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The last 2 decades have witnessed a dramatic increase in
the use of patent citation data in social science research.
Facilitated by digitization of the patent data and increas-
ing computing power, a community of practice has grown
up that has developed methods for using these data to:
measure attributes of innovations such as impact and
originality; to trace flows of knowledge across individu-
als, institutions and regions; and to map innovation net-
works. The objective of this article is threefold. First, it
takes stock of these main uses. Second, it discusses 4
pitfalls associated with patent citation data, related to
office, time and technology, examiner, and strategic
effects. Third, it highlights gaps in our understanding
and offers directions for future research.

“Knowledge flows [. . .] are invisible; they leave no paper

trail by which they may be measured and tracked, and there

is nothing to prevent the theorist from assuming anything

about them that she likes.”

Paul Krugman (1991)

Introduction

Eugene Garfield is one of the pioneers of the study of

citation data. In his 1955 article, Garfield proposes to build a

citation index for scientific articles in order to make it possi-

ble for “the conscientious scholar to be aware of criticisms

of earlier articles.” He further explains, “even if there were

no other use for a citation index than that of minimizing the

citation of poor data, the index would be well worth the

effort required to compile it” (p. 108). It turns out that cita-

tion indices have been used in a variety of ways and for a

variety of purposes. Two of the most notable uses are to

assess the attributes of the idea embedded in a scientific arti-

cle and to track its diffusion through time, space and tech-

nology domains. In fact, Garfield (1955) foresaw these two

uses as he described the citation index as an “association-of-

ideas index” (p. 108) and as he explained that the citation

index may “help the historian to measure the influence of

the article—that is, its ‘impact factor’” (p. 111).

Although the analogy with the broader field of biblio-

metrics may seem obvious, patent citations differ from

scientific citations in substantial ways. Citations in patents

are the results of a highly mediated process that involves

multiple parties: the inventor, the patent attorney, and the

patent examiner (Meyer, 2000). These parties have differ-

ent incentives for citing publications and may do so at

different times and in different sections of the patent

document (Cotropia, Lemley, & Sampat, 2013). Much of

the empirical research relies on U.S. citations, but there

are important differences across jurisdictions in citation

rules and practice.1 This creates interesting opportunities

for research on non-U.S. data, but also suggests a degree

of caution in thinking about the global implications of

results based solely on U.S. data.

The widespread use of patent citations in social science

research can be traced to the availability of patent statistics

in digitally readable form in the late 1970s.2 Zvi Griliches

(1979), in his important manifesto for research on R&D and

productivity growth, suggested that the frequency with
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which patents from different industries cite each other could

be used as a measure of the technological proximity of

industries. An early strand of research on patent citations

was the work of Francis Narin and his associates at CHI

Research, Inc. (Carpenter & Narin, 1983; Carpenter, Narin,

& Woolf, 1981; Narin & Noma, 1985; Narin, Noma, &

Perry, 1987). An influential early demonstration of the

potential utility of patent citation data in economic research

was the PhD research of Griliches’s student Manuel Trajten-

berg (Trajtenberg, 1990a, 1990b). The use of patent citation

data has grown dramatically over the last two decades, as

illustrated in Appendix A.

What makes citations potentially useful is that they con-

vey information about the cumulative nature of the research

process, as well as information about the consequences.

Although some inventors and research organizations pursue

patents for motives of prestige or internal tracking of

research success, most patent applications are made with the

goal of securing commercial advantage, or at least preserv-

ing options for pursuit of commercial advantage. Another

virtue of patent data for social science research is that pat-

ents reside in a nonmarket-based technological classification

system, allowing one to place patents, inventors, and organi-

zations in technology space in a way that is not derived from

sales or other economic data that one may be trying to relate

to invention.3 Furthermore, the classification scheme is hier-

archical so that technology categories can be very fine or rel-

atively broad as desired. This feature, and others, has been

combined with patent citation data to provide powerful

indicators.

This article provides an overview of the major uses of

such data and the issues that arise in such research. Other

authors have previously discussed the use of patent statistics

in social science research (e.g., Griliches, 1990; Lerner &

Seru, 2015), and Gay and Le Bas (2005) provide a brief

overview of the use of patent citations to measure invention

value and knowledge flows. However, we are not aware of a

broad survey on the use of patent citation data.4 In order to

identify the articles to include in this survey, we started from

a limited number of references that we were aware of and

complemented those using a keyword-based search on Goo-

gle Scholar. We then expanded this core of references by

looking at cited and citing references. Ultimately, we kept

the most influential articles, either in terms of the number of

citations received or in terms of relevance of the findings.

The majority of articles are published in economics, man-

agement, and information science journals.

Conceptually, we classify research using patent citations

into two broad groups. One research line uses a variety of

citation-based statistics to characterize the inventions, in

terms of the magnitude and nature of their impact, as well as

the nature and magnitude of the departure that they represent

relative to the existing pool of knowledge. This work is dis-

cussed in the next section. The other research line focuses

on the citations themselves, using them as proxies for

knowledge linkages across inventors in order to explore the

nature of knowledge flows and the factors that affect those

flows. This research is discussed first with regard to rela-

tively simple metrics of knowledge flow, and then with

respect to attempts to map interactions in a more complex

network framework. We then provide some brief comments

on practical difficulties and pitfalls in using citation data.

The last section concludes with opportunities for future

research.

Citations as an Indicator of Invention Attributes

There is no agreed-upon model of inventions and the

inventive process, which leads to some ambiguity in how

citation metrics are interpreted. Nonetheless it is possible to

identify two broad aspects of the process that underlie

citation-based inferences. First, we can think of all possible

technologies as mapping onto a high-dimensional technol-

ogy space, such that a given invention can be located in that

space, and a patent represents the right to exclude others

from marketing products that impinge upon a specified

region (or regions) of that space. Second, the invention pro-

cess is cumulative, that is, inventions build on those that

came before and, in turn, facilitate those that come after. In

this “geometric” interpretation, the patent claims delineate

the metes and bounds of the region of technology space over

which exclusivity is being granted, whereas the citations

indicate previously marked-off areas that are in some sense

built upon by or connected to the invention being granted.

Thus the citations that appear in a patent (its “backward”

citations) inform us about the technological antecedents of

the patented invention. A patent that contains many citations

corresponds to an invention with many antecedents; a patent

whose citations are to technologically diverse previous pat-

ents has diverse antecedents; a patent whose citations are to

old patents corresponds to an invention with old antecedents,

and so forth. Conversely, the citations received by a patent

from subsequent patents (“forward” citations) inform us

about the technological descendants of the patented inven-

tion. A patent that is never cited was a technological dead

end. A patent with many or technologically diverse forward

citations corresponds to an invention that was followed by

many or technologically diverse descendants.

Note that the discussion so far is entirely definitional. We

have said nothing about the possibility of causal connections

between these different attributes of inventions, or between

any of these attributes and the private or social value of the

invention. Ultimately, we are interested in whether, for

example, patents with relatively few technological antece-

dents are more or less likely to spawn multiple lines of

research or whether patents that generate many or diverse

technological descendants correspond to inventions that gen-

erate large social benefits. It is in large part to be able to say

something about these questions that citation metrics have

been developed. In a very broad sense, citation analysis is

predicated on an expectation that the extent and nature of an

invention’s antecedents tells us something about the novelty

or “radicalness” of the invention, and the extent and nature

of its descendants tell us something about both its
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technological impact and its economic value. But different

authors propose or use different characterizations of citation

information to elucidate these ideas.

