Submitted 26 August 2017
Accepted 19 December 2017
Published 15 January 2018

Corresponding author
Ian Foster, foster@anl.gov

Academic editor
Bertram Ludischer

Additional Information and
Declarations can be found on
page 25

DOI 10.7717/peerj-cs.144

© Copyright
2018 Chard et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

The Modern Research Data Portal:
a design pattern for networked,
data-intensive science

Kyle Chard'?, Eli Dart’, Ian Foster'”, David Shifflett'?, Steven Tuecke'” and
Jason Williams'?

! University of Chicago, Chicago, IL, United States of America
% Argonne National Laboratory, Lemont, IL, United States of America
* Energy Sciences Network, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America

ABSTRACT

We describe best practices for providing convenient, high-speed, secure access to
large data via research data portals. We capture these best practices in a new design
pattern, the Modern Research Data Portal, that disaggregates the traditional monolithic
web-based data portal to achieve orders-of-magnitude increases in data transfer
performance, support new deployment architectures that decouple control logic from
data storage, and reduce development and operations costs. We introduce the design
pattern; explain how it leverages high-performance data enclaves and cloud-based
data management services; review representative examples at research laboratories and
universities, including both experimental facilities and supercomputer sites; describe
how to leverage Python APIs for authentication, authorization, data transfer, and data
sharing; and use coding examples to demonstrate how these APIs can be used to
implement a range of research data portal capabilities. Sample code at a companion
web site, https://docs.globus.org/mrdp, provides application skeletons that readers can
adapt to realize their own research data portals.

Subjects Computer Networks and Communications, Data Science, Distributed and Parallel
Computing, Security and Privacy, World Wide Web and Web Science
Keywords Portal, High-speed network, Globus, Science DMZ, Data transfer node

INTRODUCTION

The need for scientists to exchange data has led to an explosion over recent decades in the
number and variety of research data portals: systems that provide remote access to data
repositories for such purposes as discovery and distribution of reference data, the upload of
new data for analysis and/or integration, and data sharing for collaborative analysis. Most
such systems implement variants of a design pattern (Gamma et al., 1994) that we term
the legacy research data portal (LRDP), in which a web server reads and writes a directly
connected data repository in response to client requests.

The relative simplicity of this structure has allowed it to persist largely unchanged from
the first days of the web. However, its monolithic architecture—in particular, its tight
integration of control channel processing (request processing, user authentication) and

How to cite this article Chard et al. (2018), The Modern Research Data Portal: a design pattern for networked, data-intensive science.
Peer] Comput. Sci. 4:e144; DOI 10.7717/peerj-cs.144

https://peerj.com
mailto:foster@anl.gov
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.144
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://docs.globus.org/mrdp
http://dx.doi.org/10.7717/peerj-cs.144

PeerJ Computer Science

data channel processing (routing of data to/from remote sources and data repositories)—
has increasingly become an obstacle to performance, usability, and security, for reasons
discussed below.

An alternative architecture re-imagines the data portal in a much more scalable and
performant form. In what we term here the modern research data portal (MRDP)
design pattern, portal functionality is decomposed along two distinct but complementary
dimensions. First, control channel communications and data channel communications are
separated, with the former handled by a web server computer deployed (most often) in the
institution’s enterprise network and the latter by specialized data servers connected directly
to high-speed networks and storage systems. Second, responsibility for managing data
transfers, data access, and sometimes also authentication is outsourced to external, often
cloud-hosted, services. The design pattern thus defines distinct roles for the web server,
which manages who is allowed to do what; data servers, where authorized operations are
performed on data; and external services, which orchestrate data access.

In this article, we first define the problems that research data portals address, introduce
the legacy approach, and examine its limitations. We then introduce the MRDP design
pattern and describe its realization via the integration of two elements: Science DMZs (Dart
et al., 2013) (high-performance network enclaves that connect large-scale data servers
directly to high-speed networks) and cloud-based data management and authentication
services such as those provided by Globus (Chard, Tuecke ¢ Foster, 2014). We then outline
a reference implementation of the MRDP design pattern, also provided in its entirety on
the companion web site, https://docs.globus.org/mrdp, that the reader can study—and, if
they so desire, deploy and adapt to build their own high-performance research data portal.
We also review various deployments to show how the MRDP approach has been applied
in practice: examples like the National Center for Atmospheric Research’s Research Data
Archive, which provides for high-speed data delivery to thousands of geoscientists; the
Sanger Imputation Service, which provides for online analysis of user-provided genomic
data; the Globus data publication service, which provides for interactive data publication
and discovery; and the DMagic data sharing system for data distribution from light sources.
We conclude with a discussion of related technologies and summary.

THE RESEARCH DATA PORTAL

The exchange of data among researchers is a fundamental activity in science (Borgman,
2012; Hey, Tansley & Tolle, 2009; Tenopir et al., 2011), and the use of computer networks
for that purpose dates back to the earliest days of the Internet. Indeed, it was the need for
convenient data exchange that drove Tim Berners-Lee to invent the web in 1989 (Berners-
Lee, 1989). He defined an architecture of extreme simplicity. A computer with access to
both a data repository and the Internet runs a web server application that performs upload
and download operations on its local data repository based on client requests. Users issue
such requests using a client program—typically a web browser, which provides a graphical
user interface (GUI). A uniform naming scheme for data objects makes it easy to share
names, for example by embedding them in specially formatted documents (web pages).

Chard et al. (2018), Peerd Comput. Sci., DOI 10.7717/peerj-cs.144 2/30

https://peerj.com
https://docs.globus.org/mrdp
http://dx.doi.org/10.7717/peerj-cs.144

PeerJ Computer Science

Border Router Firewall

Enterprise Network

Portal Server

Browsing path, Query path, Data path Portal server applications:
e web server
e search
e database (data store)
e authentication
e data service

Figure 1 The legacy research data portal (LRDP) architecture. The portal web server runs all portal ser-
vices and also manages all data objects and their transport to and from the wide area network (WAN).
Full-size &) DOI: 10.7717/peerjcs.144/fig-1

Web technologies have since evolved tremendously. For example, web servers can now
support client authentication and authorization, link to databases for efficient navigation
of large repositories, and support Common Gateway Interface (CGI) access to server-side
computation. Web browsers run powerful Javascript and support asynchronous requests
to remote servers.

Yet as shown in Fig. 1, most systems used to exchange research data today are not so
different from that first web server. In particular, a single server handles request processing,
data access, authentication, and other functions. It is the simple and monolithic architecture
that characterizes this legacy research data portal (LRDP) design pattern that has allowed
its widespread application and its adaptation to many purposes. Under names such as por-
tals (Russell et al., 2001), science gateways (Wilkins-Diehr et al., 2008; Lawrence et al., 2015),
and hubs (Klimeck et al., 2008; McLennan ¢ Kennell, 2010), LRDP instances variously
support access to small and large scientific data collections, data publication to community
repositories, online data analysis and simulation, and other scientific workflows concerned
with managing the flow of scientific data between remote clients and a central server.

A confluence of three factors has now rendered the monolithic LRDP architecture
increasingly problematic for its intended purpose, as we now discuss.

The first concerns performance. Both data volumes and network speeds have grown
tremendously over the past decade, at rates far faster than can be supported by monolithic
web services applications running on individual servers connected to enterprise networks
and secured by enterprise firewalls. In response, network architectures are proliferating to
allow high-speed access to research data over separate data channels that are specifically
engineered for high-performance data services. However, these developments do not mesh
well with the LRDP architecture. The LRDP server typically cannot be moved outside
the institutional firewall because it is a complex web services application with sensitive
information (e.g., user databases) that must be defended using correspondingly complex
security protections. Also, the LRDP model forces all data objects through the web server
software stack, limiting performance and scalability.

The second is an increasing demand for high data transfer reliability. When download
or upload requests involve just a few small files, transient errors are rare and can be handled
by having users resubmit requests. When requests involve thousands or more files and

Chard et al. (2018), Peerd Comput. Sci., DOI 10.7717/peerj-cs.144 3/30

https://peerj.com
https://doi.org/10.7717/peerjcs.144/fig-1
http://dx.doi.org/10.7717/peerj-cs.144

PeerJ Computer Science

gigabytes or terabytes, errors are more problematic. Increasingly, researchers expect the

high reliability offered by transfer services such as Globus (Chard, Tuecke ¢ Foster, 2014),
which use specialized techniques to minimize the impact of errors. But retrofitting such

mechanisms into the LRDP model is challenging.

The third challenge is operational complexity, which in turn can negatively impact
development costs, reliability, capabilities offered, and security. Conventional LRDP
implementations are developed, deployed, and operated in silos, with each establishing and
operating its own implementations of user management, authentication, authorization,
and data transfer. This siloed approach is sub-optimal and inefficient, and often results
in limited functionality relative to state-of-the-art. For example, few legacy portals enable
authentication and authorization with standard web protocols such as OpenID Connect
(Sakimura et al., 2014) and OAuth 2 (Hardt, 2012), instead preferring to manage local user
and authorization databases. The siloed approach makes it difficult to ensure that best
practices, especially with respect to security, are followed. It also increases the burden on
administrators to ensure that not only is the portal available but also that updates and
security patches are applied quickly.

In summary, while the LRDP model has served the scientific community well for many
years, it suffers from fundamental limitations, with the result that portals based on the
LRDP model serve the scientific community less well than they otherwise could.

THE MRDP DESIGN PATTERN

This discussion of LRDP limitations brings us to the core of this article, namely, the modern
research data portal (MRDP) design pattern. This new approach to building research data
portals became feasible in around 2015, following the maturation of two independent
efforts aimed at decoupling research data access from enterprise networks, on the one
hand, and research data management logic from storage system access, on the other. These
developments inspired a new approach to the construction of research data portals based
on a decomposition of the previously monolithic LRDP architecture into three distinct
components:
1. The portal server (a web server like any other) which handles data search and access,
mapping between users and datasets, and other web services tasks;
2. A high-performance network enclave that connects large-scale data servers directly to
high-performance networks (we use the Science DMZ as an example here); and
3. A reliable, high-performance external data management service with authentication
and other primitives based on standard web APIs (we use Globus as an example here).
In the remainder of this section, we describe the role of the Science DMZ and the data
servers that reside within it, the role of Globus as a provider of outsourced data management
and security services, and the integration of these components to form the MRDP design
pattern.

