exist in well-docu-
mented, accessible, reusable, and machine-readable form.

PRACTICAL GUIDANCE FOROPENNESS

Recognition and adoption of open research practices
has rapidly risen, and has been associated with policies
that increase public access to data (Stodden et al. 2013,
Heimstadt et al. 2014, Michener 2015, McKiernan et al.
2016, Culina et al. 2018) and code (Stodden et al. 2013).
Such policies are motivated by a combination of ethical,
moral, or utilitarian arguments (Willinksy 2006, Duke
and Porter 2013, Soranno et al. 2015). Ecologists can
expect more journals, including ESA journals, to encour-
age if not mandate the archiving of code in their data
policies (Simmons 2016, Collins and Verdier 2017, Schi-
mel 2018), further pushing the community toward open
science approaches.

What does “open science” mean? Key features include
transparency of process and sharing of data products,
code, and metadata. Completely open science includes
public communication throughout a project from idea
generation to post-publication discussion (Hampton
et al. 2015). In an open setting, enhanced collaboration
and rapid idea vetting can occur through what Hackett
et al. (2008) call “peer review on the fly.” A researcher
practicing completely open science might generate discus-
sion about new ideas through social media, invite online
collaboration from anyone at any stage, execute work in
an open online notebook with evolving code and data
sets (e.g., JuPyter notebooks; Szitenberg et al. 2015), post
pre-prints to elicit feedback, publish in journals and
repositories that have open-access or open review formats
(e.g., F1000Research; Hollister and Stachelek 2017), and
engage in post-publication discussion through online for-
ums. Hampton et al. (2015) provide more detailed exam-
ples of open science workflows and options.
Open science and computational reproducibility go

hand in hand if well documented versions of code and
data used to generate the results of a study are made
public. Code is frequently shared through web-based ser-
vices that provide version control and clearly document
evolution of code, such as GitHub (Hampton et al.
2015). Data repositories familiar to ecologists and other
environmental scientists include DataONE member
nodes such as Environmental Data Initiative and
Knowledge Network for Biocomplexity (KNB). These
repositories host thousands of data sets related to pat-
terns and processes, including those from the US Long-
term Ecological Research (LTER; Michener 2016), pro-
viding diverse and frequently updated examples that
demonstrate emerging best practices.
In addition, some investigators’ institutions such as

universities, agencies and non-profit organizations offer
services for housing public data (Borgman et al. 2015),
and at the least formal level investigators can publish
data and code as Supplements. A caution in using insti-
tutional repositories or Supplements is that investigators
should consider (1) the standardization of data and
metadata into formats that an individual organization
may not be prepared to provide but that an international
repository will guide, frequently with specifics useful in
one’s own field (e.g., the KNB was developed in ecol-
ogy), and (2) the discoverability of the data and code
that international repositories can facilitate. With the
rise of this variety of options for individual investigators,
providing data sets on personal websites or “e-mail me
for the data” are no longer acceptable practices (Stodden
et al. 2018), given the low expectations for longevity or
consistency of these solutions.
Producing high-quality, standardized, and machine-

readable metadata is an extremely important aspect of
data sharing (Jones et al. 2006). It is necessary for repro-
ducibility and transparency, and ultimately it is the back-
bone for executing data integrations across multiple data
sets. In ecology, the Ecological Metadata Language
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(EML) is commonly used (e.g., DataONE member nodes)
as it can accommodate a broad variety of data types, and
there are free tools are available for documenting data in
EML. However, with the heterogeneity of data involved in
ecological research (Jones et al. 2006), from satellite ima-
gery to genomics, EML is not the only useful standard.
More important than which metadata standard an investi-
gator chooses is to simply decide on an existing standard
and implement it. Rather than pushing researchers toward
a single metadata language, the ecoinformatics field in the
past decade has moved primarily toward developing cross-
walks for metadata standards that will aid integration and
allow multiple popular metadata standards to be main-
tained (Michener and Jones 2012).
Engaging in completely open science may be unrealis-

tic for many researchers, particularly for those unfamil-
iar with the full suite of tools or those working in

environments with strictly regulated workflows, and we
urge investigators to simply learn and adopt elements
that are helpful or important to them. Hampton et al.
(2015) detail a spectrum of such situations, from the
researcher who hasn’t yet learned the tools for open
science but can be a knowledgeable advocate, to the sea-
soned open scientist doing work in a completely public
forum. Many ecologists currently work somewhere in
between. The rise of open science has created broad
availability of useful tools that support modern needs
for computational reproducibility and transparency.