In practice, writers are not always clear on the underlying

concept that a given metric is intended to measure, and

given metrics are used in different contexts as proxies or

indicators for different concepts. In some cases, researchers

postulate a relationship between a given citation metric and

an underlying concept, and then test hypotheses about the

concept taking that relationship as a given. In other cases

researchers attempt explicitly to validate the extent to which

a given metric reflects a particular underlying conceptual

attribute of inventions. We will consider these different

approaches below in the context of specific articles, but for

expositional purposes it is useful to consider five broad cate-

gories of approaches:

• Counts of forward citations as an indicator of subsequent

technological impact;
• Counts of backward citations as an indicator of the extent of

reliance on previous technology;
• Characterization of both backward and forward citations in

terms of technological diversity and technological distance;
• Examination of references to nonpatent literature as an indi-

cator of science linkage; and
• Use of citations as an indicator for private and social value.

We consider each category in turn.

Forward Citations and Technological Impact

Using the number of forward citations as a measure of

technological impact of a patented invention can be moti-

vated by direct analogy to the larger and pre-existing biblio-

metric literature starting with Garfield (1955). Nonetheless,

Trajtenberg, Henderson, and Jaffe (1997) undertook to dem-

onstrate the validity of this (and other) metrics by comparing

the citation rate to university patents and corporate patents,

based on a maintained assumption that university patents are

more “basic” and hence have, on average, greater technolog-

ical impact. To incorporate the cumulative nature of inven-

tion into the metric, they proposed that the importance of an

invention be characterized by the number of forward cita-

tions received, plus a fractional weight multiplied by the

number of citations received by those citing patents. That is,

important patents are those that are cited a lot, and are cited

by patents that are themselves relatively highly cited.5 The

authors showed that importance by this definition is, indeed,

higher for university patents than for corporate patents, using

a sample of patents assigned to U.S. corporations, matched

by patent class and grant date to patents assigned to U.S.

universities. In addition, they discuss qualitatively the

highest-importance patents in their sample, and argue that

the citing patents can be seen as technological descendants,

and these highly “important” patents are, indeed, subjec-

tively very important in their respective fields.

More recently, taking advantage of improvements in

computing power, scholars have taken into account the

whole stream of citations. For example, Lukach and Lukach

(2007) have proposed computing importance by the Pag-

eRank score of patents. This method is directly inspired

from Google’s “random surfer” model and takes into

account the fact that different citations weigh differently

depending on the importance of the citing documents (Brin

& Page, 1998). However, the authors are not able to validate

their ranking using external measures such that the condi-

tions under which the PageRank method is more appropriate

than a straightforward citation count are unclear. This

approach is a natural extension of earlier work, and begins

to move this line of analysis towards the “innovation

network” formulation discussed later in the text.

Albert, Avery, Narin, and McAllister (1991) provide a

validation study of the use of forward citations as an indica-

tor of impact. They reported a strong correlation between

the citation intensities of 77 Kodak silver halide patents and

expert evaluations of technical impact and importance of the

patents. Narin (1995) showed that patents that have attained

the legal status of pioneering patents in the United States, as

well as other prominent patents appearing in such patent

office publications as “Hall of Fame” patents, are very

highly cited. Czarnitzki, Hussinger, and Schneider (2011)

relate a group of “wacky” patents to control groups and test

the extent to which commonly used metrics are able to iden-

tify wacky patents from patents in the control group. Wacky

patents are selected by an employee of the World Intellec-

tual Property Organization “for their futile nature, as they do

not involve a high-inventive step or only marginally satisfy

the ‘non obviousness’ criterion” (p. 131). They find that the

number of forward citations is a good predictor of impor-

tance. However, other measures such as originality and gen-

erality (discussed below) were higher for wacky patents.

Another interesting confirmation of patent citations as indic-

ative of technological impact is Benson and Magee (2015).

They identify 28 “technological domains” (e.g., “Solar Pho-

tovoltaics” or “Genome Sequencing”) in which it is possible

to identify a specific metric of the technological state of the

domain (e.g., watts/$ for Solar Photovoltaics). They take the

exponential rate of improvement of these metrics across

domains and across time as the dependent variable in regres-

sions on various citation metrics of patents in the technology

domain. They find that forward citations are positively

related, and the average age of backward citations negatively

related, to the rate of improvement of the technology over

the subsequent 10-year period.

Backward Citations and Reliance on Previous
Technology

Although it seems clear that important inventions gener-

ate more forward citations, the opposite may hold for back-

ward citations. That is, more trivial inventions are more

extensively rooted in what has come before, whereas more

basic inventions are less incremental in nature and thus have

fewer identifiable antecedents (Trajtenberg et al., 1997).

Another way to think of this is that a patent will, to some
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extent, tend to cite other patents all the way back along the

inventive trajectory upon which it lies. Patents that are near

the beginning of a trajectory are in this sense more basic,

and may be expected to make fewer backward citations

because they have less historical background.

Empirical evidence is rather inconclusive. Trajtenberg

et al. (1997) find that university patents (presumably more

important than the average patent) do make fewer citations

and cite patents that are themselves less highly cited. How-

ever, von Wartburg, Teichert, and Rost (2005) provide a dif-

ferent view. They correlate a measure of backward citations

with expert ratings on the technological value added (in the

form of technical scoring tables) of 107 patents related to

four strokes internal combustion engines. Their backward

citations measure counts first and second-generation’s cita-

tions received. They obtain a statistically significant correla-

tion coefficient of 0.38, implying that patents with higher

technological value added build on more references. Liu

et al. (2011) propose a more in-depth analysis of backward

references and patent value. They correlate the number of

backward references with the probability that a patent will

stand up in court and find a statistically strong positive asso-

ciation. Overall, it is unclear whether the number of back-

ward citations captures patent importance.

Technological Distance and Diversity

As noted, one of the basic virtues of patent data is that

they provide a nonmarket-based technological classification

system for inventions. Looking at the way in which citations

span the technology space defined by the classification

scheme is a natural way to characterize the technological

complexion of both an invention’s roots and its impacts.

Broadly speaking, there are two major aspects to be consid-

ered, whether looking forward or backward. One is pure dis-

tance: how technologically different are the patents

connected by a citation link. For example, does a drug patent

cite other patents for compounds in the same chemical class,

or patents on other chemicals, or mechanical or electronic

patents? The other is breadth or diversity: independent of

whether that drug patent generally cites other patents that

are close to or far from itself, are they all bunched together

in technology space, or are they dispersed far from each

other?

Trajtenberg et al. (1997) implement a measure of techno-

logical distance using a three-level representation of the

USPTO patent classification system. The lowest level used

is the three-digit original patent class (e.g., Electric lamp

and discharge devices); the next level is the set of two-digit

categories (e.g., Electrical Lighting); the highest level is six

very broad fields (e.g., Electrical and Electronic). The

authors axiomatically set two patents in the same patent

class at distance 0; two that are in different classes but the

same category at distance 0.33; two that are in different cate-

gories but the same broad field as distance 0.66; and two

that are not even in the same field as distance 1. They then

calculate the average distance over both forward and

backward citations for each patent in the university and cor-

porate samples. As expected, they found that the forward cita-

tions received by university patents came, on average, from

farther away in technology space, although the difference

was small and not always statistically significant. For back-

ward citations, there was no consistent pattern, that is, univer-

sity patents did not systematically cite earlier patents that

were, on average, technologically more distant by this metric.