Science DMZ and DTNs

A growing number of research institutions are connected to high-speed wide area networks
at high speeds: 10 gigabits per second (Gb/s) or faster. Increasingly, these wide area

Chard et al. (2018), Peerd Comput. Sci., DOI 10.7717/peerj-cs.144 4/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.144

PeerJ Computer Science

Border Router Firewall

Data Path
Browsing path
Query path

Portal server applications:
e web server

search \
database
authentication Portal Server

Science DMZ
Switch/Router

Data Transfer Path

Filesystem
(data store)

(data access governed by portal)

Figure 2 The MRDP design pattern from a network architecture perspective. The Science DMZ in-
cludes multiple DTN that provide for high-speed transfer between network and storage. Portal functions
run on a portal server, located on the institution’s enterprise network. The DTNs need only speak the API
of the data management service (Globus in this case).

Full-size & DOL: 10.7717/peerjcs.144/fig-2

networks are themselves connected to cloud providers at comparable speeds. Thus,
in principle, it should be possible to move data between any element of the national
research infrastructure—between institutions, laboratories, instruments, data centers,
supercomputer centers, and clouds—with great rapidity.

In practice, real transfers often achieve nothing like these peak speeds. Common
reasons for poor performance are the complexity and architectural limitations of
institutional networks, as well as complex and inefficient configurations on monolithic
server computers. Commodity network devices, firewalls, and other limitations cause
performance bottlenecks in the network between the data service and the outside world
where clients are located.

Two constructs, the Science DMZ and the Data Transfer Node, are now widely deployed
to overcome this problem. As shown in Fig. 2, the Science DMZ overcomes the challenges
associated with multi-purpose enterprise network architectures by placing resources that
need high-performance connectivity in a special subnetwork that is close (from a network
architecture perspective) to the border router that connects the institution to the high-speed
wide area network. (The term DMZ, short for demilitarized zone, is commonly used in
computer networking to indicate an intermediate role between external and internal
networks.) Traffic between those resources and the outside world then has a clean path to
the analogous high-performance resources at collaborating institutions.

A Data Transfer Node (DTN) is a specialized device dedicated to data transfer
functions. These devices are typically PC-based Linux servers constructed with high quality

Chard et al. (2018), Peerd Comput. Sci., DOI 10.7717/peerj-cs.144 5/30

https://peerj.com
https://doi.org/10.7717/peerjcs.144/fig-2
http://dx.doi.org/10.7717/peerj-cs.144

PeerJ Computer Science

components, configured for both high-speed wide area data transfer and high-speed access
to local storage resources, and running high-performance data transfer tools such as Globus
Connect data transfer software. General-purpose computing and business productivity
applications, such as email clients and document editors, are not installed; this restriction
produces more consistent data transfer behavior and makes security policies easier to
enforce.

The Science DMZ design pattern also includes other elements, such as integrated
monitoring devices for performance debugging, specialized security configurations, and
variants used to integrate supercomputers and other resources. For example, Fig. 2 shows
perfSONAR (Hanemann et al., 2005) performance monitoring devices. But this brief
description provides the essential information required for our discussion here. The US
Department of Energy’s Energy Sciences Network has produced detailed configuration and
tuning guides for Science DMZs and DTNs (ESnet, 2017).

Globus services

Globus provides data and identity management capabilities designed for the research
community. These capabilities are delivered via a cloud-hosted software- and platform-as-
a-service model, enabling users to access them through their web browser and developers to
invoke them via powerful APIs. We describe here Globus capabilities that meet MRDP needs
for managing and transferring data (Chard, Tuecke & Foster, 2014) and for authenticating
users and authorizing access (Tuecke et al., 2015).

Globus allows data to be remotely managed across its pool of more than 10,000
accessible storage systems (called “endpoints”). A storage system is made accessible to
Globus, and thus capable of high performance and reliable data transfer, by installing
Globus Connect software. Globus Connect is offered in two versions: Globus Connect
Personal for single-user deployments (e.g., a laptop or PC) and Globus Connect Server
for multi-user deployments (e.g., a shared server or DTN). Globus Connect Server can be
deployed on multiple DTN associated with a storage system; Globus then uses the pool of
DTN to increase transfer performance, with dynamic failover for increased reliability.

Globus Transfer capabilities provide high performance and reliable third party data
transfer. The Globus service manages the entire transfer process, including coordinating
authentication at source and destination; establishing a high performance data channel
using the GridFTP (Allcock et al., 2005) protocol, with configuration optimized for transfer;
ensuring data integrity by comparing source/destination checksums; and recovering from
any errors during the transfer. Globus also provides secure (authorized) HTTPS access to
(upload/download) data via a web browser or an HTTP command line client (e.g., for small
files, inline viewers, or transitional support of LRDP usage models). Globus, by default,
enforces the data access permissions represented by the underlying system; however, it
also allows these access decisions to be managed through the cloud service. In the latter
mode, called Globus Sharing (Chard, Tuecke ¢~ Foster, 2014), users may associate user-
or group-based access control lists (ACLs) with particular file paths. Globus checks and
enforces these ACLs when other users attempt to read or write to those paths.

Chard et al. (2018), Peerd Comput. Sci., DOI 10.7717/peerj-cs.144 6/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.144

PeerJ Computer Science

Globus Auth provides identity and access management platform capabilities. It brokers
authentication and authorization interactions between end-users, identity providers,
resource servers (services), and clients (e.g., web, mobile, desktop, and command line
applications, and other services). It implements standard web protocols, such as OAuth 2
and OpenID Connect, that allow it to be integrated easily with external applications using
standard client libraries. These protocols enable third-party applications to authenticate
users (using their preferred identity) directly with the chosen identity provider. Globus
Auth then returns access tokens that the third-party application can use to validate the
user’s identity and to perform actions on behalf of that user, within an agreed upon scope.
Globus Auth implements an identity federation model via which diverse identities can be
linked, and such that presentation of one identity may support authorization for the set
of identities. Integration with Globus Groups (Chard et al., 2016) supports group-based
authorization using user-managed groups.

REST APIs allow Globus capabilities to be used as a platform. These APIs are used
by client libraries, such as the Globus Python SDK, to support integration in external
applications. We leverage the Globus Python SDK in the MRDP reference implementation
that we describe in this paper, and in the code examples presented in subsequent sections.

The design pattern in practice

The MRDP design pattern improves on the LRDP architecture in three important ways.
While these improvements involve relatively minor changes to the web server logic, they
have big implications for how data accesses and transfers are performed.

First, data references. An important interaction pattern in a research data portal is
the redirect, in which a client request for information leads to the return of one or more
URLs for data files. In the LRDP pattern, these are web URLs that reference files served
by the same web server that runs the portal GUL In the MRDP pattern, the portal instead
returns references to data objects served by DTN located in a Science DMZ separate
from the portal web server, as shown in Fig. 2. This approach allows the data objects to
be transferred using infrastructure that matches their scale. Also, because the DTN cluster
can be expanded (e.g., by adding more or faster DTNs) without changing the interface that
it provides to the portal, it can easily be scaled up as datasets and traffic volumes grow,
without modifying the portal code.

Second, data access. In the LRDP pattern, the references to data objects are returned to
the user in a web page. The user must then access the data objects by clicking on links or
by using a web command line client like wget. Neither approach is convenient or reliable
when dealing with many files. In the MRDP pattern, references are encapsulated in a data
transfer job which can be managed by a cloud-based data transfer service such as Globus.
Thus the user can hand off the complexity of managing the correct transfer of perhaps
many thousands of files to a data management service that is designed to handle such tasks
reliably.

Third, user and group management, and authentication and authorization. In the
LRDP pattern, these functions are typically all hosted on the web server. Portal developers
must therefore implement workflows for authenticating users, requesting access to data,

Chard et al. (2018), Peerd Comput. Sci., DOI 10.7717/peerj-cs.144 7/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.144

PeerJ Computer Science

assembling datasets for download, dynamically authorizing access to data, and checking
data integrity (e.g., by providing checksums). In the MRDP pattern, these functions can
be outsourced via standard interfaces to external services that provide best-practices
implementations.

An important feature of the MRDP design pattern is the use of web service (REST) APIs
when accessing external services that provide data management and other capabilities. This
approach makes it straightforward to retrofit advanced MRDP features into an existing
data portal.

Variants of the basic pattern

In the following, we present a reference implementation of the MRDP design pattern that
enables download of data selected on a web page. Many variants of this basic MRDP design
pattern have been constructed. For example, the data that users access may come from an
experimental facility rather than a data archive, in which case they may be deleted after
download. Access may be granted to groups of users rather than individuals. Data may be
publicly available; alternatively, access may require approval from portal administrators. A
portal may allow its users to upload datasets for analysis and then retrieve analysis results.
A data publication portal may accept data submissions from users, and load data that pass
quality control procedures or curator approval into a public archive. We give examples of
several such variants below, and show that each can naturally be expressed in terms of the
MRDP design pattern.

Similarly, while we have described the research data portal in the context of a Science
DMZ, in which (as shown in Fig. 2) the portal server and data store both sit within a research
institution, other distributions are also possible and can have advantages. For example,
the portal can be deployed on the public cloud for high availability, while data sit within
a research institution’s Science DMZ to enable direct access from high-speed research
networks and/or to avoid cloud storage charges. Alternatively, the portal can be run within
the research institution and data served from cloud storage. Or both components can be
run on cloud resources.

A REFERENCE MRDP IMPLEMENTATION

We have developed a reference implementation of the MRDP design pattern, for which
open source code is available on the companion web site. This code includes:

e A complete, working portal server, implemented with the Python Flask framework and
comprising a web service and web interface, and that uses Globus APIs to outsource data
transfer, authentication, and authorization functions.

Integration with Globus Auth for authentication and authorization.