WE’RE RUNNING OUT OF EXCUSES

Three years have passed since Ecological Applications
initiated a data policy that mandated data publication.
In this policy (Box 1), all data associated with

Box 1. Data policy of the journal Ecological Applications, accessed May 2018.

https://esajournals.onlinelibrary.wiley.com/hub/journal/19395582/resources/data-policy-eap
As a condition for publication of a manuscript in Ecological Applications, all data associated with the results

must be made available in a permanent, publicly accessible, data archive or repository.
Authors are strongly encouraged to deposit the data underlying their manuscripts in the Dryad data repository

or Figshare, which both provide flexible platforms for a wide variety of digital data. Other permanent deposito-
ries include GenBank for DNA sequences, ORNL-DAAC for biogeochemical data, Knowledge Network for
Biocomplexity and the LTER Data Portal, as well as institutional repositories such as that at the University of
Illinois.
Archived data should be sufficiently complete so that subsequent users can repeat tables, graphs, and statistical

analyses reported in the original publication, and derive summary statistics for new or meta- analyses. Thus, the
normal resolution of the data that are archived will be at the level of individual observations.
Publication in Ecological Applications constitutes publication of the data, which are then citable, and the

desire of authors to control additional research with these data shall not generally be grounds for withholding
published data. Sensitive information including but not limited to precise locality data for rare, threatened, or
endangered species, or identity of human subjects, should be redacted as required.
Sufficient metadata should accompany the data file so that others can readily use files and interpret variables,

including their units. Such metadata can usually be provided in a short text file. Data must be registered and
available at the time of publication, although in specific cases, data registration and metadata availability at the
time of acceptance, with a firm subsequent date for release of primary data may be acceptable.
By depositing data prior to publication of a manuscript, a permanent link can be made to and from the pub-

lished paper.
Wiley Online Library can be used for this purpose, but only if the material is submitted with the original submis-

sion for peer review. Data must be deposited in other depositories following acceptance and prior to publication.
Advantages of depositing data in a permanent repository include:

• Visibility: Making your data available online (and linking it to the publication) provides a new pathway for
others to learn about your work.

• Citability: All data you deposit will receive a persistent, resolvable identifier that can be used in a citation as
well as listed on your CV.

• Workload reduction: If you receive individual requests for data, you can simply direct them to files in the
archive.

• Preservation: Your data files will be permanently and safely archived in perpetuity.
• Impact: You will garner citations through the reuse of your data.

Authors will be responsible for any fees charged by external data repositories in order to comply with the data
archiving requirement.
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manuscripts must be made available in a permanent,
publicly accessible, data archive or repository. Large pro-
jects also often necessitate their own data policies, such
as the NASA Earth Science Data and Information

Policy (Box 2), and the data access policy of the North
Temperate Lakes Long-term Ecological Research
(LTER) project (Box 3). Similarly, it has been more than
seven years since the U.S. National Science Foundation

Box 2. NASA’s Earth Science Data and Information Policy, accessed May 2018.

https://earthdata.nasa.gov/earth-science-data-systems-program/policies/data-information-policy
NASA’s Earth Science program was established to use the advanced technology of NASA to understand and

protect our home planet by using our view from space to study the Earth system and improve prediction of Earth
system change. To meet this challenge, NASA promotes the full and open sharing of all data with the research
and applications communities, private industry, academia, and the general public. The greater the availability of
the data, the more quickly and effectively the user communities can utilize the information to address basic Earth
science questions and provide the basis for developing innovative practical applications to benefit the general
public.
A common set of carefully crafted data exchange and access principles was created by the Japanese, European,

and U.S. International Earth Observing System (IEOS) partners during the 1990s and the early years of the 21st
century. From these principles, NASA has adopted the following data policy (in this context, the term “data”
includes observation data, metadata, products, information, algorithms, including scientific source code, docu-
mentation, models, images, and research results):

• NASAwill plan and follow data acquisition policies that ensure the collection of long-term data sets needed to
satisfy the research requirements of NASA’s Earth science program.

• NASA commits to the full and open sharing of Earth science data obtained from NASA Earth observing satel-
lites, sub-orbital platforms and field campaigns with all users as soon as such data become available.

• There will be no period of exclusive access to NASA Earth science data. Following a post-launch checkout per-
iod, all data will be made available to the user community. Any variation in access will result solely from user
capability, equipment, and connectivity.

• NASA will make available all NASA-generated standard products along with the source code for algorithm
software, coefficients, and ancillary data used to generate these products.

• All NASA Earth science missions, projects, and grants and cooperative agreements shall include data manage-
ment plans to facilitate the implementation of these data principles.

• NASA will enforce a principle of non-discriminatory data access so that all users will be treated equally. For
data products supplied from an international partner or another agency, NASAwill restrict access only to the
extent required by the appropriate Memorandum of Understanding (MOU).

• In keeping with the Office of Management and Budget (OMB) Circular A-130, NASAwill charge for distribu-
tion of data no more than the cost of dissemination. In cases where such dissemination cost would unduly inhi-
bit use, the distribution charge will generally be below that cost.

• Through MOUs and agreements with appropriate interagency partners, NASA will ensure that all data
required for Earth system science research are archived. Data archives will include easily accessible information
about the data holdings, including quality assessments, supporting relevant information, and guidance for
locating and obtaining data.

• NASAwill engage in ongoing partnerships with other Federal agencies to increase the effectiveness and reduce
the cost of the NASA Earth science program. This interagency cooperation shall include: sharing of data from
satellites and other sources, mutual validation and calibration data, and consolidation of duplicative capabili-
ties and functions.