To measure technological dispersion or diversity, Traj-

tenberg et al. (1997) proposed 1 minus the Herfindahl-

Hirschman Index (HHI) of concentration of the citations

across patent classes, that is, 1 minus the sum of squared

shares of citations in each class. This metric is equal to zero

if all citations are in the same class, and it approaches unity

as the citations are spread thinly across all classes. The

authors dubbed this metric of diversity “generality” when

applied to forward citations, and “originality” when applied

to backward citations.6,7 They conjectured that both meas-

ures should be larger for more basic inventions, and there-

fore expected to be larger for university patents than for

corporate patents. This hypothesis was borne out in the data

for generality measure, but not for originality.

A concept related to generality is that of “General Pur-

pose Technology” or GPT. GPTs are conceived as technolo-

gies that subsequently connect to many different application

or development technologies to allow multiple lines of tech-

nology innovation and diffusion. Frequently mentioned

examples are the electric motor in the late 19th and early

20th centuries, and digital information technology in the late

20th century. Hall and Trajtenberg (2006) use data from a

selected sample of 780 most highly cited patents that were

granted by the USPTO in the years 1967–1999 to construct

generality, number of citations, and patent class growth, for

both cited and citing patents, intended to identify GPTs in

their early stages. The article finds that highly cited patents

differ in almost all respects from the population of all pat-

ents (they take longer to be issued; have twice as many

claims; are more likely to have a U.S. origin; are more likely

to be assigned to a U.S. corporation; are more likely to have

multiple assignees; have on average higher citation lags;

have a higher generality; are in patent classes that are grow-

ing faster than average). The article concludes that the iden-

tified measures, although promising, give contradictory

messages when taken separately and that it is not obvious

how to combine those measures to choose a sample of GPT

patents.8 The fundamental difficulty is that we don’t have

measures of how general-purpose a technology is other than

broad conceptions of GPT technologies. Thus, although it

seems plausible that general-purposeness would be reflected

in citation patterns, it is hard to pin such patterns down or

test their validity.9

Youtie, Iacopetta, and Graham (2008) found that nano-

technology patents from 1990–1993 were more general than

computer patents and much more general than drug patents,

and interpret this result as evidence that nanotechnology is

an emerging GPT. Moser and Nicholas (2004), however,

found that electricity patents from the 1920s were less
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general and less highly cited than chemical and mechanical

patents from the same period, suggesting that the relation-

ship between the characteristics that make a technology a

GPT and other characteristics of inventions is complex.

Another concept related to technological distance and

diversity is that of a “radical” or “breakthrough” invention.

Ahuja and Lampert (2001) propose that radical inventions

are simply the top 1% of patents ranked on citations

received in a given year. Dahlin and Behrens (2005) adopt a

more sophisticated approach. They conceive a “radical”

invention within a given technology domain (tennis rackets,

in their application) to be one that recombines previous tech-

nology elements in a new and different way, but which is

then imitated and so spawns subsequent patents that com-

bine technology elements in a manner substantially similar

to the radical invention. They construct a measure of the

“overlap” in the respective sets of patents cited by two dif-

ferent patents, and show that the radical inventions (over-

sized and wide-body rackets, in their application) had little

overlap with previous or contemporary patents, but signifi-

cant overlap with patents that came after.

Linkage to Science

As discussed, patents contain references to nonpatent

documents, the overwhelming majority of which are scien-

tific articles. On this basis, the number of nonpatent back-

ward citations made by a patent, or the fraction of backward

citations that these nonpatent citations represent, has been

explored as a metric of the closeness of linkage between an

invention and scientific research.10

Collins and Wyatt (1988) looked at citations to scientific

articles from 366 genetics patents granted from 1980 to

1985, in order to trace linkages from basic research to genet-

ics technology. The United States had the highest number of

articles cited in patents, followed by the United Kingdom,

Japan, Germany, and France. These figures were compared

to the total output of genetics articles for those countries,

showing some differences, which were interpreted as indi-

cating that the United Kingdom produced more articles that

were useful in developing patented technology than Ger-

many, France or Japan. The number of citations from patents

received per article was highest for the United Kingdom, fol-

lowed by the United States and Germany.

Callaert, Van Looy, Verbeek, Debackere, and Thijs

(2006) characterizes nonpatent references in a sample of pat-

ents at the USPTO and the European Patent Office (EPO)

from 1991–2001. Nonpatent references are found in 34% of

USPTO patents and 38% of EPO patents, comprising about

17% of all references (patent and nonpatent combined). For

both the USPTO and EPO, more than half of nonpatent

references are journal references. Of the remaining nonpa-

tent references, many can be considered scientific in the

broader sense (as they consist of conference proceedings,

books, databases or other nonjournal scientific publications),

or technology related. The article reports that at the USPTO

at least 42% of nonjournal nonpatent references can be

considered scientific in broader sense, and 40% relate to

technological information. For the EPO sample these figures

are 77% and 20%, respectively.

Tijssen (2002) provides a note of caution on the use of

nonpatent references. He found no relationship between the

number of nonpatent references and the inventor-reported

dependence on science in a small (<100) sample of Dutch

patents from 1998–99. Li, Chambers, Ding, Zhang, and

Meng (2014) qualify this finding. They argue that nonself-

citations to scientific articles are a noisy measure of science

linkage but that applicant self-citations to scientific articles

are indeed informative of science linkage. Roach and Cohen

(2013) matched patent citations to survey reports from R&D

lab managers in the United States, with particular focus on

the extent to which patent citations capture knowledge flows

to commercial R&D from publicly funded research. They

find that patent citations reflect codified knowledge. How-

ever, citations miss the reliance on private and contract-

based science, as well as basic research. (The discussion in

the section on citations as a measure of knowledge flows

considers further whether nonpatent references are an indi-

cator of science dependence.)

Economic Value

As noted earlier, the (public or private) economic value

of an invention is a distinct concept from its technological

impact. Citations are, first and foremost, an indicator of

technological impact. But it turns out that forward citation

intensity is, in fact, correlated with economic value. There

are, however, several different concepts of economic value.

First, we can in principle think of the (gross) social value of

an invention, that is, the total producers’ and consumers’

surplus associated with its use. In some cases this gross

social value may be much greater than the net value, for

which we would subtract off the lost rents that may be suf-

fered by previous technologies made wholly or partially

obsolete. The gross social value is greater than the private
value, that is, the value to the owner of a patented invention;

the net social value may be either greater or less than the pri-

vate value, depending on the magnitude of the “rent

stealing” effect. For any of these concepts, we can distin-

guish the value of the invention and the value of the patented
invention, which differ by the value of the legal protection

afforded by the patent grant. In practice, these different

value concepts may or may not be distinguishable, and prox-

ies for value are often used whose mapping onto these dif-

ferent value concepts may be ambiguous.

An early strand of research on citations and economic

value was the work of Francis Narin and his associates seek-

ing to develop indicators based on patent data of companies’

competitiveness or technological strength. Carpenter et al.

(1981) showed that inventions identified in The Industrial

Research Institute IR100 awards are much more highly cited

than a random sample of matched patents. Narin et al.

(1987) found that the average citation frequency of a com-

pany’s patent portfolio was associated with increases in

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2017

DOI: 10.1002/asi

5



firms’ profits and sales among publicly traded pharmaceuti-

cal companies.