Integration with Globus Transfer for browsing and downloading datasets.
Use of a decoupled Globus endpoint for serving data securely via HTTP or GridFTP.

e An independent analysis service, accessed via a REST API, to demonstrate how a data
portal can outsource specific functionality securely.

Chard et al. (2018), Peerd Comput. Sci., DOI 10.7717/peerj-cs.144 8/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.144

PeerJ Computer Science

Identity
provider
Globus web GL‘:L’L‘:
helper pages
ﬂ HTTPS PR
login| | ——s GlobusAuth ClZaLe
Browser ——— Transfer
'y
Portal web —l Other
Desktop server (Client) : services
Firewall GridETP
e — . H
User’s Globus Other Globus
. Portal Globus
endpoint sl ‘(_)[endpoints]J
(optional) Science DMZ

Figure 3 MRDP basics. Clients (left) authenticate with any one of many identity providers (top) and
connect to the portal web server (center) that implements the domain-specific portal logic. The web
server sits behind the institutional firewall (red). The portal responds to client requests by using REST
APIs to direct Globus cloud services (top) to operate on research data in the Science DMZ (bottom center)
and/or to interact with other services (center right). Data flows reliably and securely between Globus end-
points without traversing the firewall.

Full-size Gl DOI: 10.7717/peerjcs.144/fig-3

We review some highlights of this reference implementation here; more details are
available on the companion web site.

Figure 3 shows the essential elements of this reference implementation. In addition
to the Science DMZ and portal server already seen in Fig. 2, we see the user’s desktop
computer or other device on which they run the web browser (or other client) used to
access the data portal, plus other elements (identity providers, Globus cloud, other services)
that we introduce in the following. Note the “Globus endpoints” (Globus Connect servers)
located in the Science DMZ, on other remote storage systems, and (optionally) on the
user’s desktop. The cloud-hosted Globus transfer service orchestrates high-speed, reliable
GridFTP transfers among these endpoints, under the direction of the portal server.

As already noted, the portal server is at the heart of the MRDP implementation. It sits
behind the institutional firewall, from where it serves up web pages to users, responds to
HTTP requests, and issues REST communications to Globus services and optionally other
services to implement MRDP behaviors. The latter REST communications are central to
the power of the MRDP design pattern, as it is they that let the web server outsource many
of the complex tasks associated with portal operations. Only the web server component
needs to be provided for a specific MRDP implementation.

Chard et al. (2018), Peerd Comput. Sci., DOI 10.7717/peerj-cs.144 9/30

https://peerj.com
https://doi.org/10.7717/peerjcs.144/fig-3
http://dx.doi.org/10.7717/peerj-cs.144

PeerJ Computer Science

Overview of key points

The MRDP design pattern employs a collection of modern approaches to delivering critical
capabilities. We review some important points here, with comments on how they can be
realized with Globus mechanisms. More specifics are on the companion web site.

Outsource responsibility for determining user identities. Operating an identity provider
should not need to be a core competency for a portal administrator. Globus Auth support
for the OAuth 2 and OpenlID protocols allows for the validation of credentials from
any one of a number of identity providers deemed acceptable by the portal: for example,
institutional credentials via InCommon (Barnett et al., 2011), ORCID, or Google identities.

Outsource control over who can access different data and services within the portal. Nor
should the portal developer or administrator need to be concerned with implementing
access control mechanisms. The Globus transfer service can be used to control who is
allowed to access data.

Outsource responsibility for managing data uploads and downloads between a variety of
locations and storage systems. Reliable, efficient, and secure data transfer between endpoints
is a challenging task to do well. Again, simple APIs allow this task to be handed off to
the Globus transfer service. (A portal can also leverage Globus HTTPS support to provide
web-based download and inline viewers.) Thus, the portal does not need to provide its
own (typically unreliable and/or slow) data download client, as some portals do.

Leverage standard web user interfaces for common user actions. The implementation of
the portal’s web interface can be simplified via the use of standard components. Globus
provides web helper pages for such tasks as selecting endpoints, folders, and files for
transfers; managing group membership; and logging out.

Dispatch tasks to other services on behalf of requesting users. Good programming practice
often involves decomposing a complex portal into multiple services. Globus Auth dependent
grant flows (an OAuth concept) enable a portal to allow other services to operate on
managed data. We discuss below how the reference implementation uses this mechanism
to allow an external data analysis service to access a user’s data.

Log all actions performed by users for purposes of audit, accounting, and reporting. The
portal should store a historical log of all actions performed by the portal and its users such
that others can determine what data has been accessed, when, and by whom. Again, these
functions can be outsourced to a cloud service.

Diving into code
The reference implementation code is for a portal that allows users to browse for data of
interest and then request those data for download. The portal makes the data available via
four simple steps: (1) create a shared endpoint; (2) copy the requested data to that shared
endpoint; (3) set permissions on the shared endpoint to enable access by the requesting
user, and email the user a URL that they can use to retrieve data from the shared endpoint;
and ultimately (perhaps after days or weeks), (4) delete the shared endpoint.

Listing 1 presents a function rdp that uses the Globus Python SDK to implement these
actions. This code is somewhat simplified: it does not perform error checking and does
not integrate with the web server that our data portal also requires, but otherwise it is a

Chard et al. (2018), Peerd Comput. Sci., DOI 10.7717/peerj-cs.144 10/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.144

PeerJ Computer Science

complete implementation of the core portal logic—in just 42 lines of code. In the following,
we first review some Globus background and then describe some elements of this program.

Endpoints

Figure 3 shows several Globus endpoints. Each endpoint implements the GridFTP protocol
(thick green arrows) for high-speed endpoint-to-endpoint data transfer and the HTTPS
protocol (blue arrows) to enable access to endpoint storage from a web client. Endpoints
are managed by the Globus Transfer service via the GridFTP control channel: the thin
green dashed lines.

In order for Globus Transfer to perform operations on an endpoint filesystem, it must
have a credential to authenticate to the endpoint as a specific local user. The process of
providing such a credential to the service is called endpoint activation. Endpoints typically
require credentials from one or more specific identity providers. A Globus Connect Server
can be configured with a co-located MyProxy OAuth (Basney ¢ Gaynor, 2011) server
to allow local user accounts to be used for authentication. Alternatively, endpoints may
be configured to use one of the supported Globus Auth identity providers. In this case,
endpoints contain a mapping between identity provider identities and local user accounts.
Each Globus endpoint (and each user) is named by a universally unique identifier (UUID).

Identities and credentials

We see from Fig. 3 that the MRDP design pattern involves interactions among numerous
entities: user, web client, Globus services, portal server, Globus endpoints, and perhaps
other services as well. Each interaction requires authentication to determine the originator
of the request and access management to determine whether the request should be granted.

Access management decisions are complicated by the fact that a single user may possess,
and need to use, multiple identities from different identity providers. For example, a
user Jane Doe with an identity jane@uni.edu at her university and another identity
jdoe@lab.gov at a national laboratory may need to use both identities when transferring a
file from endpoint A at uni.edu to endpoint B at lab. gov.

The Globus Auth identity and access management service manages these complexities.
When Jane uses a web client to log in to Globus, Globus Auth requests that she verify
her identity via one of her linked identity providers (e.g., by obtaining and checking a
password). This verification is performed via an OAuth 2 redirection workflow to ensure
that the password used for verification is never seen by Globus Auth. Upon successful
authentication, Globus Auth creates a set of unique, fixed-term access tokens and returns
them to the requesting client. Each access token specifies the time period and purpose for
which it can be used (e.g., transferring data, accessing profile information). The web client
can then associate a token with subsequent REST requests—for example a transfer request
to Globus Transfer—to demonstrate that Jane has verified her identity.

Let’s say that Jane now uses the Globus Transfer web client to request a file transfer
from endpoint A at uni.edu to endpoint B at 1ab. gov. Endpoint A requires a uni.edu
access token, which the web client can provide due to the initial authentication. Endpoint
B requires a lab.gov access token, which the web client does not possess. The Globus

Chard et al. (2018), Peerd Comput. Sci., DOI 10.7717/peerj-cs.144 11/30

https://peerj.com
mailto:jane@uni.edu
mailto:jdoe@lab.gov
http://dx.doi.org/10.7717/peerj-cs.144

PeerJ Computer Science

Regular
endpoint

Bob

shared_dir Share.d ﬂ

Figure 4 A shared endpoint scenario.

Jane

Full-size Gal DOI: 10.7717/peerjcs.144/fig-4

Transfer web client will then ask Globus Auth to invoke a further OAuth 2 operation to
verify that identity and obtain a second access token.

The MRDP implementation employs Globus Sharing to control data access. To use
this feature, a user authorized to operate on the existing endpoint first creates a shared
endpoint, designating the existing endpoint and folder, and then grants read and/or write
permissions on the shared endpoint to the Globus user(s) and/or group(s) that they want
to access it. Those users can then access that endpoint like any other endpoint, but do not
need a local account.

This construct is illustrated in Fig. 4. Bob has enabled sharing of folder ~/shared_dir
on Regular endpoint to create Shared endpoint, and then granted Jane access to that
shared endpoint. Jane can then use Globus to read and/or write files in the shared folder,

depending on what rights she has been granted.

The rdp function

The three arguments to the function rdp in Listing 1 can be understood in terms of Fig. 4.
Those arguments are, in turn, the UUID for the endpoint on which the shared endpoint
is to be created, the name of the folder on that endpoint from which the contents of the
shared folder are to be copied, and the email address for the user who is to be granted
access to the shared endpoint. In this case we use the Globus endpoint named “Globus
Tutorial Endpoint 1”” and sample data available on that endpoint.

rdp('ddb59aef-6d04-11e5-ba46-22000b92c6ec’,
'~/share/godata/"',

'jane@uni.edu')

The code in Listing 1 uses the Globus Python SDK to create, manage access to, and delete
the shared endpoint, as follows. It first creates a TransferClient and an AuthClient
object—classes provided by the Globus Python SDK for accessing the Globus Transfer
and Globus Auth services, respectively. Each class provides a rich set of methods for
accessing the various resources defined in the REST APIs. We then use the SDK function
endpoint_autoactivate to ensure that the portal has a credential that permits access to
the endpoint identified by host_id.

