DataMed – an open source discovery index for finding biomedical datasets

Authors : Xiaoling Chen, Anupama E Gururaj, Burak Ozyurt, Ruiling Liu, Ergin Soysal, Trevor Cohen, Firat Tiryaki, Yueling Li, Nansu Zong, Min Jiang, Deevakar Rogith, Mandana Salimi, Hyeon-eui Kim, Philippe Rocca-Serra, Alejandra Gonzalez-Beltran, Claudiu Farcas, Todd Johnson, Ron Margolis, George Alter, Susanna-Assunta Sansone, Ian M Fore, Lucila Ohno-Machado, Jeffrey S Grethe, Hua Xu


Finding relevant datasets is important for promoting data reuse in the biomedical domain, but it is challenging given the volume and complexity of biomedical data. Here we describe the development of an open source biomedical data discovery system called DataMed, with the goal of promoting the building of additional data indexes in the biomedical domain.

Materials and Methods

DataMed, which can efficiently index and search diverse types of biomedical datasets across repositories, is developed through the National Institutes of Health–funded biomedical and healthCAre Data Discovery Index Ecosystem (bioCADDIE) consortium.

It consists of 2 main components: (1) a data ingestion pipeline that collects and transforms original metadata information to a unified metadata model, called DatA Tag Suite (DATS), and (2) a search engine that finds relevant datasets based on user-entered queries.

In addition to describing its architecture and techniques, we evaluated individual components within DataMed, including the accuracy of the ingestion pipeline, the prevalence of the DATS model across repositories, and the overall performance of the dataset retrieval engine.

Results and Conclusion

Our manual review shows that the ingestion pipeline could achieve an accuracy of 90% and core elements of DATS had varied frequency across repositories. On a manually curated benchmark dataset, the DataMed search engine achieved an inferred average precision of 0.2033 and a precision at 10 (P@10, the number of relevant results in the top 10 search results) of 0.6022, by implementing advanced natural language processing and terminology services.

Currently, we have made the DataMed system publically available as an open source package for the biomedical community.



A Data Citation Roadmap for Scholarly Data Repositories

Authors : Martin Fenner, Mercè Crosas, Jeffrey S. Grethe, David Kennedy, Henning Hermjakob, Phillippe Rocca-Serra, Gustavo Durand, Robin Berjon, Sebastian Karcher, Maryann Martone, Tim Clark

This article presents a practical roadmap for scholarly data repositories to implement data citation in accordance with the Joint Declaration of Data Citation Principles, a synopsis and harmonization of the recommendations of major science policy bodies.

The roadmap was developed by the Repositories Expert Group, as part of the Data Citation Implementation Pilot (DCIP) project, an initiative of and the NIH BioCADDIE ( program.

The roadmap makes 11 specific recommendations, grouped into three phases of implementation: a) required steps needed to support the Joint Declaration of Data Citation Principles, b) recommended steps that facilitate article/data publication workflows, and c) optional steps that further improve data citation support provided by data repositories.

URL : A Data Citation Roadmap for Scholarly Data Repositories