Trajtenberg (1990b) calculated the social welfare gains

associated with successive generations of Computed

Tomography (CT) scanners by estimating hedonic demand

functions for the attributes. He then showed that the number

of citation-weighted patents associated with each generation

was statistically predictive of the magnitude of welfare

gains, while the raw or unweighted count of patents was not

correlated with surplus (sample of about 500 patents). This

suggests that the gross social value of these inventions is

associated with the citation intensity of the associated pat-

ents. Interestingly, the unweighted patent counts were corre-

lated with the level of R&D expenditure. He interpreted

these findings as suggesting that the number of patents is

associated with the magnitude of research effort, but not

indicative of research success. Counting citation-weighted

patents then combines the scale of effort with a measure of

such success and yields a measure of effective research

output.

Moser, Ohmstedt, and Rhode (2014) identified specific

improvements in hybrid corn and gathered data on the mag-

nitude of the yield improvement they allowed. They inter-

pret this as measuring the “inventive step” associated with

the patent, but as the measurement is in the use domain

rather than strictly in the technology domain it seems more

closely related to social value than to inventive step, per se.

They found that there is, indeed, a strong correlation

between yield improvements and citation intensities. Inter-

estingly, they find that there are a small number of early pat-

ents that are routinely cited in almost all patents in the field.

Excluding these citations enhances the correlation between

yield and citation frequency.

Hall, Jaffe, and Trajtenberg (2005) consider the relation-

ship between citation intensity and the private value of pat-

ents by relating citation-weighted patents to the market

value of the firm. They confirm that citation weighting

greatly improves the information content of patent counts in

terms of predicting market value. In addition, they find that

citations from future patents assigned to the same firm as the

original patentee have a larger associated market value than

citations from others.11 They also find that a disproportion-

ate share of the value associated with patents is associated

with a very small number of highly cited patents. Finally,

they find that forward citations are associated with increases

in market value at the time a patent is initially granted, sug-

gesting that to a significant extent market participants can

anticipate the eventual value of inventions at this early stage,

and those expectations are (on average) then confirmed by

subsequent citations.

Lanjouw and Schankerman (2001) provide indirect evi-

dence of the relationship between citations and value, by

assuming that patents that are litigated are, on average, more

valuable than those that are not, and comparing the citation

patterns of litigated patents with a control sample of nonliti-

gated patents. They find that the probability of litigation

rises with the number of claims and the number of forward

citations per claim, whereas declining with the number of

backward citations per claim. Allison, Lemley, Moore, and

Trunkey (2003) undertake a similar approach. Consistent

with expectations, they find that litigated patents are more

highly cited. Interestingly, they find that litigated patents

also have more backward citations.

Harhoff, Scherer, and Vopel (2003) obtained estimates

from patent holders of the private value of 772 patents with

a 1977 German priority date, and that were maintained to

full term. They then examined how that reported value cor-

related with publicly observable indicia of patent value,

including patent citations (and also the number of four-digit

IPC codes and family size). They found that both the num-

ber of forward citations and the number of backward refer-

ences to the patent literature are significantly correlated with

patent value (see also Harhoff, Narin, Scherer, & Vopel,

1999). Interestingly, they also found that the number of cita-

tions made to nonpatent literature was predictive of value,

particularly in drug and chemical patents. They note that the

predictive value of backward citations (both patent and non-

patent) is quite useful, as this information is available at

time of patent grant, while forward citations must be

awaited.12 It is unclear theoretically why backward citations

are predictive of value. For nonpatent references, it is plausi-

ble that in some fields inventions linked to science are less

incremental and hence more valuable. For backward patent

citations, it may reflect some tendency for bigger, more

complex patents to make more backward citations and also

be more valuable on average. In addition, the positive corre-

lation between the number of backward citations and value

may simply arise from the fact that applicants have stronger

incentives to search for prior art for more important patents

(Sampat, 2010).

Gambardella, Harhoff, and Verspagen (2008) undertook

a similar survey of inventors listed in patent applications at

the EPO. They found that the number of forward citations is

by far the best predictor of reported value, but that the frac-

tion of the variance in reported value explained by any or all

of the metrics was relatively low, consistent with a view of

citation-weighted patents as an indicator of value, but one

with substantial noise.

Nicholas (2008) looked at patents granted to U.S. corpo-

rations between 1910 and 1939, and identified the citations

to those historical patents from the period 1976–1999. He

found that about 15% of the patents from the 1910s received

at least one citation from the recent patents, rising to almost

30% for those from the 1930s. He then goes on to show that

citation-weighted patents constructed in this way are corre-

lated with firm market value. Thus, patents that are still cited

after 40 to 60 years are more valuable than those that are

not. What we cannot know from this exercise (since early

citations have not been captured) is the extent to which valu-

able patents are simply more highly cited at all lag durations,

or whether there is greater persistence in the sense that the

rate of obsolescence is lower.

Bessen (2008) related the value of patents, as indicated

by both renewal information and firm financial data, to a
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number of patent characteristics, including forward citations

received. He estimated that each additional citation is associ-

ated, on average, with an increase in value of about 1%.

Nonetheless, the relationship is very noisy, so that even

among very highly cited patents, a significant fraction

appears to be of little value; 37% of the patents in the top

decile in citation intensity from 1991 were not renewed.

Recent work by Abrams, Akcigit, and Popadak (2013)

also suggest an overall positive correlation between forward

citations and patent value, but with an inverted-U-shaped

relationship in which value falls at high citation rates. This

finding is provocative, but it is unclear how robust it is,

given the highly selected nature of the sample and the fact

that the value of individual patents was estimated as the

value of patent portfolios divided by the number of patents

in the portfolio.

The next section moves away from work focused on cita-

tions as indicators of invention characteristics, and discusses

the use of citation data to capture geographic and temporal

dimensions of the innovation process.

Citations as an Indicator of Knowledge Flows

Geographic Dimension of Knowledge Flows

Jaffe, Henderson, and Trajtenberg (1993) took on the

challenge identified by Krugman (1991) on the invisibility

of knowledge flows. They suggested that patent citations

could be used as a kind of “article trail” that could allow

knowledge flows to be measured and tracked. They took a

sample of patents from universities, large firms and other

firms, and identified all of their citations. They then found,

for every citing patent, a corresponding “control” patent,

issued at the same time and in the same primary U.S. patent

class as the citing patent, and compared the frequency with

which citing patents were geographically proximate to the

cited patents with the frequency with which the control pat-

ents were proximate. Looking at metropolitan statistical

areas, states and countries, and eliminating citations that are

“self-citations” from the same firm, they showed that cita-

tions are indeed more likely to be proximate. For example,

at the level of metropolitan areas, 7–9% of citations

(depending on the nature of the cited patents) were from the

same area, while only 1–4% of the control patents were, and

the differences were highly significant statistically.

Thompson and Fox-Kean (2005) criticize the Jaffe, Hen-

derson, and Trajtenberg methodology. They argue that

selecting control patents based on the primary patent class

of the citing patents is too rudimentary to capture the hetero-

geneity of technology. Patents in the same main patent class

may be in different subclasses with inherently different tech-

nologies, and patents are assigned to multiple classes, again

introducing heterogeneity not captured by the main patent

classification. In response, Henderson, Jaffe, and Trajten-

berg (2005) agree that it is possible that finer technological

controls might be appropriate, but they point out that slicing

things too finely minimizes the possibility for identifying

knowledge flows across subclasses. Ultimately, the question

comes down to the robustness of the localization effect

under different identifying assumptions.