In Step 1(a), we use the Globus SDK function operation_mkdir to create a directory
(named, in our example call, by a UUID) on the endpoint with identifier host_id. Then, in

Chard et al. (2018), Peerd Comput. Sci., DOI 10.7717/peerj-cs.144 12/30

https://peerj.com
https://doi.org/10.7717/peerjcs.144/fig-4
http://dx.doi.org/10.7717/peerj-cs.144

PeerJ Computer Science

Step 1(b), the SDK function create_shared_endpoint is used to create a shared endpoint
for the new directory. At this point, the new shared endpoint exists and is associated with
the new directory, but only the creating user has access.

In Step 3, we first use the Globus SDK function get_identities to retrieve the user
identifier associated with the supplied email address; this is the user for whom sharing is
to be enabled. (If this user is not known to Globus, an identity is created.) We then use the
function add_endpoint_acl_rule to add to the new shared endpoint an access control
rule that grants the specified user read-only access to the endpoint.

As our add_endpoint_acl_rule request specifies an email address, an invitation email
is sent. At this point, the user is authorized to download data from the new shared endpoint.
The shared endpoint is typically left operational for some period and then deleted, as shown
in Step 4. Note that deleting a shared endpoint does not delete the data that it contains.
The portal admin may want to retain the data for other purposes. If not, we can use the
Globus SDK function submit_delete to delete the folder.

Data transfer

We skipped over Step 2 of Listing 1 in the preceding discussion. That step requests Globus to
transfer the contents of the folder source_path to the new shared endpoint. (The transfer
in the code is from the endpoint on which the new shared endpoint has been created, but it
could be from any Globus endpoint that the portal administrator is authorized to access.)
The code assembles and submits the transfer request, providing the endpoint identifiers,
source and destination paths, and (as we want to transfer a directory) the recursive flag.
It then waits for either the transfer to complete or for a specified timeout to elapse. In
practice, the code should check for the response code from the task_wait call and then
repeat the wait or terminate the transfer on error or timeout.

Web and command line interfaces

Having received an email invitation to access the new shared endpoint, a user can click on
the embedded URL to access that endpoint via the Globus web interface. The user can then
transfer the data from that endpoint to any other endpoint to which they are authorized
to transfer.

The Globus web interface also provides access to all other Globus functions, allowing
users to create shared endpoints, manage access control to those endpoints, and delete a
shared endpoint when it is no longer needed. Users may also use the Python SDK or REST
APIs to perform these same actions programmatically. In addition, a Globus command line
interface (CLI), implemented via the Python SDK, can be used to perform the operations
just described.

Completing the MRDP portal server

Our MRDP reference implementation consists of a simple research data portal server that
allows users to sign up, log in, select datasets from a set of temperature record datasets,
and then either download or request the creation of graphs for the selected datasets. This
complete implementation is some 700 lines of code, plus 500 lines for an example service

Chard et al. (2018), Peerd Comput. Sci., DOI 10.7717/peerj-cs.144 13/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.144

PeerJ Computer Science

Listing 1: Globus code to implement MRDP design pattern

from globus_sdk import TransferClient, TransferData
from globus_sdk import AuthClient
import sys, random, uuid

def rdp(host_id, # Endpoint for shared endpoint
source_path, # Directory to copy data from
email): # Email address to share with

tc = TransferClient ()
ac = AuthClient ()
tc.endpoint_autoactivate (host_id)

(1) Create shared endpoint:
(a) Create directory to be shared
share_path = '/~/' + str(uuid.uuid4()) + '/'
tc.operation_mkdir (host_id, path=share_path)
(b) Create shared endpoint on directory
shared_ep_data = {
'"DATA_TYPE': 'shared_endpoint',
"host_endpoint': host_id,
"host_path': share_path,
'display_name': 'RDP shared endpoint',
'description': 'RDP shared endpoint'
3
r = tc.create_shared_endpoint(shared_ep_data)
share_id = r['id']

(2) Copy data into the shared endpoint

tc.endpoint_autoactivate(share_id)

tdata = TransferData(tc, host_id, share_id,
label="RDP copy', sync_level='checksum')

tdata.add_item(source_path, '/', recursive=True)

r = tc.submit_transfer(tdata)

tc.task_wait(r['task_id'], timeout=1000,

polling_interval=10)

(3) Enable access by user

r = ac.get_identities(usernames=email)
user_id = r['identities'J[@]["'id"]
rule_data = {

'"DATA_TYPE': 'access',

"principal_type': 'identity', # Grantee is
"principal': user_id, # a user.
'path': '/", # Path is /
'permissions': 'r', # Read-only
'notify_email': email, # Email invite
'notify_message': # Invite msg

'Requested data are available.

}

tc.add_endpoint_acl_rule(share_id, rule_data)

(4) Ultimately, delete the shared endpoint
tc.delete_endpoint(share_id)

Chard et al. (2018), Peerd Comput. Sci., DOI 10.7717/peerj-cs.144 14/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.144

PeerJ Computer Science

Modern Research Data Portal TRANSFER | GRAPH (] PROFILE | LOGOUT || KYIE@GLOBUSID:ORG

3-file SVG upload to /portal/processed/Graphs for kyle@globusid.org/ on Globus Tutorial HTTPS Endpoint Server
completed!

Browse Endpoint

Displaying a list of files in endpoint Globus Tutorial HTTPS Endpoint Server.
Click on a file name to display the contents in your browser or download via HTTP.
You can also transfer files using the Globus Webapp.

File Name Size

B Average High-Low Temperature from Jacksonville International Airport Climate 25018
Data for 1966.svg

i Average High-Low Temperature from LaGuardia Airport Climate Data for 1965.svg 23900
I High Temperature Ranges from Jacksonville International Airport Climate Data for 31342
1966.svg

Il High Temperature Ranges from LaGuardia Airport Climate Data for 1965.svg H

B Precipitation from Jacksonville International Airport Climate Data for 1966.svg

B Precipitation from LaGuardia Airport Climate Data for 1965.svg

Figure 5 Example MRDP showing a list of computed graphs for a user and (inset) one of these graphs.
Full-size Gal DOI: 10.7717/peerjcs.144/fig-5

that we discuss in the next section. A screenshot of a deployed version of this code is shown
in Fig. 5.

The portal server implementation uses the Python Flask web framework, a system
that makes it easy to create simple web servers. The core Flask code defines, via @-
prefixed decorators, what actions should be performed when a user accesses specific URLs.
These views support both authentication and the core MRDP logic as well as additional
functionality for managing profiles. Several views generate template-based web pages that
are customized for user interactions.

The OAuth 2 authentication workflow proceeds as follows. When logging in, (1ogin())
the user is redirected to Globus Auth to authenticate with their identity provider. The
resulting access code is returned to the portal, where it is exchanged for access tokens
that can be used to interact with Globus Auth or other dependent services (e.g., Globus
Transfer). Access tokens are then validated and introspected to obtain user information.

The portal provides two methods for accessing data. The first method allows users to
download raw datasets from a list of available datasets. In this case, it makes a call to Globus
Transfer to retrieve a real-time listing of directories in its associated endpoint. The second
method allows users to create graphs dynamically, based on selected datasets (by year and
identifier), as described in the following subsection. The resulting graph is stored in the
portal’s shared endpoint in a directory accessible only to the requesting user. Irrespective of
which method is used, users may download data (i.e., raw datasets or computed graphs) via

Chard et al. (2018), Peerd Comput. Sci., DOI 10.7717/peerj-cs.144 15/30

https://peerj.com
https://doi.org/10.7717/peerjcs.144/fig-5
http://dx.doi.org/10.7717/peerj-cs.144

PeerJ Computer Science

Modern Research Data Portal TRANSFER | GRAPH | PROFILE | SLOGOUT | IANOGLOBUSID.ORG

Repository
Select some dataset(s) to transfer or click on a dataset name to browse its files.

Dataset Name Select
@ Atlanta International Airport Climate Data

@ Boston Logan International Airport Climate Data

Figure 6 A portion of the MRDP reference implementation, showing the five user options at top (each
mapped to a “route” in the code) and two of the available datasets.
Full-size Gal DOI: 10.7717/peerjcs.144/fig-6

HTTP (using a direct URL to the object on the portal’s endpoint) or by transferring them
to another endpoint. In the later case, the user is prompted for a destination endpoint.
Rather than re-implement endpoint browsing web pages already offered by Globus, the
portal instead uses Globus “helper pages” to allow users to browse the endpoint. The helper
page returns the endpoint ID and path to the portal. The portal then starts the transfer
using the Globus Transfer API.

The following code, from the portal implementation file portal/view.py, specifies
that when a user visits http://localhost:5000/login, the user should be redirected to the
authcallback URL suffix.

@app.route('/login', methods=['GET'])

def login():
"""Send the user to Globus Auth.""”
return redirect(url_for('authcallback'))

The URL http://localhost:5000/authcallback in turn calls the authcallback function,
shown in Listing 2, which uses the OAuth 2 protocol to obtain access tokens that the portal
can subsequently use to interact with Globus Auth or dependent services (e.g., Globus
Transfer or the graph service.) The basic idea is as follows. First, the web server redirects
the user to authenticate using Globus Auth. The redirect URL includes the URL to return
to (http://localhost:5000/authcallback) after the user has authenticated. The response
includes a auth code parameter which can be unpacked and then swapped for access tokens
by contacting Globus Auth and specifying the scopes needed by the portal. Finally, the
resulting access tokens are returned to the portal in a JSON object which also includes
information about the user’s identity.

The last line returns, redirecting the web browser to the portal’s transfer page, as shown
in Fig. 6.

A request to transfer files requires that the user first select the dataset(s) to be
transferred and then specify the destination endpoint and location for the dataset(s).
Listing 3 implements these behaviors. First, the code checks that the user has
selected datasets on the transfer web page. Then, the code redirects the user to
https://www.globus.org/app/browse-endpoint, one of the web helper pages that Globus
operates to simplify MRDP implementation. The browse endpoint helper page returns

Chard et al. (2018), Peerd Comput. Sci., DOI 10.7717/peerj-cs.144 16/30

https://peerj.com
https://doi.org/10.7717/peerjcs.144/fig-6
http://localhost:5000/login
http://localhost:5000/authcallback
http://localhost:5000/authcallback
https://www.globus.org/app/browse-endpoint
http://dx.doi.org/10.7717/peerj-cs.144

PeerJ Computer Science

Listing 2: The authcallback function interacts with Globus Auth to obtain access tokens
for the server.