• NASAwill, in compliance with applicable Federal law and policy, negotiate and implement arrangements with
its international partners, with an emphasis on meeting the data acquisition, distribution, and archival needs
of the United States.

• NASA will collect a variety of metrics intended to measure or assess the efficacy of its data systems and ser-
vices, and assess user satisfaction. Consistent with applicable laws, NASA will make those data available for
review.

The data collected by NASA represent a significant public investment in research. NASA holds these data in a
public trust to promote comprehensive, long-term Earth science research. Consequently, NASA developed policy
consistent with existing international policies to maximize access to data and to keep user costs as low as possi-
ble. These policies apply to all data archived, maintained, distributed or produced by NASA data systems.
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mandated data management plans in submitted grant
proposals. These changes were initially met with skepti-
cism by many in the scientific community, a reaction
that was understandable because efficient pathways for
accomplishing these tasks did not yet permeate our cul-
ture and training. But a lot has changed in a short per-
iod of time.
A growing proportion of ecologists have risen to the

challenges presented by the open science movement.
There has been a proliferation of tools, infrastructure,
and people to support this transition (Michener and
Jones 2012, Hampton et al. 2015, Soranno et al. 2015,
Ellison 2017, Rocchini et al. 2017). Existing tools and
approaches can be grouped into five key areas (Hamp-
ton et al. 2017): data management and processing, anal-
ysis, software skills, visualization, and communication
methods for collaboration and dissemination. These
resources, and the people who use them, are becoming

central to the culture of ecology. If we incorporate the
lessons and practices of reproducibility and openness
into undergraduate curricula and training of young
researchers now, we can increase our capacity to address
the current and future challenges. Evidence is mounting
that the move toward open science and data sharing has
positive career outcomes (Piwowar et al. 2007), and
indeed the most influential scientists in some fields also
appear to be the most prominent data sharers (Dai et al.
2018). Ecology has now moved more fully into the “big
science” era. High-resolution and broad-scale ecological
data are emerging from macrosystems research, in situ
and remote sensing, large-scale environmental observa-
tories such as the National Ecological Observatory Net-
work, the Ocean Observatory Initiative, and the
National Critical Zone Observatory, as well as interna-
tional grass-roots collaborations such as the Global
Lake Ecological Observatory Network and Nutrient

Box 3. Data access policy of the North Temperate Lakes Long-term Ecological Research (LTER) project, member
of the US LTER network, accessed May 2018.

https://lter.limnology.wisc.edu/about/ntl-lter-data-access-policy
The North Temperate Lakes (NTL) LTER Data Access Policy is designed to make data from the NTL-LTER

database as freely available as possible for academic, research, education, and other professional purposes and
aligns with the Creative Commons license CC-BY 4.0 (see https://creativecommons.org/licenses/by/4.0/). Each
data set published on the web page is accompanied by documentation (metadata). We encourage the use of our
data sets but ask that users read and agree to our Data Use Agreement.
Data use agreement: Permission to download NTL-LTER data sets is granted to the Data User subject to the

following terms:

• The Data User must realize that these data sets are being actively used by others for ongoing research and that
coordination may be necessary to prevent duplicate publication. The Data User is urged to contact Emily
Stanley, lead Principal Investigator, (ehstanley@wisc.edu) to check on other uses of the data. Where appropri-
ate, the Data User may be encouraged to consider collaboration and/or co-authorship with original investiga-
tors.

• The Data User must realize that the data may be misinterpreted if taken out of context. We request that you
provide Emily Stanley, ATTN: Data Access, Center for Limnology, University of Wisconsin-Madison, 680
North Park Street, Madison, Wisconsin 53706 USA with a copy of any manuscript using the data so that she
may review and provide comments on the presentation of our data.

• The Data User must acknowledge use of the data by an appropriate citation (see Citation) of the NTL-LTER
database.

By using these data, the Data User agrees to abide by the terms of this agreement. Thank you for your cooper-
ation.
Citation: Use of the data in publications should acknowledge the North Temperate Lakes LTER project. A gen-

eric citation for our databases is: <name of data set>, North Temperate Lakes Long Term Ecological Research pro-
gram (http://lter.limnology.wisc.edu), NSF, <contact person for data set>, Center for Limnology, University of
Wisconsin-Madison. The data set name and contact person for each data set can be found in the metadata header
of the online data sets.
Data Availability: Our goal is to release all long term data associated with core research areas within 2 years of

collection. These data and accompanying metadata will be available for download from the NTL-LTERweb site.
Disclaimer: While substantial efforts are made to ensure the accuracy of data and documentation, complete

accuracy of data sets cannot be guaranteed. All data are made available “as is.” The North Temperate Lakes
LTER shall not be liable for damages resulting from any use or misinterpretation of data sets. Data users should
be aware that we periodically update data sets.
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Network. These developments allow us to confront our
ideas with unprecedented power and produce valuable
information and tools that foster critical inquiry and lib-
erate new knowledge to the benefit of society amid glo-
bal change.
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