A number of other authors have similarly used citation

data to measure knowledge flows. Almeida and Kogut

(1997) compare the patent citations of small and large semi-

conductor firms, and find that the citations made by small

firms are more geographically localized. Hicks, Breitzman,

Olivastro, and Hamilton (2001) show that U.S. companies’

citations to university patents exhibit geographic localiza-

tion, particularly to patents of nearby public universities.

Almeida and Kogut (1999) examine citation patterns among

semiconductor firms in the United States, including data on

both the firms and the inventors. They show that a signifi-

cant fraction of the geographic localization of the citations

can be traced to specific engineers who move among firms,

but are more likely to move to another nearby firm than to

one that is farther away. Sonn and Storper (2008) show that,

despite improvements in communications technologies, geo-

graphical localization has been increasing over time.

Thompson (2006) compares the extent of localization in

citations listed by the inventor to those added by the exam-

iner. He finds localization at both the metropolitan area and

state levels in both the examiner and inventor citations.

Inventor citations are found to be about 20% more likely to

match the country of origin of the citing patent than are

examiner citations. In a similar vein, Alc�acer and Gittelman

(2006) estimate the probability that a citation is generated

by an examiner or an inventor, conditional on a set of varia-

bles that are frequently employed in the knowledge spillover

literature. They find that examiner citations introduce bias

for some variables only e.g., self-citations). They find no

evidence that the degree of geographic proximity between

citing and cited patents differs for inventor and examiner

citations.

A subtler pitfall in the use of citations to track knowledge

flows relates to the intervention of law firms in the drafting

of the patent document. Wagner, Hoisl, and Thoma (2014)

show that patents by firms who rely on external agents are

more likely to cite documents that are part of the law firm’s

knowledge repository. They take this result as evidence that

law firms help overcome localization. However, a blunter

interpretation is that external agents include citations that

the firms were not aware of, further increasing the noise in

patent citation data.

Maurseth and Verspagen (2002) used data on citations

among European patents to construct a region-by-region

citation frequency matrix. They then looked at numerous

variables to explain these frequencies. Geographical distance

has a negative and substantial impact on knowledge flows.

Controlling for distance, knowledge flows are greater

between regions located within one country than between

regions located in separate countries. The country effect

remains even if regions share the same language, though

sharing a language increases the amount of knowledge flows

between two regions by up to 28%. The study also suggests

that knowledge flows are industry specific, and regions’
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technological specialization is an important determinant of

their technological interaction.

Temporal Dimension of Knowledge Flows

Caballero and Jaffe (1993) and Jaffe and Trajtenberg

(1999) developed a structured model of knowledge diffusion

across space and time. They postulate that two competing

forces dominate the citation process. Over time, knowledge

gradually diffuses, so that the number of people potentially

citing a given patent increases exponentially with time. But

the relevance or usefulness of a bit of knowledge becomes

obsolete, leading to a countervailing exponential deprecia-

tion in the likelihood of citations. The parameters of these

two exponential functions can be estimated econometrically.

If allowed to vary across different technologies, different

kinds of research organizations, and different geographic

locations, they then capture the rates of diffusion in different

areas across organizations and across space. Jaffe and Traj-

tenberg show, for example, that the geographic localization

of citations diminishes as time passes, and also that obsoles-

cence (as captured by declining citation rates) is more rapid

in electronic technologies than in chemical and mechanical

technologies.

Bacchiocchi and Montobbio (2009) used this double-

exponential function to look at knowledge flows from uni-

versities and public research organizations compared to

flows from corporate patents in six countries: France, Ger-

many, Italy, Japan, the United Kingdom, and the United

States. They found that technology embodied in patents

from universities and public research organizations diffuses

more rapidly than that of firms. The diffusion rates are rela-

tively homogenous across technological fields, but vary

across countries: rapid in the United States and Germany,

less so in France and Japan.

Mehta, Rysman, and Simcoe (2010) have criticized this

diffusion model on the ground that the age of a citation is

computed as the citation year minus the application year,

leading to an identification problem. Because citations

received by a patent are rare before it is issued, the authors

propose to use the lag between application year and grant

year as a source of exogenous variation. They find that the

citation peak occurs earlier than suggested by the double-

exponential function. However, their method does not alter

differences in the mean citation ages across industries. They

conclude that the double-exponential function provides a

good approximation to the nonparametric age distribution.

Validation Studies

Jaffe, Trajtenberg, and Fogarty (2000) report a survey of

inventors to test the extent to which citations in those inven-

tors’ patents correspond to the inventors’ perceptions of how

their inventions depended on earlier knowledge, and how

the rate of citation relates to inventors’ own perceptions of

impact or importance. They find that citations are a valid but

noisy indicator of knowledge flows: The likelihood of

reported knowledge impact is significantly higher (both

quantitatively and statistically) when a citation link exists,

but a significant fraction of citations (perhaps as high as one

half) do not correspond to any reported knowledge link.

Duguet and MacGarvie (2005) tested the validity of pat-

ent citations as a measure of knowledge flows using data

from French firms on their patents and citations, combined

with survey responses regarding sources of knowledge. The

total number of backward citations was correlated with sur-

vey answers about R&D and innovation, but this correlation

was weakened by controlling for the number of patents held

by the citing firm. Backward citation rates of French firms

can reflect their R&D activities (if the technology is

obtained from firms located in the EU), or purchases of

equipment goods (if the source is located outside the EU). In

general it can be understood that backward citations are cor-

related with learning through R&D collaboration, licensing

of foreign technology, mergers and acquisitions and equip-

ment purchases.

In their analysis, Roach and Cohen (2013, discussed ear-

lier) found evidence of both “errors of omission” (reported

knowledge flows with no corresponding citations) and

“errors of commission” (observed citations with no corre-

sponding reported knowledge flows). They conclude that

despite these sources of measurement error, patent citations

are likely to reflect meaningful aspects of knowledge flows

from public research. Interestingly, they found that referen-

ces in patents to nonpatent publications (primarily scientific

literature) are a better indicator of knowledge flow than are

citations in commercial patents to the patents of universities

and other public labs (cf. Tijssen, 2002).

The next section discusses a third category of citation

data research, in which the focus shifts to using citation links

to understand and characterize networks.

Citations as Links in Knowledge or Innovation
Networks

A natural way of representing citation data is in the form

of a network. Researchers have used concepts from network

theory to grasp the way the innovation system is structured

and the way knowledge is formed. A first group of studies

seek to map key components of the innovation system (pat-

ents, individuals, institutions, and regions). A second group

of studies use the network of citations to map technological

trajectories. We review these two applications in turn.

Mapping Patents, Individuals, Institutions, and Regions

Huang, Chiang, and Chen (2003) rely on patent citation

data to map Taiwan’s electronic industry. The researchers

identify USPTO patents belonging to 58 relevant Taiwanese

companies as well as the citations made by these patents.

They identify the strength of the relationship between com-

panies by looking at the strength of bibliographic coupling.

Bibliographic coupling is a method proposed by Kessler

(1963) that involves identifying related documents through

common cited references. The researchers then applied clus-

ter analysis on the data produced to identify major sectors of

8 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2017

DOI: 10.1002/asi



the Taiwanese electronic industry. Although bibliographic

coupling provides rich insights on the relatedness of patent

documents, more recent studies make better use of network

analysis theory and tools.

Chen and Hicks (2004) study the citation “degree” distri-

bution of 16 million citations made to the 3 million USPTO

patents granted in the period from 1963 to 1999. The degree

of a “node” (patent) is simply the number of “connections”

(citations) received by the node. They estimate that the dis-

tribution follows a power law with an exponent of 2.89,

which is very similar to the parameter obtained for scientific

articles by Dorogovtsev and Mendes (2002).13 The fact that

the degree distribution of the patent citation network follows

a power-law is indicative of so-called scale-free networks,

which can be seen as networks characterized by large hubs

through which knowledge flows.