@app.route('/authcallback', methods=["'GET'])
def authcallback():
Handles the interaction with Globus Auth
Set up our Globus Auth/OAuth 2 state
redirect_uri = url_for('authcallback', _external=True)

client = load_portal_client()
client.oauth2_start_flow_authorization_code(redirect_uri,refresh_tokens=True)

If no "code"” parameter, we are starting
the Globus Auth login flow
if 'code' not in request.args:

auth_uri = client.oauth2_get_authorize_url()
return redirect(auth_uri)
else:

If we have a "code” param, we're coming

back from Globus Auth and can exchange

the auth code for access tokens.

code = request.args.get('code')

tokens = client.oauth2_exchange_code_for_tokens(code)

id_token = tokens.decode_id_token(client)

session.update(
tokens=tokens.by_resource_server,
is_authenticated=True,

name=id_token.get('name', ''),
email=id_token.get('email', ''),
project=id_token.get('project', ''),

primary_username=id_token.get('preferred_username'),
primary_identity=id_token.get('sub'),
)

return redirect(url_for('transfer'))

the endpoint ID and path to which the user wants to transfer the selected dataset(s). The
submit_transfer function (not shown here) uses the endpoint ID and path to execute a
Globus transfer request using code similar to Step 2 in Listing 1.

Invoking other services
The final element of the MRDP design pattern that we discuss here is the invocation of
other services, as shown by the arrow labeled REST from the portal server to Other services
in Fig. 3. Such calls might be used in an MRDP instance for several reasons. You might
want to organize your portal as a lightweight front end (e.g., pure Javascript) that interacts
with one or more remote backend (micro)services. You might want to provide services
that perform subsetting, quality control, data cleansing, or other analyses before serving
data. Another reason is that you might want to provide a public REST API for the main
portal machinery, so that other app and service developers can integrate with and build on
your portal.

Our reference implementation illustrates this capability. The data portal skeleton
allows a client to request that datasets be graphed (graph()). It does not perform those
graphing operations itself but instead sends a request to a separate Graph service. The

Chard et al. (2018), Peerd Comput. Sci., DOI 10.7717/peerj-cs.144 17/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.144

PeerJ Computer Science

Listing 3: The transfer() function from the web server reference implementation.

@app.route('/transfer', methods=['GET', 'POST'])
Qauthenticated
def transfer():
if request.method == 'GET':
return render_template('transfer.jinja2', datasets=datasets)
if request.method == 'POST':

Check that file(s) have been selected for transfer
if not request.form.get('dataset'):
flash('Please select at least one dataset.')
return redirect(url_for('transfer'))

params = {
"'method': 'POST',
"action': url_for('submit_transfer', _external=True, _scheme="'https'),
'filelimit': o,
'folderlimit': 1
3

browse_endpoint =
"https://www.globus.org/app/browse-endpoint?{}'.format(urlencode(params))

Save submitted form to session
session['form'] = {
'"datasets': request.form.getlist('dataset')

}

Send to Globus to select a destination endpoint using
the Browse Endpoint helper page.
return redirect(browse_endpoint)

request provides the names of the datasets to be graphed. The Graph service retrieves these
datasets from a specified location, runs the graphing program, and uploads the resulting
graphs to a dynamically created shared endpoint for subsequent retrieval. The reference
implementation includes a complete implementation of the Graph service, showing how it
manages authentication and data transfer with Globus APIs.

EXAMPLES OF THE MRDP DESIGN PATTERN

We briefly present five examples of large-scale implementations of the MRDP design
pattern. We present performance results for several of these examples in the next section.

The NCAR Research Data Archive

The Research Data Archive (RDA) operated by the US National Center for Atmospheric
Research at http://rda.ucar.edu contains more than 600 data collections, ranging in size from
megabytes to tens of terabytes. These collections include meteorological and oceanographic
observations, operational and reanalysis model outputs, and remote sensing datasets to
support atmospheric and geosciences research, along with ancillary datasets, such as
topography/bathymetry, vegetation, and land use. The RDA data portal allows users to
browse and search data catalogs, and then download selected datasets to their personal
computer or HPC facility.

Chard et al. (2018), Peerd Comput. Sci., DOI 10.7717/peerj-cs.144 18/30

https://peerj.com
http://rda.ucar.edu
http://dx.doi.org/10.7717/peerj-cs.144

PeerJ Computer Science

RDA users are primarily researchers at federal and academic research laboratories. In
2016 alone, more than 24,000 people downloaded more than 1.9 petabytes. The RDA
portal thus requires robust, scalable, maintainable, and performant implementations of a
range of functions, some domain-independent (e.g., user identities, authentication, and
data transfer) and others more domain-specific (e.g., a catalog of environmental data
collections).

RDA uses the techniques described previously to implement the MRDP design pattern,
except that they do not currently outsource identity management. The use of the MRDP
design pattern for RDA allows for vastly increased scalability in terms of dataset size,
and much lower human effort for managing the transfer of multi-terabyte datasets to
computing centers for analysis.

Sanger imputation service

This service, operated by the Wellcome Trust Sanger Institute at https://imputation.sanger.
ac.uk, allows you to upload files containing genome wide association study (GWAS) data
from the 23andMe genotyping service and receive back the results of imputation and
other analyses that identify genes that you are likely to possess based on those GWAS data
(McCarthy et al., 2016). This service uses Globus APIs to implement a variant of the MRDP
design pattern, as follows.

A user who wants to use the service first registers an imputation job. As part of this
process, they are prompted for their name, email address, and identity, and the type of
analysis to be performed. The portal then requests Globus to create a shared endpoint,
share that endpoint with the identity provided by the user, and email a link to this
endpoint to the user. The user clicks on that link to upload their GWAS data file and the
corresponding imputation task is added to the imputation queue at the Sanger Institute.
Once the imputation task is completed, the portal requests Globus to create a second
shared endpoint to contain the output and to email the user a link to that new endpoint for
download. The overall process differs from that of Listing 1 only in that a shared endpoint
is used for data upload as well as download.

Petrel, a user-managed data sharing portal

Argonne National Laboratory’s Petrel (http://petrel.alcf.anl.gov/) implements a specialized
research data portal that allows users to request a space allocation and then upload,
download, organize, and share data within that allocated space.

Petrel uses Globus to implement the MRDP model on top of storage provided by
Argonne. It implements a simple workflow (based on Globus Groups) for users to request
an allocation. It then, using code similar to Listing 1, creates a directory for the allocation
and a shared endpoint to manage the allocation, and assigns the requesting user as the
“manager” of that shared endpoint. The user can then manage their allocation as if it were
storage on their personal resources, uploading and downloading data, and selecting who
may access (read/write) paths in that storage.

Chard et al. (2018), Peerd Comput. Sci., DOI 10.7717/peerj-cs.144 19/30

https://peerj.com
https://imputation.sanger.ac.uk
https://imputation.sanger.ac.uk
http://petrel.alcf.anl.gov/
http://dx.doi.org/10.7717/peerj-cs.144

PeerJ Computer Science

Scalable data publication

Globus data publication (Chard et al., 2015) enables researchers to publish and access
data in user-managed collections. Following the MRDP design pattern, the system is
implemented as a cloud-hosted service with data storage provided by decoupled Globus
endpoints. Users define their own publication collections by specifying a Globus endpoint
on which data are to be stored. The publication service then manages the workflows for
submitting a dataset, associating a persistent identifier with the dataset, and recording user-
supplied metadata. Permitted users can then publish data in the collection by following this
workflow. Once published, other users are then able to discover and download published
data.

The service uses Globus transfer to manage data. Upon submission of a new dataset,
the publication service creates a unique directory in the collection’s shared endpoint and
shares it (with write access) to the submitting user. After the submission is complete,
the service removes the write permission (in effect making the endpoint immutable) and
proceeds through the submission and curation workflows, by changing permissions on
the directory. When the submission is approved for publication, the service modifies
permissions to match the collection’s policies. It now acts as a typical MRDP, providing
access to published data for discovery and download.

Data delivery at Advanced Photon Source

The Advanced Photon Source (APS) at Argonne National Laboratory, like many
experimental facilities worldwide, serves thousands of researchers every year, many of
whom collect data and return to their home institution. In the past, data produced during
an experiment was invariably carried back on physical media. However, as data sizes have
grown and experiments have become more collaborative, that approach has become less
effective. Data transfer via network is preferred; the challenge is to integrate data transfer
into the experimental workflow of the facility in a way that is automated, secure, reliable,
and scalable.

The DMagic system De Carlo (2017) does just that. DMagic integrates with APS
administrative and facility systems to deliver data to experimental users. Before the
experiment begins, it creates a shared endpoint on a large storage system maintained
by Argonne’s computing facility. DMagic then retrieves the list of approved users for
the experiment and adds permissions for those users to the shared endpoint. It then
monitors the experiment data directory at the APS experimental facility and copies new
files automatically to that shared endpoint, from which they can be retrieved by any
approved user.

EVALUATION OF MRDP ADOPTION

The advantages of using high performance data transfer protocols over traditional
protocols (e.g., HTTP, SCP) have been well explored (Mattmann et al., 2006; Rao et

al., 2016; Subramoni et al., 2010). The benefits of building upon a professionally managed
platform are also well established (Cusumano, 2010). Thus, rather than comparing MRDP
performance with that of legacy approaches, we examine adoption of the MRDP pattern

Chard et al. (2018), Peerd Comput. Sci., DOI 10.7717/peerj-cs.144 20/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.144

PeerJ Computer Science

Table 1 Usage summary for four MRDP deployments: total operations, unique users, total data, and
average transfer rate, each for both outgoing and incoming transfers.

Operations Users Data (TB) Rate (Mbit/s)
Name Out In Out In Out In Out In
RDA 5,550 1 327 1 308.7 0.0 15.5 1.1
Sanger 4,849 4,294 343 361 240.3 48.0 45.1 47.54
Petrel 34,403 16,807 217 100 654.0 1,030.0 142.4 135.0
Publish 3,306 2,997 107 83 7.1 7.1 17.0 131.8

in real-world deployments. Specifically, we explore usage of four MRDPs: (1) NCAR’s
Research Data Archive; (2) the Sanger imputation service; (3) Petrel data sharing service;
and (4) Globus data publication (Publish).

Table 1 presents for each portal the number of transfers, number of unique users, total
data transferred, and average transfer rates. Figures 7 and 8 show the total data transferred
per day and file size vs. transfer rate for individual transfers, respectively, for three of these
MRDPs. In all cases we report only successfully completed transfers. (Ongoing transfers,
and transfers canceled by users, or by Globus due to errors, are not included.) These results
highlight the large amounts of data that can be handled by such portals. In fact, all but one
moves in excess of 1 TB per day. (The peak transfer volume of more than 1 PB recorded
for Petrel is an artifact of our plotting routine, which assigns the bytes associated with
each transfer to the day on which the transfer completes.) These graphs also highlight the
wide range of MRDP characteristics that we encounter “in the wild”: for example, whether
source or sink, the scales of data handled, achieved rates, and (indirectly) total transfer
times.

The remarkable variation in transfer performance seen in Fig. 8 (some nine orders of
magnitude in the case of Petrel) is worthy of discussion. We point out first that set-up
operations performed by Globus for each transfer result in a fixed startup cost of around
one second. This fixed cost means that a transfer of size N bytes cannot achieve a rate faster
than N bytes/sec, resulting in the clearly delineated ascending line of maximum observed
performance as a function of transfer size in Figs. 8A, 8C and 8D: the upper envelope.
Fortunately, this effect is not significant for the large transfers with which we are mostly
concerned: for those, the performance of the MRDP’s network or storage system defines
the upper bound. We attribute the somewhat less well delineated, lower envelope to the
time that portal users are prepared to wait for transfers to complete.

For larger transfers, we know from other work (Liu et al., 2017; Rao et al., 2016) that
excellent performance can be achieved when both the source and destination endpoints and
the intervening network(s) are configured appropriately. Figure 8B, which extracts from
Fig. 8A the transfers from RDA to NERSC, illustrates this effect. NERSC has a powerful
network connection and array of DTNs, and RDA-to-NERSC transfers achieve rates of
greater than 1 GB/s over the 10 Gbit/s RDA network connection. However, while the
RDA and Petrel portals, in particular, manage data located on well-configured DTN that
are connected to high-speed networks without interference from intervening firewalls, a
transfer may encounter quite different conditions en route to, or at, the corresponding

Chard et al. (2018), Peerd Comput. Sci., DOI 10.7717/peerj-cs.144 21/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.144

PeerJ Computer Science

10" 10"
Out Out

& 10121 In & 10721 In
-~ -
Fy Fy
= 9] ~ 9 |
o 0 o 0
IS IS
S S
© 10°4 S 1054
> >
3 3
© 10° T 107
o (]

10° 10°

-800 -700 -600 -500 -400 -300 -200 -100 O -800 -600 -400 -200 0
Time (days) Time (days)
(a) RDA (b) Sanger
1018
Out

H
2
[

,_.
2
5

Data volume (bytes)

-
b

-
o
>

-800 -600 —400 —200 0

Time (days)
(c) Petrel

Figure 7 Input/output transfer volumes per day for three MRDP instances. The numbers on the x axis
represent days prior to March 9, 2017.
Full-size Gl DOL: 10.7717/peerjcs.144/fig-7

source or destination. Low capacity networks, overloaded storage systems, firewalls, and
lossy connections can all slash transfer performance (Liu et al., 2017). Failures in particular
can play havoc with performance: the Globus transfer service works hard to recover from
even long-duration network and storage system failures by retrying transfers over extended
periods. A transfer is only recorded as complete when every byte has been delivered and
verified correct. If errors have intervened, the reported transfer rate can be extremely low.
These factors all contribute to a broad spectrum of observed transfer rates.

We comment on some specifics of the portals shown in the figures. The Sanger portal
accepts user-uploaded datasets and returns processed datasets that are roughly an order
of magnitude larger. Its transfer rates vary as it is used by individual users with varied
connectivity. Petrel handles extremely large data and provides high-speed data access via
its many DTNs and high-speed networks that connect it to users within Argonne and at
other labs. The RDA portal primarily serves data of modest size (10s of GBs) and achieves
mostly modest rates—although not in the case of NERSC, as noted above. Finally, Globus
data publication is a unique portal in that its storage is distributed across 300 different
Globus endpoints. Its transfer rate is therefore variable and usage is sporadic.

Chard et al. (2018), Peerd Comput. Sci., DOI 10.7717/peerj-cs.144 22/30

https://peerj.com
https://doi.org/10.7717/peerjcs.144/fig-7
http://dx.doi.org/10.7717/peerj-cs.144

PeerJ Computer Science

e Out

o) ® |In o)
@ 10°+ O 10°1 s 'g':"‘
Q ® Out v . Tyt
0 0 U
2 2 oo
> > g
L2 108 Q4 .
o o)
-~ -
@© @©
— —
— —
Q 102 & 103
(9] (9]
c 5 c
O ! O
[[
10° 10° 10° 10%2 10° 10° 10° 10%2
Data size (bytes) Data size (bytes)

(a) RDA (b) RDA to NERSC subset

-
o
©

109 4~

o
o
>

10°

=
o
W

10°

Transfer rate (bytes/sec)
Transfer rate (bytes/sec)

10° 10° 10° 10%2 10° 106 10° 10%2

Data size (bytes) Data size (bytes)
(c¢) Sanger (d) Petrel

Figure 8 Transfer rate vs. data size for three MRDP instances. (A-B) show (A) all transfers for the
RDA instance and (B) only transfers from RDA to the National Energy Research Supercomputing Center
(NERSC), a high performance computing center in Berkeley, California. (We make the points in the
latter figure larger, as there are fewer of them.) (C-D) show all transfers for the (C) Sanger and (D) Petrel
instances. Each point in each scatter plot represents a single transfer request, which may involve many
files. Incoming and outgoing transfers are distinguished; RDA has only one incoming transfer, which we
highlight with a circle.

Full-size & DOTI: 10.7717/peerjcs.144/fig-8

RELATED WORK

The MRDP design pattern that we have presented here codifies the experience of
many groups who have deployed and applied research data portals. Our discussion of
implementation techniques similarly reflects this experience. However, the design pattern
could also be implemented with other technologies, as we now discuss.

The Globus transfer service typically employs the Globus implementation of the GridFTP
transfer protocol (Allcock et al., 2005) for file transfers, which uses techniques such as
multiple TCP channels (Hacker, Noble ¢» Athey, 2004) to optimize transfer performance.
Other protocols and tools that can be used for this purpose include Fast TCP (Jin et al.,
2005), Scalable TCP (Kelly, 2003), UDT (Gu & Grossman, 2007), and bbep (Hanushevsky,
Trunov & Cottrell, 2001).

PhEDEx (Egeland, Wildishb ¢» Huang, 2010) and the CERN File Transfer Service
(Laure et al., 2006) are two examples of services that support management of file
transfers. Both are designed for use in high energy physics experiments. The EUDAT

Chard et al. (2018), Peerd Comput. Sci., DOI 10.7717/peerj-cs.144 23/30

https://peerj.com
https://doi.org/10.7717/peerjcs.144/fig-8
http://dx.doi.org/10.7717/peerj-cs.144

PeerJ Computer Science

(Lecarpentier et al., 2013) project’s B2STAGE service supports the transfer, via the GridFTP
protocol, of research data between EUDAT storage resources and high-performance
computing (HPC) workspaces. None of these systems provide APIs for integration with
data portals and Science DMZs.

Apache Airavata (Pierce et al., 2015) provides general-purpose middleware for building
science gateways, but does not address data movement or integration with Science DMZs.
CyVerse (Goff et al., 2011) provides a scalable data store, built on iRODS (Rajasekar et al.,
2010), and specialized APIs (Dooley et al., 2012) to access its storage services. It supports
Cyberduck, amongst other tools, for transferring data using an array of protocols (e.g.,
HTTP, FTP, WebDAV) directly to Windows and Mac PCs. Thus, while it may separate
control and data channels, it does not support third-party or high performance data
transfer nor does it integrate with Science DMZs and DTN:ss.

Many services support scientific data publication, including Dataverse (Crosas, 2011),
figshare, and Zenodo. Increasingly, these services are incorporating support for large
amounts of data. For example, the developers of the Structural Biology Data Grid (Morin
et al., 2013) are working to integrate Globus with Dataverse (Meyer et al., 2016). Similarly,
publication repositories such as figshare now support data storage on institutional or
cloud storage, thereby achieving some separation of control and data channels. While these
implementations follow some aspects of the MRDP design pattern, they do not integrate
with Science DMZs and their proprietary implementations cannot be easily generalized
and adopted by others.

The MRDP design pattern could also be implemented using commercial cloud services,
such as those provided by Amazon, Google, and Microsoft. Indeed, many public scientific
datasets are now hosted on cloud platforms and researchers are increasingly leveraging
cloud services for managing and analyzing data (Babuji et al., 2016). Cloud services provide
scalable data management, rich identity management, and secure authentication and
authorization, all accessible via APIs—a complete set of capabilities needed to implement
the MRDP design pattern. However, each cloud provider is a walled garden, not easily
integrated with other systems, and cloud provider business models require that MRDP
administrators develop methods to recoup service costs related to data storage and egress.
In contrast, our MRDP reference implementation allows data to be stored and retrieved
from many locations.

SUMMARY

We have described the state of the practice for delivering scientific data through what
we call the modern research data portal (MRDP) design pattern. The MRDP pattern
addresses the shortcomings of the monolithic legacy research data portal by improving
transfer performance, security, reliability, and ease of implementation while also reducing
operational complexity.