Li, Chen, Huang, and Roco (2007) use a patent citation

network to study the knowledge transfer process between

entities. In particular they study the efficiency with which

knowledge transfers within the network compared to a ran-

dom network. Their measure of efficiency is the average

path length between any pair of patents in the network. They

focus on USPTO nanotechnology patents in the period from

1976 to 2004. They find that knowledge transfer across

assignees in the citation network is more efficient than

knowledge transfer that would occur in a random network.

Knowledge flow across (assignee) countries is as efficient as

a random network. However knowledge flow across tech-

nology fields is less efficient than knowledge flow that

would occur in a random network. In other words, techno-

logical distance is a greater barrier to knowledge flows than

geographic distance.

Hung and Wang (2010) examine the characteristics of

the citation network formed by RFID patents. They find that

the network can be characterized as a “small-world” net-

work, that is, a network in which most nodes can be reached

from every other by a small number of steps. They also find

that the network has a power-law connectivity distribution

and exhibits preferential connectivity behavior. That is, a

few key patents have a very large number of connections

and the majority of patents have few connections. The

authors conclude that only a limited number of patents play

a key role in diffusing RFID technology. This approach pro-

vides a more system-based way of thinking about knowl-

edge flows than simply counting citations: Key patents are

not only highly cited patents, but also connect and integrate

different technological trajectories.14 More detailed analyses

of technological trajectories using citation network are

described in the next section.

Mapping of Technological Trajectories

Scholars have recently used citation networks to identify

technological trajectories that led to the advent of major

technological breakthroughs. The main trajectory, or search

path, is the sequence of links and nodes that is central to the

development of a technology. It represents the main flow of

ideas in the development of a technology. The method was

pioneered by Hummon and Doreian (1989) on a citation net-

work of scientific articles describing the development of

DNA theory. This approach shifts the focus from the nodes

of the network (looking at individual patents) to the connec-

tions that these nodes form. It allows identifying key patents

through their structural connectivity in the network. Techno-

logically important patents should belong to the main paths

of the citation network and/or locate at particularly critical

junctions within those paths.

Mina, Ramlogan, Tampubolon, and Metcalfe (2007),

Verspagen (2007), and Fontana, Nuvolari, and Verspagen

(2009) applied the method to patent citation networks. Mina

et al. (2007) use it to understand how medical knowledge

emerges, grows, and evolves. They argue that the approach

provides a dynamic view of innovation that recognizes the

long-term, path-dependent, and complex nature of technol-

ogy. Their case study is based on treatment for coronary

artery disease and covers 5,136 USPTO patent documents

granted between 1976 and 2003. The authors seek to identify

the main path and “islands” of the network. Islands are small

clusters of inventions whose internal connectedness is rela-

tively superior to the strength of their outward connections

within the global network. The authors argue that islands

allow accounting for the variety of complementary and com-

peting areas of technical expertise that contributed to the

advancement of the technology. They report that the results

form a consistent map of the major scientific and technologi-

cal trajectories in the domain.

Fontana et al. (2009) study the structural connectivity of

the citation network formed by patents related to local area

networks (LAN) technology. Innovation in such a systemic

technology has three main features. First, innovation is dis-

tributed: it takes place at the level of individual components

but these components all have to work together. Second,

innovations in systems tend to be incremental and to occur

around well-established technical designs. Third, innova-

tions also tend to occur continuously. The authors argue that

the classical approach of assessing the importance of patents

by counting the number of citations they have received may

have drawbacks in such systemic technologies. It may fail to

identify concepts and principles that could act as “focusing

devices” for a sequence of inventive activities. By contrast a

structural analysis of the citation network would allow the

identification of inventions that have played a major role in

the evolution of LAN technology. They find that the main

path they have identified displays a coherent economic and

engineering logic, consistent with qualitative accounts of the

evolution of the Ethernet standard.

One of the most interesting insights of the article comes

from the analysis of companies owning patents that lie on

the main path. No company is “dominant” in the sense of

claiming ownership of the majority of patents on the main

path, which the authors take as evidence that no company is

strategically placed along the main path of knowledge flow.

Verspagen (2007) performs a similar analysis for citations

among fuel cell patents. He finds that there are dominant
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companies: A small number of organizations hold patents

belonging to the main path. Study of the ownership structure

of technologies on the main path provides a novel way of

characterizing technology dominance. It is a promising ave-

nue for research in industrial economics and strategic

management.

Pitfalls and Best Practices in Use of Citation-
Based Indicators

We take the opportunity of this review to discuss poten-

tial pitfalls associated with patent data. We focus on four

key challenges.

Office Effects

Institutional differences across jurisdictions induce differ-

ences in citation practices across offices. We briefly summa-

rize two main differences in citation practices between the

EPO/Japan Patent Office (JPO) and the USPTO for illustra-

tive purposes. More generally, researchers should get a clear

understanding of citation practices in the office of interest

before using citation-based indicators.15

A first difference is the “duty of candor” in U.S. patent

law. Failure to report known relevant prior art may lead to

subsequent revocation of the patent (inequitable conduct

doctrine). There is no duty of candor in European patent

law, and applicants do not have to submit a list of prior art.

It follows that search reports at the EPO usually contain

many fewer references than USPTO search reports. In fact,

according to EPO philosophy, “a good search report con-

tains all the technically relevant information within a mini-

mum number of citations” (Michel & Bettels, 2001, p. 189).

In addition, since applicants at the EPO do not bear the

same responsibility to disclose prior art as applicants at the

USPTO, the citations come mostly from the examiner. This

does not undermine their interpretation as indicators of

impact or value; for example Harhoff et al. (2003, discussed

earlier) find EPO citations to be predictive of value. It does

suggest that EPO citations might be less indicative of knowl-

edge flows; although we are not aware of any empirical

analysis of this question comparable to the survey work of

Jaffe et al. (2000). In Japan, the patent law was revised in

2002 and imposed on applicants the obligation to disclose

prior art. Although not complying with the disclosure

requirement bears less severe consequence than in the

United States, the reform led to a substantial increase in

prior art disclosure by applicants. Takahiro, Nagaoka, and

Naito (2015) find that about 8% of citations came from

applicants in the years following the reform, compared to

around 4–5% before the reform.

A second important difference with the USPTO is that

EPO patent examiners classify documents cited in particular

citation categories (Schmoch, 1993). A document that shows

essential features of the invention or questions the inventive

step of these features if taken alone is marked with the letter

“X.” A document that questions the inventive step if com-

bined with another document is marked with the letter “Y”

(hence “Y” citations never occur singly). The letter “A”

marks a document that shows the general state of the art.

According to Schmoch (1993, p. 195) a patent document

can be highly cited because it comprises “a good description

of the prior art from a didactic point of view.” The classifi-

cation provides opportunities for finer analyses. One may

want to exclude class “A” citations for assessing the inven-

tive step of patents, but class “A” citations are relevant for

measuring technological proximity of patents. Additional

classification codes exist; see Webb, Dernis, Harhoff, and

Hoisl (2005) for a discussion. Examiners at the JPO also

classify citations into categories. In particular, they flag

whether citations are used as ground for rejection, similar to

“X” and “Y” citations at the EPO, or whether they are used

for assessing the application but do not serve as a basis for

rejection, similar to “A” citations at the EPO (Goto & Moto-

hashi, 2007).