We have shown how high performance networks and cloud service APIs can be used
to create performant and particularly simple implementations of this design pattern. In a
typical deployment, as shown in Fig. 3, the control logic of Listing 1 runs on a protected

Chard et al. (2018), Peerd Comput. Sci., DOI 10.7717/peerj-cs.144 24/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.144

PeerJ Computer Science

computer behind the institutional firewall, to protect that sensitive logic against attack,
while the storage system(s) on which data reside sit inside the Science DMZ, with Globus
endpoint(s) deployed on DTNs for high-speed access. The control logic makes REST
API calls to the Globus cloud service to create shared endpoints, transfer files, manage
permissions, and so forth.

The sample code we have presented shows how developers can automate data
management tasks by using modern cloud-based data services to create powerful research
data portals (accessible via Web, mobile, custom applications, and command line) that
leverage Science DMZ paths for data distribution, staging, replication, and other purposes.
In our example we leverage Globus to outsource all identity management and authentication
functions. The MRDP needs simply to provide service-specific authorization, which can
be performed on the basis of identity or group membership. And because all interactions
are compliant with OAuth 2 and OpenID Connect standards, any application that speaks
these protocols can use the MRDP service like they would any other; the MRDP service
can seamlessly leverage other services; and other services can leverage the MRDP service.
The use of best-practice and standards-compliant implementations for data movement,
automation, authentication, and authorization is a powerful combination.

The benefits of the MRDP approach lie not only in the separation of concerns between
control logic and data movement. In addition, the data portal developer and admin
both benefit from the ability to hand off the management of file access and transfers
to the Globus service. In the last three years we have observed steady adoption of the
MRDP design pattern. We described five illustrative implementations that variously serve
research data, support analysis of uploaded data, provide flexible data sharing, enable data
publication, and facilitate data archival. Collectively, these deployments have performed
more than 80,000 transfers totaling almost two petabytes over the past three years.

ACKNOWLEDGEMENTS

We thank the Globus team for the development of the technologies described here, and
participants in “Building the Modern Research Data Portal” workshops for their feedback.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by the United States National Science Foundation (ACI-1148484)
and Department of Energy’s Office of Advanced Scientific Computing Research (DE-AC02-
06CH11357). The funders had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

United States National Science Foundation: ACI-1148484.

Department of Energy’s Office of Advanced Scientific Computing Research: DE-ACO02-
06CH11357.

Chard et al. (2018), Peerd Comput. Sci., DOI 10.7717/peerj-cs.144 25/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.144

PeerJ Computer Science

Competing Interests
Ian Foster is an Advisor and Academic Editor for Peer] Computer Science.

Author Contributions

e Kyle Chard and Ian Foster conceived and designed the experiments, analyzed the data,
contributed reagents/materials/analysis tools, wrote the paper, prepared figures and/or
tables, performed the computation work, reviewed drafts of the paper.

e Eli Dart conceived and designed the experiments, analyzed the data, wrote the paper,
prepared figures and/or tables, reviewed drafts of the paper.

e David Shifflett and Jason Williams performed the experiments, performed the
computation work, reviewed drafts of the paper.

e Steven Tuecke conceived and designed the experiments, analyzed the data, wrote the
paper, prepared figures and/or tables, performed the computation work, reviewed drafts
of the paper.

Data Availability
The following information was supplied regarding data availability:

The companion web site, http://docs.globus.org/mrdp, provides references to GitHub
for associated code.

Github: https://github.com/globus/globus-sample-data-portal for the code.

REFERENCES

Allcock W, Bresnahan J, Kettimuthu R, Link M, Dumitrescu C, Raicu I, Foster 1. 2005.
The Globus striped GridFTP framework and server. In: ACM/IEEE conference on
supercomputing. New York: ACM, 54.

Babuji YN, Chard K, Gerow A, Duede E. 2016. Cloud Kotta: enabling secure and scalable
data analytics in the cloud. In: IEEE international conference on big data. Piscataway:
IEEE, 302-310 DOI 10.1109/BigData.2016.7840616.

Barnett W, Welch V, Walsh A, Stewart CA. 2011. A roadmap for using NSF cyberinfras-
tructure with inCommon. Available at hitp:// hdl. handle.net/ 2022/ 13024.

Basney J, Gaynor J. 2011. An OAuth service for issuing certificates to science gateways for
TeraGrid users. In: TeraGrid conference: extreme digital discovery. New York: ACM,
32.

Berners-Lee T. 1989. Information management: a proposal. Available at https:// www.w3.
org/ History/ 1989/ proposal.html.

Borgman CL. 2012. The conundrum of sharing research data. Journal of the American So-
ciety for Information Science and Technology 63(6):1059—1078 DOI 10.1002/as1.22634.

Chard K, Lidman M, McCollam B, Bryan J, Ananthakrishnan R, Tuecke S, Foster
I. 2016. Globus Nexus: a platform-as-a-service provider of research identity,
profile, and group management. Future Generation Computer Systems 56:571-583
DOI 10.1016/j.future.2015.09.006.

Chard K, Pruyne J, Blaiszik B, Ananthakrishnan R, Tuecke S, Foster 1. 2015. Globus
data publication as a service: lowering barriers to reproducible science. In: 11th IEEE

Chard et al. (2018), Peerd Comput. Sci., DOI 10.7717/peerj-cs.144 26/30

https://peerj.com
http://docs.globus.org/mrdp
https://github.com/globus/globus-sample-data-portal
http://dx.doi.org/10.1109/BigData.2016.7840616
http://hdl.handle.net/2022/13024
https://www.w3.org/History/1989/proposal.html
https://www.w3.org/History/1989/proposal.html
http://dx.doi.org/10.1002/asi.22634
http://dx.doi.org/10.1016/j.future.2015.09.006
http://dx.doi.org/10.7717/peerj-cs.144

PeerJ Computer Science

international conference on e-Science (e-Science). Piscataway: IEEE, 401-410
DOI 10.1109/eScience.2015.68.

Chard K, Tuecke S, Foster I. 2014. Efficient and secure transfer, synchronization, and
sharing of big data. IEEE Cloud Computing 1(3):46—55 DOI 10.1109/MCC.2014.52.

Crosas M. 2011. The dataverse network: an open-source application for sharing, discov-
ering and preserving data. D-Lib Magazine 17(1/2) DOI 10.1045/january2011-crosas.

Cusumano M. 2010. Cloud computing and Saa$S as new computing platforms. Commu-
nications of the ACM 53(4):27-29 DOI 10.1145/1721654.1721667.

Dart E, Rotman L, Tierney B, Hester M, Zurawski J. 2013. The science DMZ: a network
design pattern for data-intensive science. In: International conference on high
performance computing, networking, storage and analysis. SC ’13, New York: ACM,
85:1-85:10.

De Carlo F. 2017. DMagic data management system. Available at http:// dmagic.
readthedocs.io.

Dooley R, Vaughn M, Stanzione D, Terry S, Skidmore E. 2012. Software-as-a-service:
the iPlant foundation API. In: 5th IEEE workshop on many-task computing on grids
and supercomputers. Piscataway: IEEE.

Egeland R, Wildishb T, Huang C-H. 2010. PhEDEx data service. Journal of Physics:
Conference Series 219(6):062010 DOT 10.1088/1742-6596/219/6/062010.

ESnet. 2017. ESnet fasterdata knowledge base. Available at http:// fasterdata.es.net.

Gamma E, Helm R, Johnson R, Vlissides J. 1994. Design patterns: elements of reusable
object-oriented software. Boston: Addison-Wesley.

Goff SA, Vaughn M, McKay S, Lyons E, Stapleton AE, Gessler D, Matasci N, Wang L,
Hanlon M, Lenards A, Muir A, Merchant N, Lowry S, Mock S, Helmke M, Kubach
A, Narro M, Hopkins N, Micklos D, Hilgert U, Gonzales M, Jordan C, Skidmore
E, Dooley R, Cazes J, McLay R, Lu Z, Pasternak S, Koesterke L, Piel WH, Grene R,
Noutsos C, Gendler K, Feng X, Tang C, Lent M, Kim S-J, Kvilekval K, Manjunath
BS, Tannen V, Stamatakis A, Sanderson M, Welch SM, Cranston KA, Soltis P,
Soltis D, O’Meara B, Ane C, Brutnell T, Kleibenstein DJ, White JW, Leebens-Mack
J, Donoghue MJ, Spalding EP, Vision TJ, Myers CR, Lowenthal D, Enquist BJ,
Boyle B, Akoglu A, Andrews G, Ram S, Ware D, Stein L, Stanzione D. 2011. The
iPlant collaborative: cyberinfrastructure for plant biology. Frontiers in Plant Science
2:34 DOI 10.3389/fpls.2011.00034.

GuY, Grossman RL. 2007. UDT: UDP-based data transfer for high-speed wide area
networks. Comput. Netw. 51(7):1777-1799 DOI 10.1016/j.comnet.2006.11.009.
Hacker TJ, Noble BD, Athey BD. 2004. Improving throughput and maintaining fairness

using parallel TCP. In: IEEE InfoCom. Piscataway: IEEE.

Hanemann A, Boote JW, Boyd EL, Durand J, Kudarimoti L, Lapacz R, Swany DM,
Trocha S, Zurawski J. 2005. perfSONAR: a service oriented architecture for
multi-domain network monitoring. In: International conference on service-oriented
computing. Springer, 241-254.

Chard et al. (2018), Peerd Comput. Sci., DOI 10.7717/peerj-cs.144 27/30

https://peerj.com
http://dx.doi.org/10.1109/eScience.2015.68
http://dx.doi.org/10.1109/MCC.2014.52
http://dx.doi.org/10.1045/january2011-crosas
http://dx.doi.org/10.1145/1721654.1721667
http://dmagic.readthedocs.io
http://dmagic.readthedocs.io
http://dx.doi.org/10.1088/1742-6596/219/6/062010
http://fasterdata.es.net
http://dx.doi.org/10.3389/fpls.2011.00034
http://dx.doi.org/10.1016/j.comnet.2006.11.009
http://dx.doi.org/10.7717/peerj-cs.144

PeerJ Computer Science

Hanushevsky A, Trunov A, Cottrell L. 2001. Peer to peer computing for secure high
performance data copying. Technical Report SLAC-PUB-8908. Stanford Linear
Accelerator Center.

Hardt D. 2012. OAuth 2.0 authorization framework specification. Available at http:
//tools.ietf.org/ html/ rfc6749.

Hey T, Tansley S, Tolle K. 2009. The fourth paradigm. Redmond: Microsoft Research.

Jin C, Wei D, Low SH, Bunn J, Choe HD, Doylle JC, Newman H, Ravot S, Singh S,
Paganini F. 2005. FAST TCP: from theory to experiments. IEEE Network 19(1):4—11.

Kelly T. 2003. Scalable TCP: improving performance in highspeed wide area networks.
ACM SIGCOMM Computer Communication Review 33(2):83-91.

Klimeck G, McLennan M, Brophy SP, Adams III GB, Lundstrom MS. 2008.
nanohub.org: advancing education and research in nanotechnology. Computing in
Science & Engineering 10(5):17-23 DOI 10.1109/MCSE.2008.120.

Laure E, Fisher S, Frohner A, Grandi C, Kunszt P, Krenek A, Mulmo O, Pacini F,
Prelz F, White], Barroso M, Buncic P, Hemmer F, Di Meglio A, Edlund A. 2006.
Programming the grid with gLite. Technical report EGEE-TR-2006-001. CERN
Available at http:// cds.cern.ch/record/ 936685.

Lawrence KA, Zentner M, Wilkins-Diehr N, Wernert JA, Pierce M, Marru S, Michael
S. 2015. Science gateways today and tomorrow: positive perspectives of nearly 5000
members of the research community. Concurrency and Computation: Practice and
Experience 27(16):4252-4268 DOI 10.1002/cpe.3526.

Lecarpentier D, Wittenburg P, Elbers W, Michelini A, Kanso R, Coveney P, Baxter R.
2013. EUDAT: a new cross-disciplinary data infrastructure for science. International
Journal of Digital Curation 8(1):279-287 DOI 10.2218/ijdc.v8i1.260.

Liu Z, Balaprakash P, Kettimuthu R, Foster I. 2017. Explaining wide area data transfer
performance. In: 26th international symposium on high-performance parallel and
distributed computing. New York: ACM, 167-178.

Mattmann CA, Kelly S, Crichton DJ, Hughes JS, Hardman S, Ramirez P, Joyner R.
2006. A classification and evaluation of data movement technologies for the delivery
of highly voluminous scientific data products. Technical report. Jet Propulsion
Laboratory, Pasadena.

McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, Kang HM,
Fuchsberger C, Danecek P, Sharp K, Luo Y, Sidore C, Kwong A, Timpson N,
Koskinen S, Vrieze S, Scott L], Zhang H, Mahajan A, Veldink J, Peters U, Pato
C, Van Duijn CM, Gillies CE, Gandin I, Mezzavilla M, Gilly A, Cocca M, Traglia
M, Angius A, Barrett JC, Boomsma D, Branham K, Breen G, Brummett CM,
Busonero F, Campbell H, Chan A, Chen S, Chew E, Collins FS, Corbin L], Smith
GD, Dedoussis G, Dorr M, Farmaki A-E, Ferrucci L, Forer L, Fraser RM, Gabriel
S, Levy S, Groop L, Harrison T, Hattersley A, Holmen OL, Hveem K, Kretzler
M, Lee JC, McGue M, Meitinger T, Melzer D, Min JL, Mohlke KL, Vincent JB,
Nauck M, Nickerson D, Palotie A, Pato M, Pirastu N, McInnis M, Richards JB,
Sala C, Salomaa V, Schlessinger D, Schoenherr S, Slagboom PE, Small K, Spector
T, Stambolian D, Tuke M, Tuomilehto J, Den Berg LHV, Rheenen WV, Volker U,

Chard et al. (2018), Peerd Comput. Sci., DOI 10.7717/peerj-cs.144 28/30

https://peerj.com
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749
http://dx.doi.org/10.1109/MCSE.2008.120
http://cds.cern.ch/record/936685
http://dx.doi.org/10.1002/cpe.3526
http://dx.doi.org/10.2218/ijdc.v8i1.260
http://dx.doi.org/10.7717/peerj-cs.144

PeerJ Computer Science

Wijmenga C, Toniolo D, Zeggini E, Gasparini P, Sampson MG, Wilson JF, Frayling
T, De Bakker PIW, Swertz MA, McCarroll S, Kooperberg C, Dekker A, Altshuler

D, Willer C, Iacono W, Ripatti S, Soranzo N, Walter K, Swaroop A, Cucca F,
Anderson CA, Myers RM, Boehnke M, McCarthy MI, Durbin R, Abecasis G,
Marchini J. 2016. A reference panel of 64,976 haplotypes for genotype imputation.
Nature Genetics 48(10):1279-1283 DOI 10.1038/ng.3643.

McLennan M, Kennell R. 2010. HUBzero: a platform for dissemination and collabora-
tion in computational science and engineering. Computing in Science & Engineering
12(2):48-52 DOI 10.1109/MCSE.2010.41.

Meyer PA, Socias S, Key], Ransey E, Tjon EC, Buschiazzo A, Lei M, Botka C, Withrow
J, Neau D, Rajashankar K, Anderson KS, Baxter RH, Blacklow SC, Boggon TJ,
Bonvin AMJJ, Borek D, Brett T], Caflisch A, Chang C-I, Chazin WJ, Corbett KD,
Cosgrove MS, Crosson S, Dhe-Paganon S, Cera ED, Drennan CL, Eck MJ, Eichman
BF, Fan QR, Ferré-D’Amaré AR, Fromme JC, Garcia KC, Gaudet R, Gong P,
Harrison SC, Heldwein EE, Jia Z, Keenan RJ, Kruse AC, Kvansakul M, McLellan
JS, Modis Y, Nam Y, Otwinowski Z, Pai EF, Pereira PJB, Petosa C, Raman CS,
Rapoport TA, Roll-Mecak A, Rosen MK, Rudenko G, Schlessinger J, Schwartz TU,
Shamoo Y, Sondermann H, Tao Y], Tolia NH, Tsodikov OV, Westover KD, Wu
H, Foster I, Fraser JS, Maia FRNC, Gonen T, Kirchhausen T, Diederichs K, Crosas
M, Sliz P. 2016. Data publication with the structural biology data grid supports live
analysis. Nature Communications 7:10882 DOI 10.1038/ncomms10882.

Morin A, Eisenbraun B, Key J, Sanschagrin PC, Timony MA, Ottaviano M, Sliz P. 2013.
Collaboration gets the most out of software. eLife 2:e01456 DOI 10.7554/¢eLife.01456.

Pierce ME, Marru S, Gunathilake L, Wijeratne DK, Singh R, Wimalasena C,
Ratnayaka S, Pamidighantam S. 2015. Apache Airavata: design and directions of a
science gateway framework. Concurrency and Computation: Practice and Experience
27(16):4282-4291 DOIT 10.1002/cpe.3534.

Rajasekar A, Moore R, Hou C-Y, Lee CA, Marciano R, De Torcy A, Wan M, Schroeder
W, Chen S-Y, Gilbert L, Tooby P, Zhu B. 2010. iRODS Primer: integrated rule-
oriented data system. Synthesis Lectures on Information Concepts, Retrieval, and
Services 2(1):1-143.

Rao NS, Liu Q, Sen S, Hinkel G, Imam N, Foster I, Kettimuthu R, Settlemyer BW,

Wu CQ, Yun D. 2016. Experimental analysis of file transfer rates over wide-area
dedicated connections. In: IEEE 18th international conference on high performance
computing and communications. Piscataway: IEEE, 198-205.

Russell M, Allen G, Daues G, Foster I, Seidel E, Novotny J, Shalf J, Von Laszewski
G. 2001. The astrophysics simulation collaboratory: a science portal enabling
community software development. In: 10th IEEE international symposium on high
performance distributed computing. Piscataway: IEEE, 207-215.

Sakimura N, Bradley J, Jones M, De Medeiros B, Mortimore C. 2014. OpenID Connect
Core 1.0. Available at http:// openid.net/specs/ openid-connect-core-1_0.html.

Chard et al. (2018), Peerd Comput. Sci., DOI 10.7717/peerj-cs.144 29/30

https://peerj.com
http://dx.doi.org/10.1038/ng.3643
http://dx.doi.org/10.1109/MCSE.2010.41
http://dx.doi.org/10.1038/ncomms10882
http://dx.doi.org/10.7554/eLife.01456
http://dx.doi.org/10.1002/cpe.3534
http://openid.net/specs/openid-connect-core-1_0.html
http://dx.doi.org/10.7717/peerj-cs.144

PeerJ Computer Science

Subramoni H, Lai P, Kettimuthu R, Panda DK. 2010. High performance data transfer in
grid environment using GridFTP over InfiniBand. In: 10th IEEE/ACM international
conference on cluster, cloud and grid computing. Piscataway: IEEE, 557-564.

Tenopir C, Allard S, Douglass K, Aydinoglu AU, Wu L, Read E, Manoff M, Frame M.
2011. Data sharing by scientists: practices and perceptions. PLOS ONE 6(6):e21101
DOI 10.1371/journal.pone.0021101.

Tuecke S, Ananthakrishnan R, Chard K, Lidman M, McCollam B, Foster I. 2015.
Globus Auth: a research identity and access management platform. In: 12th IEEE
international conference on e-Science (e-Science). Piscataway: IEEE.

Wilkins-Diehr N, Gannon D, Klimeck G, Oster S, Pamidighantam S. 2008.

TeraGrid science gateways and their impact on science. Computer 41(11)
DOI10.1109/MC.2008.470.

Chard et al. (2018), Peerd Comput. Sci., DOI 10.7717/peerj-cs.144 30/30

https://peerj.com
http://dx.doi.org/10.1371/journal.pone.0021101
http://dx.doi.org/10.1109/MC.2008.470
http://dx.doi.org/10.7717/peerj-cs.144