The classification into categories opens the door to origi-

nal uses of citation data. For example, von Graevenitz, Wag-

ner, and Harhoff (2011) identify patent thickets at the EPO

using X and Y citations. Their measure identifies constella-

tions in which three firms each own patents that block patent

applications of the other two firms (so-called triples). The

authors show that density of triples in complex technology

areas has risen steadily since the early 1980s, whereas the

density of triples has been constant in discrete technology

areas. Guellec, Martinez, and Zuniga (2012) use “X” and

“Y” citations together with administrative information on

the patent examination process (withdrawal and grant

events) to identify defensive patents, that is, patent applica-

tions used to pre-empt others from getting their patents

granted. Palangkaraya, Webster, and Jensen (2011) posit

that patents with a higher inventive step will generate more

“X” and “Y” citations, and use this information to proxy for

the probability of grant ex-ante.

Beyond institutional differences in the use of citations,

researchers have also illustrated the presence of home bias

in citation practices. Bacchiocchi and Montobbio (2010)

analyze the geographic distribution of cited documents for a

set of 657,151 equivalent patents filed at the EPO and the

USPTO. In theory, distributions should be similar since they

refer to the same invention. They find that the frequency of

U.S.-cited patents at the USPTO exceeds 65%, while the fre-

quency at the EPO is less than 40%. That examiners have a

tendency to cite local documents does not come as a sur-

prise.16 However, it illustrates an important limitation of the

use of citations for assessing cross-border knowledge flows.

Time and Technology Field Effects

The number of citations received by a patent increases as

time passes such that there are strong cohort effects. This

issue can be dealt with in a straightforward manner by

counting citations received in a fixed time interval (e.g., cita-

tions received up to 5 years after grant). A more serious con-

cern is the increase over time of citations made per patent.
Hall, Jaffe, and Trajtenberg (2001) report that the average
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patent issued in 1999 made over twice as many citations as

the average patent issued in 1975 (10.7 vs. 4.7 citations).

Although this issue does not affect the comparison of patents

within a cohort, citation inflation makes it challenging to

compare patents across cohorts. Analogously, citation prac-

tices and the intensity of activity vary by technology fields,

so that what constitutes a high citation rate in one field may

be modest or small for another field.17 The authors discuss

two econometric techniques to deal with citation inflation

and varying intensities by field: scaling citation counts by

“dividing them by the average citation count for a group of

patents to which the patent of interest belongs”; and identi-

fying the multiple biases on citation rates via econometric

estimation. Marco (2007) provides a recent illustration of

the latter technique. He argues that by estimating a hazard

rate based only on factors that are correlated to citation infla-

tion rather than value, residuals can be used to measure

latent patent value. For example, the ratio of observed cita-

tions to predicted citations may represent a proxy of patent

value. Such an approach is an important step forward,

although it is difficult to identify factors that are truly exoge-

nous to value.

A broader question, which has received little coverage in

the literature, relates to differences in patenting and citation

practices across technology fields. We know that the propen-

sity to patent differs across fields (Cohen, Nelson, & Walsh,

2000) and that the relevance of patent data as innovation

indicator therefore also varies across fields (e.g., Danguy, de

Rassenfosse, & van Pottelsberghe, 2014). However, to the

best of our knowledge, no study has investigated in a sys-

tematic manner how differences across fields affect the rele-

vance of patent citation data.

Examiner Effects

Cockburn, Kortum, and Stern (2002) show that there is

substantial examiner heterogeneity, for example, in terms of

variations in tenure at the USPTO and in the average

approval time per issued patent. Such heterogeneity trans-

lates into variations in outcomes of the examination process

— such as in the volume and pattern of citations made.18

Lemley and Sampat (2012) demonstrate the presence of an

examiner effect, in the sense that more experienced exam-

iners cite less prior art. Alcacer, Gittelman, and Sampat

(2009) painted a picture of examiner-added citations across

key strata of patent data. They report that the proportion of

citations added by examiners is higher for patents: by for-

eign applicants to the USPTO; by applicants with a large

patent portfolio; and by applicants in electronics, communi-

cations, and computer-related fields. Criscuolo and Verspa-

gen (2008) perform a similar analysis for EPO patent data.

They show that the share of inventor citations has been

declining from about 14% in 1985 to 9% in 2000. In addi-

tion, there is also substantial variation across fields. More

than 20% of citations in organic chemistry patents were

added by the inventor, while for information technology pat-

ents this share is 4%.19

Examiner intervention may bias the information content

of citations. It may undermine the use of citations as a mea-

sure of knowledge flow, since the inventors may not have

even been aware of the patents cited by examiners at the

time of invention. However, examiner citations may be

taken as a valid reflection of technological and economic

value. In this spirit, Hegde and Sampat (2009) show that

examiner citations have a much stronger relationship with

renewal probability (a measure of private value) than the

number of applicant citations.

Strategic Effects

Variations in the number of examiner-added citations

may also come from differences in applicants’ incentives to

search for or disclose prior art. Recent research suggests that

citing prior art (or not) is a strategic decision. Atal and Bar

(2010) study firms’ incentives to search for unknown prior
art. Although applicants at the USPTO have a duty to dis-

close what they know, they have no duty to search for prior

art and may be better off by remaining ignorant. The authors

show theoretically that firms search more when R&D invest-

ment (a proxy for innovation quality) and patenting costs are

higher. Sampat (2010) provides empirical data on when

applicants search for prior art. He shows that applicants con-

tribute more prior art for their more important inventions.

He also shows that applicants are more likely to search for

prior art in fields where individual patents are important for

appropriating returns from R&D (chemicals and drugs) and

less likely to do so in industries where firms tend to accumu-

late patent portfolios for other strategic reasons (computers

and communications, electronics and electrical, and

mechanical).

Lampe (2012) focuses on applicants’ decision to disclose
known prior art. He identifies “voluntary withholding” of

citations to prior art material by looking only at citations

that were present on prior patents issued to the same firm.

He estimates that applicants withhold between 21% and

33% of relevant citations. The rate is higher for firms apply-

ing for computer and electronic patents (25 to 42%) and

lower for firms applying for drug and chemical patents (8–

22%). More generally, Lampe finds that the likelihood of

citation is positively correlated with proxies of patent value

(number of claims and forward citations) and negatively cor-

related with the size of applicant patent portfolios.

Conclusion

The use of patent citation data in social science research

has exploded in the last two decades. As just one indication,

the frequency of appearance of the term “patent citation” in

scientific documents listed in Google Scholar increased 10-

fold between 2000 and 2014 (Appendix A). As is often the

case, this increase reflects increases in both supply and

demand. On the supply side, the digitization of the patent

office records, combined with the increased power of com-

puters to analyze them, makes analyses possible today that

simply could not have been undertaken 25 years ago. The
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number of scientific documents referencing the National

Bureau of Economic Research (NBER) patent citation

data file is likewise continuously increasing (Appendix

A). On the demand side, intangible assets are increasingly

seen as a source—some would argue the dominant

source—of economic returns. By definition, intangible

assets are hard to track and measure, and so researchers

interested in diverse questions about knowledge accumu-

lation and diffusion, innovation, firm strategy and regional

economic growth seek measures that convey information

about the sources and consequences of these assets.

Neither of these trends is likely to reverse, so interest

in measures of this kind is likely to continue to grow.

Recent developments in computational linguistics may

allow for construction of measures that are conceptually

related to citations but use all of the information con-

tained in the patent text rather than relying solely on the

links between patents that are explicitly identified via

citation. It is now possible, for example, to identify con-

nections between a patent and its antecedents by meas-

uring the frequency with which important words are used

in both patents, to measure novelty by identifying patents

that use a certain technical term or combination of words

in a particular phrase for the first time, and to measure

impact by counting the number of subsequent patents that

use such a phrase (e.g., Packalen & Bhattacharya, 2015).

Younge and Khun (2015) use more advanced techniques

to develop a text-based pairwise similarity comparison of

any and every two patents at the USPTO. These new

approaches have not yet been subjected to the kind of val-

idation that has demonstrated the economic significance

of citations, but because they utilize more information,

they offer the promise of a valuable broadening and deep-

ening of the research possibilities.

A more mundane, but equally important task, is to further

validate citation indicators. This applies to both established

and novel indicators, at both the USPTO and other offices.

For example it is unclear whether the count of backward

citations proxies for patent importance. Even the link

between forward citations and economic value, one of the

most established and used indicators, is not well understood.

In a similar vein, little research exists on technology field

differences on the relevance of patent citation data. The

need for validation studies will grow more pressing as new

indicators are being developed and more patent offices

make their data available. Similarly, legislative changes

affect citation practices in nontrivial ways, and conclusions

drawn using data from one-time period are not necessarily

valid in another time period. This calls for a continuous

assessment of the validity of citation indicators.

Another exciting area of research is the further applica-

tion of network theory and analysis tools to the patent cita-

tion network. For example, the identification of key

technologies and actors on the main knowledge path prom-

ises to greatly improve our understanding of industry

dynamics and the knowledge creation process. A limitation

of current research in the area is the insularity of two com-

munities of scholars. Studies by scholars using advanced

network analysis tools offer little practical implications,

whereas studies by scholars looking at real-world implica-

tions use quite basic network analysis tools. A promising

way forward is to better integrate the technical and the prac-

tical aspects of network analysis.

Finally, researchers realize that the patent citation gen-

eration process is complex but more work needs to be

done to understand it. The complexity of the patent cita-

tion generation process is a blessing and a curse. Whereas

it may distort the reality in an undesirable fashion, it may

also provide a window into the incentives faced by inven-

tors, patent attorneys and examiners and serve as a source

of econometric identification. The example of examiner-

added citations is a case in point. Whereas citations made

by examiners arguably weaken the measurement of

knowledge flows, they also strengthen the measurement

of patent value.
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Endnotes

1The present survey discusses evidence on citations at the European

Patent Office whenever available.
2The earliest reference that we found is Clark (1976). It presents sta-

tistics on the obsolescence of United States Patent and Trademark Office

(USPTO) patents using citation data. Garfield (1966) discusses the use

of patent citation searches to say something about the significance of a

patent, but it does not present any systematic analyses or statistics. Kuz-

nets (1962) did not specifically discuss citations, but did emphasize that

patent documents are a rich and deep source of information on the

inventive process, and urged that this richness be exploited in addition

to researchers’ simply counting patents
3Jacob Schmookler pointed out that in a patent subclass “Dispensing

of semi-solid materials,” he found a patent for a manure spreader and

another for a toothpaste tube (Schmookler, 1966).
4Jaffe and Trajtenberg (2002) reprints 12 of the key articles on pat-

ent citations by them and their co-authors.
5The authors report “forward importance” as the number of citations

received plus .5 times the number of citations received by the citing pat-

ents, and undertook sensitivity analysis varying this weight between

0.25 and 0.75. Extending this throughout the citation tree involves a

geometrically declining weight, for example, if patent E cites patent D

which cites patent C which cites patent B which cites patent A, we

might consider patent B to contribute 1 to the importance of A, patent C

0.5, patent D 0.25 and patent E 0.125.
6For a small number of citations, it is clear that this measure is

heavily influenced by the number of citations, for example, a patent

receiving only two citations cannot possibly have generality greater than

0.5. Whether or not this is a problem is largely a matter of interpreta-

tion; in some sense it is meaningful to say that a patent receiving only

two citations cannot have a very diverse impact. A different interpreta-

tion is that every invention has a latent or unobserved generality that is
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randomly realized in the citations it happens to receive. Under this for-

mulation, the distribution of citations across patent classes is multino-

mial, and the observed generality or originality is a biased estimator of

the true parameter. Bronwyn Hall has derived a formula to correct for

this bias (Hall et al., 2001); it produces a significant correction for pat-

ents with just a few citations.
7Ziedonis (2004) has built on this idea to construct a measure of the

fragmentation of ownership rights to a firm’s complementary patents.

Backward citations are stratified by assignee instead of technology class.
8Hall and Trajtenberg (2006) explain that the generality measures

suffer from the fact that they treat citations from patents in patent

classes different from the cited patents in the same way, although some

patent classes are very different and some are closely related. They sug-

gest that the future research could construct a weighted generality mea-

sure, with weights inversely related to the overall probability that one

class cites another class. To the best of our knowledge no one has

implemented such an approach.
9Hall and Trajtenberg (2006) also show that a disproportionate share of

the patents in the extreme upper tail of the distribution for generality and

total forward citations in the period 1967–1999 are information technology

(IT) patents, suggesting that these metrics may be indicative of a GPT.
10Lemley and Sampat (2012, footnote 12) find that the vast majority

of references to nonpatent prior art at the USPTO come from applicants,

not examiners, potentially making these a relevant measure of science

dependence.
11Since Trajtenberg (1990b) showed that total citations are corre-

lated with social returns, the finding that self-citations have a stronger

effect on market value than other citations suggest that self-citation is

associated with the extent of appropriation of the social returns by the

original patenting firm.
12Similarly, international family size is a measure predictive of

value that is knowable soon after patent application.
13Cf. Huang, Huang, Chang, Chen, and Lin (2014) who provide evi-

dence that the distribution of patent citations is more concentrated than

the distribution of citations in scientific articles.
14Hu, Rousseau, and Chen (2012) provide another study on the

importance of patents using their positions in the citation network. Other

applications include, for example, Liu and Shih (2011) who use the net-

work formed by patents to improve patent classification.
15For example, researchers interested in EPO citations should read

the “Guidelines for Examination in the European Patent Office” avail-

able on the EPO website.
16For example, there is a substantial cost to including non-English

references at the USPTO. When using a foreign language reference in a

rejection, examiners should provide a translation of the entire document.
17Technology fields are tracked using the patent office classification

systems. Historically, the United States has maintained its own classifi-

cation (USPC), while other offices use the International Patent Classifi-

cation (IPC). The USPTO has recently introduced a Cooperative Patent

Classification (CPC) based on the IPC, and is phasing out the USPC.
18Alc�acer and Gittelman (2006) estimate that examiners insert two

thirds of citations on the average patent, and 40% of all patents have all

citations added by examiners.
19There are few country-specific studies. See Azagra-Caro, Matts-

son, and Perruchas (2011) for Spanish evidence.
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Appendix A

Figure A1 plots the yearly number of scientific articles

listed in Google Scholar that contain the term “patent

citation” (blue line), and the number of articles citing the

NBER patent citation data file described in Hall et al.

(2001) (red dashed line). One can reasonable assume that

the latter group of articles forms a subset of the former

group.

FIG. A1. Number of scientific articles listed in Google Scholar. Notes:

HJT refers to Hall et al. (2001). [Color figure can be viewed at wileyon-

linelibrary.com]
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